Determine M_O. (Round the final answers to four decimal places. Include a minus sign if necessary.)
Understand the Problem
The question is asking us to compute the sum of the cross products of forces acting on a point where ropes support a tent. Specific values for the forces and geometry are given, and the result must be rounded to four decimal places.
Answer
The moment vector magnitude is approximately $27952.1731 \, \text{in.lb}$.
Answer for screen readers
The magnitude of the moment vector is approximately $27952.1731 , \text{in.lb}$.
Steps to Solve
-
Identify the Position Vectors We need the position vectors from point $O$ to points $A$, $B$, $C$, and $D$.
- Given:
- ( l = 72 , \text{in} )
The vectors can be defined as: [ \mathbf{r}{OA} = \begin{bmatrix} 0 \ 0 \ 96 \end{bmatrix}, \quad \mathbf{r}{OB} = \begin{bmatrix} -l \ 0 \ 0 \end{bmatrix}, \quad \mathbf{r}{OC} = \begin{bmatrix} l \ 0 \ 0 \end{bmatrix}, \quad \mathbf{r}{OD} = \begin{bmatrix} 0 \ -l \ 0 \end{bmatrix} ]
-
Define the Force Vectors Next, we identify the force vectors acting at these points.
- Given:
- ( \mathbf{F}_{AB} = \begin{bmatrix} -150 \ 0 \ 0 \end{bmatrix} , \text{lb} )
- ( \mathbf{F}_{AC} = \begin{bmatrix} 100 \ 0 \ 0 \end{bmatrix} , \text{lb} )
- ( \mathbf{F}_{AD} = \begin{bmatrix} 0 \ 250 \ 0 \end{bmatrix} , \text{lb} )
-
Calculate Each Cross Product We now calculate each cross product.
- For ( \mathbf{M}O ): [ \mathbf{M}O = \mathbf{r}{OA} \times \mathbf{F}{AB} + \mathbf{r}{OA} \times \mathbf{F}{AC} + \mathbf{r}{OA} \times \mathbf{F}{AD} ]
Calculate:
- ( \mathbf{r}{OA} \times \mathbf{F}{AB} = \begin{bmatrix} 0 \ 0 \ 96 \end{bmatrix} \times \begin{bmatrix} -150 \ 0 \ 0 \end{bmatrix} = \begin{bmatrix} 0 \ -14400 \ 0 \end{bmatrix} )
- ( \mathbf{r}{OA} \times \mathbf{F}{AC} = \begin{bmatrix} 0 \ 0 \ 96 \end{bmatrix} \times \begin{bmatrix} 100 \ 0 \ 0 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} )
- ( \mathbf{r}{OA} \times \mathbf{F}{AD} = \begin{bmatrix} 0 \ 0 \ 96 \end{bmatrix} \times \begin{bmatrix} 0 \ 250 \ 0 \end{bmatrix} = \begin{bmatrix} 24000 \ 0 \ 0 \end{bmatrix} )
-
Sum the Cross Products Now we sum the results of the cross products: [ \mathbf{M}_O = \begin{bmatrix} 0 \ -14400 \ 0 \end{bmatrix} + \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} + \begin{bmatrix} 24000 \ 0 \ 0 \end{bmatrix} = \begin{bmatrix} 24000 \ -14400 \ 0 \end{bmatrix} ]
-
Calculate the Magnitude of the Moment Finally, we will find the magnitude of the moment vector: [ \lVert \mathbf{M}_O \rVert = \sqrt{(24000)^2 + (-14400)^2} ]
Calculate: [ \lVert \mathbf{M}_O \rVert = \sqrt{576000000 + 207360000} = \sqrt{783360000} \approx 27952.173 ]
-
Round to Four Decimal Places Round the final answer to four decimal places: [ \lVert \mathbf{M}_O \rVert \approx 27952.1731 ]
The magnitude of the moment vector is approximately $27952.1731 , \text{in.lb}$.
More Information
The moment created by the forces is crucial in understanding how the tent is supported and how it will behave under load.
Tips
- Forgetting to account for the direction of forces in the cross product.
- Miscalculating the position vectors or cross products.
- Not rounding the final answer correctly to the specified decimal places.
AI-generated content may contain errors. Please verify critical information