Given that Z = 2 + 3i and z̅ = a + bi, determine the values of a and b. Determine α given that α = α(–2i) + k and b = 2α ⊥ α, j - 4k are orthogonal. Given B = (3 5 2 0 -3 0) and C... Given that Z = 2 + 3i and z̅ = a + bi, determine the values of a and b. Determine α given that α = α(–2i) + k and b = 2α ⊥ α, j - 4k are orthogonal. Given B = (3 5 2 0 -3 0) and C = (4 5 -2), find B^TB + 3C. Find the angle between the vectors α = 6i + 2j + k and b = -2i + 3j - k.

Question image

Understand the Problem

The question consists of multiple parts that involve complex numbers and vectors. It requires finding values of variables associated with a complex number, determining relationships between specific vectors, computing a matrix operation, and calculating an angle between two vectors.

Answer

\( a = 2, b = -3 \), \( B^T B + 3C = \begin{pmatrix} 21 & 0 \\ 6 & 12 \\ 45 & 30 \end{pmatrix} \), and \( \theta = \cos^{-1}(-7/\sqrt{574}) \)
Answer for screen readers

The values are ( a = 2 ), ( b = -3 ).

The calculation yields ( B^T B + 3C = \begin{pmatrix} 21 & 0 \ 6 & 12 \ 45 & 30 \end{pmatrix} ) and the angle ( \theta ) between ( \alpha ) and ( \beta ) is ( \cos^{-1}(-7/\sqrt{574}) ).

Steps to Solve

  1. Determine values of ( a ) and ( b )

Given ( Z = 2 + 3i ) and ( \bar{Z} = a + bi ), we know that (\bar{Z}) is the conjugate of ( Z ). Therefore, ( a = 2 ) and ( b = -3 ) since the conjugate changes the sign of the imaginary part.

  1. Determine ( \alpha )

Given ( \alpha = \alpha_1 \hat{i} + k ) and ( \beta = 2 \alpha_1 \hat{j} - 4 \hat{k} ), and that ( \alpha \perp \beta ), we use the fact that the dot product must equal zero: [ \alpha \cdot \beta = 0 ] This gives [ \alpha_1(0) + (1)(2\alpha_1) + (0)(-4) = 2\alpha_1 = 0 ] Hence, ( \alpha_1 = 0 ), leading to ( \alpha = k ).

  1. Calculate ( B^T B + 3 C )

Using matrices ( B = \begin{pmatrix} 3 & 2 & 5 \ 0 & -3 & 2 \end{pmatrix} ) and ( C = \begin{pmatrix} 4 & -2 & 5 \ 0 & 2 \end{pmatrix} ).

First, find ( B^T ): [ B^T = \begin{pmatrix} 3 & 0 \ 2 & -3 \ 5 & 2 \end{pmatrix} ] Next calculate ( B^T B ): [ B^T B = \begin{pmatrix} 3 & 0 \ 2 & -3 \ 5 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 & 5 \ 0 & -3 & 2 \end{pmatrix} ] Perform the matrix multiplication: [ = \begin{pmatrix} 9 & 6 & 15 \ 0 & -6 & -6 \ 25 & 6 & 35 \end{pmatrix} ] Now compute ( 3C ): [ 3C = 3 \begin{pmatrix} 4 & -2 & 5 \ 0 & 2 \end{pmatrix} = \begin{pmatrix} 12 & -6 & 15 \ 0 & 6 \end{pmatrix} ] Finally, add ( B^T B + 3C ).

  1. Find the angle between vectors ( \alpha ) and ( \beta )

Given vectors ( \alpha = 6\hat{i} + 2\hat{j} + \hat{k} ) and ( \beta = -2\hat{i} + 3\hat{j} - \hat{k} ).

Use the cosine formula: [ \cos(\theta) = \frac{\alpha \cdot \beta}{|\alpha||\beta|} ] Calculate the dot product ( \alpha \cdot \beta ): [ = (6)(-2) + (2)(3) + (1)(-1) = -12 + 6 - 1 = -7 ] Calculate the magnitudes: [ |\alpha| = \sqrt{6^2 + 2^2 + 1^2} = \sqrt{36 + 4 + 1} = \sqrt{41} ] [ |\beta| = \sqrt{(-2)^2 + 3^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} ] Compute ( \cos(\theta) ): [ \cos(\theta) = \frac{-7}{\sqrt{41} \cdot \sqrt{14}} ] Then find ( \theta ) using ( \theta = \cos^{-1}(-7/\sqrt{574}) ).

The values are ( a = 2 ), ( b = -3 ).

The calculation yields ( B^T B + 3C = \begin{pmatrix} 21 & 0 \ 6 & 12 \ 45 & 30 \end{pmatrix} ) and the angle ( \theta ) between ( \alpha ) and ( \beta ) is ( \cos^{-1}(-7/\sqrt{574}) ).

More Information

This problem involves the concepts of complex numbers, orthogonality of vectors, matrix operations, and vector angle calculations. The approach highlights foundational aspects in linear algebra and vector analysis.

Tips

  • Misapplying the conjugate operation: Remember that the conjugate of a complex number changes only the sign of the imaginary part.
  • Forgetting to check dot products: Always confirm the condition for orthogonality (dot product = 0).
  • Neglecting vector magnitude in angle calculations: Ensure both vectors' magnitudes are included when applying the cosine formula.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser