Construct a 2 x 2 matrix A=[aij], such that aij = (i + j)^2 / 2.
Understand the Problem
प्रश्न एक 2 × 2 मैट्रिक्स A=[a_{ij}] बनाने के लिए कह रहा है, जिसका तत्व a_{ij} (i+j)^2 / 2 के रूप में परिभाषित है। इसका समाधान तत्वों का उपयोग कर मैट्रिक्स का निर्माण करना होगा।
Answer
$$ A = \begin{bmatrix} 2 & 4.5 \\ 4.5 & 8 \end{bmatrix} $$
Answer for screen readers
The constructed matrix A is: $$ A = \begin{bmatrix} 2 & 4.5 \ 4.5 & 8 \end{bmatrix} $$
Steps to Solve
-
Matrix Size Definition We need to construct a $2 \times 2$ matrix A, so we will have 2 rows and 2 columns.
-
Element Calculation The elements of the matrix are defined as $a_{ij} = \frac{(i + j)^2}{2}$. We will calculate each element based on the indices $i$ and $j$.
-
Calculate (a_{11}) For (i = 1), (j = 1): $$a_{11} = \frac{(1 + 1)^2}{2} = \frac{2^2}{2} = \frac{4}{2} = 2$$
-
Calculate (a_{12}) For (i = 1), (j = 2): $$a_{12} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5$$
-
Calculate (a_{21}) For (i = 2), (j = 1): $$a_{21} = \frac{(2 + 1)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5$$
-
Calculate (a_{22}) For (i = 2), (j = 2): $$a_{22} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$$
-
Matrix Construction Now we can construct the matrix A using the computed elements: $$ A = \begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} $$ Which gives: $$ A = \begin{bmatrix} 2 & 4.5 \ 4.5 & 8 \end{bmatrix} $$
The constructed matrix A is: $$ A = \begin{bmatrix} 2 & 4.5 \ 4.5 & 8 \end{bmatrix} $$
More Information
This matrix demonstrates how each element is derived from the formula involving the indices of the matrix. The computation method highlights how to systematically calculate each entry based on its row and column.
Tips
- Misidentifying Indices: It's crucial to correctly identify the indices $i$ and $j$; make sure they correspond to rows and columns accurately.
- Arithmetic Errors: Double-check calculations when squaring numbers or performing fractions.
AI-generated content may contain errors. Please verify critical information