What is the process for finding the greatest common factor of polynomials?

Question image

Understand the Problem

The content in the image provides a method for finding the greatest common factor (GCF) of polynomials. It outlines the steps and techniques, including organizing terms and identifying prime factors.

Answer

The GCF is \( x^2 \).
Answer for screen readers

The greatest common factor (GCF) of the polynomial ( x^4 + 7x^3 + 12x^2 ) is ( x^2 ).

Steps to Solve

  1. Identify the Polynomial Identify the given polynomial ( x^4 + 7x^3 + 12x^2 ).

  2. Factor Out Common Terms Factor out the greatest common factor (GCF) from the polynomial.

    The terms are ( x^4, 7x^3, ) and ( 12x^2 ). The common factor is ( x^2 ).

    So the expression becomes: $$ x^2(x^2 + 7x + 12) $$

  3. Factor the Quadratic Next, factor the quadratic ( x^2 + 7x + 12 ).

    To factor, look for two numbers that multiply to ( 12 ) and add to ( 7 ). The numbers are ( 3 ) and ( 4 ).

    Thus, we can write: $$ x^2 + 7x + 12 = (x + 3)(x + 4) $$

  4. Combine the Factors Now combine the factored terms to express the polynomial fully factored: $$ x^4 + 7x^3 + 12x^2 = x^2(x + 3)(x + 4) $$

  5. Identify the GCF The GCF of the original polynomial ( x^4 + 7x^3 + 12x^2 ) is: $$ x^2 $$

The greatest common factor (GCF) of the polynomial ( x^4 + 7x^3 + 12x^2 ) is ( x^2 ).

More Information

The GCF helps simplify polynomials and can be useful in solving equations or finding commonalities in expressions. Factoring polynomials is a crucial skill in algebra that assists in solving more complex mathematical problems.

Tips

  • Forgetting to factor out the GCF before moving to further factorization.
  • Not correctly identifying the terms that multiply to match the constant when factoring quadratics.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser