60/42 simplified
Understand the Problem
The question is asking to simplify the fraction 60/42. To do this, we find the greatest common divisor (GCD) of 60 and 42 and divide both the numerator and denominator by this number.
Answer
The simplified fraction is $\frac{10}{7}$.
Answer for screen readers
The simplified fraction is $\frac{10}{7}$.
Steps to Solve
- Find the GCD of 60 and 42
To simplify the fraction, we first need to find the greatest common divisor (GCD) of the numbers 60 and 42. We can do this by listing the factors of each number:
Factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Factors of 42: 1, 2, 3, 6, 7, 14, 21, 42
The greatest common factor from both lists is 6. Thus, the GCD of 60 and 42 is 6.
- Divide both numerator and denominator by the GCD
Now we divide both the numerator and denominator of the fraction $\frac{60}{42}$ by their GCD, which is 6:
[ \frac{60 \div 6}{42 \div 6} = \frac{10}{7} ]
- Final simplified fraction
The simplified form of the fraction is $\frac{10}{7}$.
The simplified fraction is $\frac{10}{7}$.
More Information
When simplifying fractions, finding the GCD is a crucial step as it helps reduce the fraction to its simplest form. In this case, $\frac{10}{7}$ cannot be simplified further, and it is an improper fraction (the numerator is greater than the denominator).
Tips
- Forgetting to find the GCD: Always ensure to find the GCD before simplifying the fraction.
- Dividing only one part of the fraction: Remember to divide both the numerator and the denominator by the GCD to keep the fraction equivalent.