∫(1/(x√(x² - a²))) dx = (1/a) sec⁻¹(x/a) + c

Question image

Understand the Problem

The question provides an integral expression and claims that it equals a specific formula involving the secant inverse function. The high-level approach will involve verifying the integral solution using techniques from calculus.

Answer

The integral result is: $$ \int \frac{1}{x \sqrt{x^2 - a^2}} \, dx = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + C $$
Answer for screen readers

The final result of the integral is:

$$ \int \frac{1}{x \sqrt{x^2 - a^2}} , dx = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + C $$

Steps to Solve

  1. Rewrite the Integral Expression

We start with the integral

$$ \int \frac{1}{x \sqrt{x^2 - a^2}} , dx $$

  1. Substitution

Let ( x = a \sec(\theta) ). Then, the differential ( dx ) can be expressed as:

$$ dx = a \sec(\theta) \tan(\theta) , d\theta $$

The square root ( \sqrt{x^2 - a^2} ) becomes:

$$ \sqrt{a^2 \sec^2(\theta) - a^2} = a \sqrt{\sec^2(\theta) - 1} = a \tan(\theta) $$

  1. Change Variables in the Integral

Substituting these into the integral gives:

$$ \int \frac{1}{a \sec(\theta) \cdot a \tan(\theta)} \cdot (a \sec(\theta) \tan(\theta) , d\theta) $$

which simplifies to:

$$ \int \frac{\sec(\theta) \tan(\theta)}{a^2 \sec(\theta) \tan(\theta)} , d\theta = \int \frac{1}{a^2} , d\theta $$

  1. Integrate

Now we can integrate:

$$ \int \frac{1}{a^2} , d\theta = \frac{\theta}{a^2} + C $$

  1. Back Substitute for ( \theta )

Since we have ( \theta = \sec^{-1}\left(\frac{x}{a}\right) ), substituting back we find:

$$ \frac{\sec^{-1}\left(\frac{x}{a}\right)}{a} + C $$

Now we can rewrite this as

$$ \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + C $$

The final result of the integral is:

$$ \int \frac{1}{x \sqrt{x^2 - a^2}} , dx = \frac{1}{a} \sec^{-1}\left(\frac{x}{a}\right) + C $$

More Information

The integral involves a common calculus substitution method, using trigonometric identities. This process verifies that the integral given indeed equals the expression involving the secant inverse function.

Tips

  • Not properly substituting for ( x ) and ( dx ), leading to incorrect integrals.
  • Forgetting to handle the limits of integration properly if definite.
  • Confusing secant and tangent identities.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser