तीन संख्याओं का योग 136 है। यदि पहले और दूसरी संख्याओं का अनुपात 2:3 है और दूसरी और तीसरी संख्या का अनुपात 5:3 है, तो दूसरी संख्या ज्ञात कीजिए। तीन संख्याओं का योग 136 है। यदि पहले और दूसरी संख्याओं का अनुपात 2:3 है और दूसरी और तीसरी संख्या का अनुपात 5:3 है, तो दूसरी संख्या ज्ञात कीजिए।

Question image

Understand the Problem

प्रश्न तीन संख्याओं का योग 136 है और पहले दो संख्याओं का अनुपात 2:3 है तथा दूसरी और तीसरी संख्या का अनुपात 5:3 है। हमें दूसरी संख्या ज्ञात करनी है।

Answer

The second number is $60$.
Answer for screen readers

The second number is $60$.

Steps to Solve

  1. Define Variables Let the first number be $2x$ (according to the ratio 2:3), the second number be $3x$, and the third number be $y$.

  2. Set Up the Equations According to the problem,

    • The sum of the three numbers is: $$ 2x + 3x + y = 136 $$
    • Also, from the ratio of the second and third number (5:3), we have: $$ \frac{3x}{y} = \frac{5}{3} $$
  3. Solve for y Cross-multiply the second ratio equation: $$ 3x \cdot 3 = 5 \cdot y $$ Which simplifies to: $$ 9x = 5y $$ Therefore, $$ y = \frac{9x}{5} $$

  4. Substitute y in the Sum Equation Substitute $y$ in the sum equation: $$ 2x + 3x + \frac{9x}{5} = 136 $$ Combine like terms: $$ 5x + \frac{9x}{5} = 136 $$ To eliminate the fraction, multiply the entire equation by 5: $$ 25x + 9x = 680 $$ Simplifies to: $$ 34x = 680 $$

  5. Solve for x Divide both sides by 34: $$ x = \frac{680}{34} = 20 $$

  6. Find the Second Number Finally, substitute $x$ back to find the second number: $$ \text{Second number} = 3x = 3 \cdot 20 = 60 $$

The second number is $60$.

More Information

The problem involves the use of ratios and systems of equations. The final answer shows how the logic of ratios can help solve for unknown quantities.

Tips

  • Misinterpreting the ratios can lead to incorrect equations.
  • Forgetting to multiply through to eliminate fractions can lead to complex steps unnecessarily.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser