Determine the exact value of cos(pi/8) and tan(pi/4 + pi/4) using the double angle formula.
Understand the Problem
The question is asking to determine the exact value of cosine and tangent for given angles using trigonometric identities, specifically the double angle formulas.
Answer
$\cos(2A) = 0$, $\tan(2A) = \text{undefined}$
Answer for screen readers
The exact values are:
- $\cos(2A) = 0$
- $\tan(2A) = \text{undefined}$
Steps to Solve
-
Identify the Given Values Given that: $$ \cos A = \frac{\sqrt{2}}{2} $$ We also know that: $$ \tan A = \frac{\sin A}{\cos A} $$
-
Use the Double Angle Formulas The double angle formulas for cosine and tangent are:
- Cosine: $$ \cos(2A) = 2 \cos^2(A) - 1 $$
- Tangent: $$ \tan(2A) = \frac{2 \tan(A)}{1 - \tan^2(A)} $$
-
Calculate Cosine of Double Angle First, calculate $\cos(2A)$: Substituting $\cos A = \frac{\sqrt{2}}{2}$ into the formula: $$ \cos(2A) = 2 \left(\frac{\sqrt{2}}{2}\right)^2 - 1 $$ $$ = 2 \cdot \frac{2}{4} - 1 = 1 - 1 = 0 $$
-
Calculate Tangent of Double Angle Now, calculate $\tan(2A)$: To find $\tan A$, use $\sin^2 A + \cos^2 A = 1$: Since $\cos A = \frac{\sqrt{2}}{2}$, we find $\sin A$: $$ \sin A = \sqrt{1 - \left(\frac{\sqrt{2}}{2}\right)^2} = \sqrt{1 - \frac{2}{4}} = \sqrt{\frac{2}{4}} = \frac{\sqrt{2}}{2} $$
Thus, $$ \tan A = \frac{\sin A}{\cos A} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 $$
Now substitute into $\tan(2A)$: $$ \tan(2A) = \frac{2(1)}{1 - (1)^2} = \frac{2}{0} $$
This indicates that $\tan(2A)$ is undefined (or approaches infinity).
The exact values are:
- $\cos(2A) = 0$
- $\tan(2A) = \text{undefined}$
More Information
Using the double angle formulas reveals that when angles are derived from $\cos A = \frac{\sqrt{2}}{2}$ (which corresponds to angles like 45°), the resultant cosine for the double angle becomes zero, indicating that the angle is a multiple of 90°. The tangent value becomes undefined, indicating it divides by zero.
Tips
- Misapplying the Formulas: Ensure that you correctly use the double angle formulas without switching terms.
- Forgetting about Angle Relationships: Remember that certain values may lead to undefined results.
AI-generated content may contain errors. Please verify critical information