If f(x) = log(1 + x)/(1 - x), show that (2x)/(1 + x^2) = 2f(x).

Question image

Understand the Problem

The question is asking us to demonstrate that the expression ( \frac{2x}{1+x^2} ) is equal to ( 2f(x) ), where ( f(x) = \log \left( \frac{1+x}{1-x} \right) ). This involves applying logarithmic properties to manipulate the expression and confirm the equality.

Answer

$$ f\left(\frac{2x}{1+x^2}\right) = 2f(x) $$
Answer for screen readers

The expression ( \frac{2x}{1 + x^2} ) is equal to ( 2f(x) ), where ( f(x) = \log\left(\frac{1+x}{1-x}\right) ).

Steps to Solve

  1. Substituting into ( f(x) )

Start with the expression we want to show, $$ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1 + \frac{2x}{1+x^2}}{1 - \frac{2x}{1+x^2}}\right) $$

  1. Simplifying the argument of the logarithm

Calculate ( 1 + \frac{2x}{1+x^2} ) and ( 1 - \frac{2x}{1+x^2} ):

For the numerator: $$ 1 + \frac{2x}{1+x^2} = \frac{(1+x^2) + 2x}{1+x^2} = \frac{1 + 2x + x^2}{1 + x^2} $$

For the denominator: $$ 1 - \frac{2x}{1+x^2} = \frac{(1+x^2) - 2x}{1+x^2} = \frac{1 - 2x + x^2}{1 + x^2} $$

  1. Combining fractions in the logarithm

Now substitute back: $$ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{\frac{1 + 2x + x^2}{1 + x^2}}{\frac{1 - 2x + x^2}{1 + x^2}}\right) = \log\left(\frac{1 + 2x + x^2}{1 - 2x + x^2}\right) $$

  1. Applying logarithmic properties

Use the properties of logarithms to simplify: $$ \log\left(\frac{1 + 2x + x^2}{1 - 2x + x^2}\right) = \log(1 + 2x + x^2) - \log(1 - 2x + x^2) $$

  1. Simplifying further

Notice that: $$ 1 + 2x + x^2 = (1 + x)^2 \quad \text{and} \quad 1 - 2x + x^2 = (1 - x)^2 $$

Thus: $$ f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{(1+x)^2}{(1-x)^2}\right) $$

  1. Finalizing the expression

Using another logarithmic property, we have: $$ \log\left(\frac{(1+x)^2}{(1-x)^2}\right) = 2\log\left(\frac{1+x}{1-x}\right) $$

Therefore: $$ f\left(\frac{2x}{1+x^2}\right) = 2f(x) $$

The expression ( \frac{2x}{1 + x^2} ) is equal to ( 2f(x) ), where ( f(x) = \log\left(\frac{1+x}{1-x}\right) ).

More Information

This result illustrates the relationship between a rational function and the logarithmic function via properties of logarithms. It demonstrates how manipulating expressions can lead to elegant equalities in mathematics.

Tips

  • Failing to simplify the logarithmic arguments correctly.
  • Not recognizing or applying logarithmic properties effectively, such as $\log\frac{a}{b} = \log a - \log b$ or $\log m^n = n \log m$.
  • Miscalculating the addition or subtraction of the fractions, especially when combining terms.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser