Trigonometric Identities and Equations

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Listen to an AI-generated conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

What is the simplified form of $tan^{-1}\frac{1 - cosx}{\sqrt{1 + cosx}}$, where $0 < x < \pi$?

  • $\frac{\pi}{4}$
  • $\frac{x}{2}$ (correct)
  • $\frac{1}{2} \tan^{-1} x$
  • $\frac{\pi}{2} - \frac{x}{2}$

Which of the following holds true for $sec^{-1}x + cosec^{-1}x$ when $|x| \ge 1$?

  • $\frac{3\pi}{4}$
  • $\frac{\pi}{3}$
  • $\frac{\pi}{2}$ (correct)
  • $\frac{\pi}{4}$

What is the result of $2tan^{-1}\frac{1}{2} + tan^{-1}\frac{1}{7}$?

  • $tan^{-1}\frac{31}{17}$ (correct)
  • $tan^{-1}\frac{31}{7}$
  • $tan^{-1}\frac{1}{31}$
  • $tan^{-1}\frac{17}{31}$

For $tan^{-1}\frac{x}{\sqrt{a^2-x^2}}$, where $|x| < a$, what is its simplest form?

<p>$sin^{-1}\frac{x}{a}$ (C)</p>
Signup and view all the answers

What does the expression $3cos^{-1}x$ equal for $-\frac{1}{2} \le x \le \frac{1}{2}$?

<p>$cos^{-1}(4x^3-3x)$ (D)</p>
Signup and view all the answers

Flashcards

Inverse Trigonometric Functions

Functions that return the angle for a given trigonometric ratio. Examples include arcsin(x), arccos(x), arctan(x), etc.

tan⁻¹(x) + tan⁻¹(2x/(1-x²))

Equals tan⁻¹(3x-x³/1-3x²), for |x| < 1/√3

cos(sec⁻¹(x) + cosec⁻¹(x))

Equals 0, when |x| ≥ 1

3sin⁻¹(x) = sin⁻¹(3x-4x²)

An identity that holds true when -1/2 ≤ x ≤ 1/2

Signup and view all the flashcards

tan⁻¹(1/2) + tan⁻¹(1/7)

Equals tan⁻¹(1/24)

Signup and view all the flashcards

Study Notes

Trigonometric Identities and Equations

  • Example 7: Prove tan⁻¹x + tan⁻¹(2x/(1-x²)) = tan⁻¹(3x-x³)/(1-3x²) for |x| < 1/√3
  • Solution: Substitute x = tanθ. Simplify using trigonometric identities
  • Result: Left-hand side (LHS) equals right-hand side (RHS)

Trigonometric Equation Example 8

  • Example 8: Find the value of cos(sec⁻¹x + cosec⁻¹x) for |x| ≥ 1
  • Solution: cos(sec⁻¹x + cosec⁻¹x) = cos (π/2) = 0
  • Note: This is related to the sum of inverse trigonometric functions and properties of secant and cosecant.

Trigonometric Equations (Exercise 2.2)

  • Problem 1: Prove 3sin⁻¹x = sin⁻¹(3x - 4x³), where |x| ≤ 1/2
  • Problem 2: Prove 3cos⁻¹x = cos⁻¹(4x³ - 3x), where |x| ≤ 1
  • Problem 3: Solve tan⁻¹(1/2) + tan⁻¹(1/7) = tan⁻¹(24/7)
  • Problem 4: Solve 2tan⁻¹(1/2) + tan⁻¹(1/7) = tan⁻¹(31/17)

Simplifying Trigonometric Functions

  • Problem 5: Simplify tan⁻¹(√(1+x²)-1)/x, x ≠ 0
  • Problem 6: Simplify tan⁻¹(1/√(x²-1)) |x| > 1
  • Problem 7: Simplify tan⁻¹((1-cosx)/(1+cosx)) for 0 < x < π
  • Problem 8: Simplify tan⁻¹(cosx - sinx)/(cosx + sinx) for 0 < x < π

Trigonometric Expressions involving inverse trigonometric functions

  • Problem 9: Evaluate tan⁻¹(x/√(a²-x²)), where |x| < a
  • Problem 10: Find the value of tan⁻¹(3a²x-x³)/(a³-3ax²) , for 0 < a, -a < x < a and √3 < x < √3

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Use Quizgecko on...
Browser
Browser