🎧 New: AI-Generated Podcasts Turn your study notes into engaging audio conversations. Learn more

Werkstofftechnik 2 SS2022 Übung 1.pdf

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Document Details

BetterKnownArtNouveau

Uploaded by BetterKnownArtNouveau

Universität Duisburg-Essen

2022

Tags

material science magnesium metallurgy

Full Transcript

Werkstofftechnik II Übung M. Sc. Christina Lopez M.Sc. Jonas Ehrich Dr.-Ing. Stefanie Hanke – Vorlesung [email protected]...

Werkstofftechnik II Übung M. Sc. Christina Lopez M.Sc. Jonas Ehrich Dr.-Ing. Stefanie Hanke – Vorlesung [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 1 Übung– Gliederung - Magnesium - Titan Leichtmetalle (Dichte ρ < 5 g/cm³) - Aluminium - Kupfer - Nickel Schwermetalle (Dichte ρ > 5 g/cm³) - Kobalt - Keramiken [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 2 Übung: Magnesium Quelle: ISF,- Universität Dortmund Quelle: Metall, 52. Jahrgang, Nr.9/98 [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 3 1. Welche Gitterstruktur hat reines Magnesium? Hexagonal- dichteste Packung (hdp): Quelle: : Bargel/Schulze [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 4 1. Welche Gitterstruktur hat reines Magnesium? Hexagonal- dichteste Packung (hdp): Quelle: : Bargel/Schulze 2. Erläutern Sie den Einfluss dieser Gitterstruktur auf das Verformungsverhalten. Rein- Magnesium ist schlecht kalt umformbar (besser bei 220°C) ! Hdp Gitter hat lediglich 3 Gleitsysteme [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 5 Zur Erinnerung/ Wiederholung aus WT1: Kfz: immer definierte Gleitebene {111} und Gleitrichtung →4x{111} Eb →4x{111} Ebene, in jeder 3x=12 GS Krz: keine definierte Gleitebene sondern nur definierte Gleitrichtung Gleitung auf {110 }-, {112}- und {123}-Ebenen → 12, 12 und 24 GS hdp: hohe Einheitszelle: nur Basisgleitung definierte Gleitebene {0001} und Gleitrichtung (Bei Titan auch Prismen & Pyramidengleitung) → Basisebene: 3 GS [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 6 Basalgleitung Prismengleitung Pyramidalgleitung c c c Quelle: : Bargel/Schulze a a a Basal-, Pyramidal- Nur Basalgleitung und und Prismengleitung Basalgleitung Zwillingsbildung c/a 1,58 1,63 1,73 Titan Quelle: Gottstein [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 7 3.Welches sind die beiden wichtigsten Legierungselemente für Mg-Legierungen? Mn (wg. Korrosionsbeständigkeit) und Al (wg. Mischkristallverfestigung) Außerdem wichtig: - Zink (Zn) – Mischkristallverfestigung - Thorium (Th, radioaktiv!) - erhöht die Warmfestigkeit bis 220oC bzw. 300oC - Zirconium (Zr) - dient der Kornfeinung [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 8 4.Welche herausragenden / nachteiligen physikalischen Eigenschaften hat Magnesium? Physikalische Eigenschaften: Dichte: 1,74 g/cm³ Geringste Dichte aller technisch nutzbaren Metalle Schmelztemperatur: 649 oC Ausdehnungskoeffizient: 25 10-6/K E- Modul: 45 GPa Zugfestigkeit: 80…180 N/mm² Bruchdehnung: 1…12 % Nachteile: Schlecht umformbar (hdp!) nach Kaltwalzen ausgeprägte Textur, durch Rekristallisationsglühen nicht zu beseitigen ungeschützte Teile bekommen Oxidhaut an Luft → an Seeluft nicht beständig [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 9 5. Welche Gießverfahren sind bei Magnesium-Gusslegierungen möglich? K.Kaldenberg K.Kaldenberg Böhler,Edelstahl Sandguss Kokillenguss Druckguss → Verlorene Form → Dauerform → Dauerform Kostengünstige Form Rel. teure Form Rel. aufwändig aber schnell →Prototypen /Kleinserien → Mittlere bis Großserien → Großserien [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 10 6. Nennen Sie Anwendungsbeispiele für Magnesium-Knetlegierungen. Stents in vivo (Mensch) seit 2003: MR- kompatibel Bioresorbierbar Biokompatibel [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 11 6. Nennen Sie Anwendungsbeispiele für Magnesium-Knetlegierungen. Stents in vivo (Mensch) seit 2003: MR- kompatibel Bioresorbierbar Biokompatibel 7. Nennen Sie Anwendungsbeispiele für Magnesium-Gusslegierungen. [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 12 Übung– Gliederung - Magnesium - Titan Leichtmetalle (Dichte ρ < 5 g/cm³) - Aluminium - Kupfer - Nickel Schwermetalle (Dichte ρ > 5 g/cm³) - Kobalt - Keramiken [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 13 Übung: Titan [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 14 1. Welche Gitterstruktur hat reines Titan? Hexagonal dichteste Packung (hdp): > 882°C (b-Phase) krz Quelle: : Bargel/Schulze [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 15 1. Welche Gitterstruktur hat reines Titan? Hexagonal dichteste Packung (hdp): > 882°C (b-Phase) krz Quelle: : Bargel/Schulze 2. Erläutern Sie den Einfluss der Gitterstruktur auf das Verformungsverhalten. → Je mehr Gleitsysteme in einer Gitterstruktur aktiviert werden können, desto einfacher ist ein Werkstoff verformbar Rein- Titan ist mäßig kalt umformbar! Hdp Gitter hat lediglich 3 Gleitsysteme [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 16 3. Nennen Sie günstige physikalische und technologische Eigenschaften von Titan und Titanlegierungen. Physikalische Eigenschaften: Dichte: 4,5 g/cm³ Schmelztemperatur: 1670 C° Ausdehnungskoeffizient: 9 10-6/K Zugfestigkeit: 240…360 N/mm² E- Modul: 110 GPa Verhältnis Festigkeit/Dichte: Korrosionsbeständigkeit: → Luftfahrt → chemische Apparate → Freizeit → Medizintechnik [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 17 4. Was muss bei der Verarbeitung von reinem Titan besonders beachtet werden? Hohe O-Affinität → feine Späne und Schleifstaub sind leicht entzündlich! Hohe O-Löslichkeit → Wärmebehandlungen unter Edelgas, Vakuum → Schweißen unter Schutzatmosphäre (Edelgas, Vakuum) Zäh → Schwierig zerspanbar [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 18 5. Welche Gruppen von Ti-Legierungen gibt es? Viele mögliche Legierungen α-Legierungen, β-Legierungen, near-α-Legierungen, α+β-Legierungen 6. Durch welche Elemente wird rein-Ti mischkristallverfestigt? Wichtige Legierungselemente: Hochfeste Titanlegierung: Ti-6Al-4V Al, Sn, O → stabilisieren α-Phase (hdp) Z.B. Turbinenschaufeln V, Cr, Fe [email protected] → stabilisieren β-Phase Universität (krz) Werkstofftechnik Duisburg-Essen, www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 19 7. Wo wird reines Ti eingesetzt? Orthopädische Temporärimplantate aus Ti4 (Grade 4) Titan Beschichtungen Unlegiertes Titan wird in unterschiedlichen Gütegraden unterteilt: Grade1-4 Grade1: höchste Korrosionsbeständigkeit und Formbarkeit, bei niedrigster Belastung Grade4: hohe Belastbarkeit bei mäßiger Duktilität [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 20 8. Wofür werden Titanlegierungen eingesetzt? Leichtbau-, Verkehrs-, Medizintechnik, Gebrauchsgüter Quelle: Leyens, Peters; Ti andTi-Alloys, DGM,Wiley-VCH, Seiko, [email protected] Wärmetauscher und Großrohre Verkehrstechnische Anlagen (z.B. Federn, Armaturen) [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 21 Übung– Gliederung - Magnesium - Titan Leichtmetalle (Dichte ρ < 5 g/cm³) - Aluminium - Kupfer - Nickel Schwermetalle (Dichte ρ > 5 g/cm³) - Kobalt - Keramiken [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 22 Übungsteil: Aluminium (Al) Quelle: König/Klocke Quelle: Werkfoto Täfler [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 23 1.Welche Gitterstruktur hat reines Aluminium? Kubisch flächenzentriert (kfz): Quelle: K.Lange [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 24 2.Welche herausragenden physikalischen Eigenschaften hat Aluminium? Physikalische Eigenschaften: Dichte: 2,70 g/cm³ (Stahl ca. 7,85 g/cm³) Schmelztemperatur: 660 oC Ausdehnungskoeffizient: 23,8 10-6/K (Stahl ca. 11,5 10-6/K) E- Modul: 65 GPa (Stahl ca. 210 GPa) Zugfestigkeit: 40…180 N/mm² Bruchdehnung: 4…50 % Gebrauchseigenschaften: gute Korrosionsbeständigkeit gegen oxidierende Medien (z.B. HNO3) → Deckschichtbildung (Al2O3) an Luft geringe Beimengungen an Fremdatomen verschlechtern die Korrosionsbeständigkeit [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 25 3.Welche Gruppe von Aluminiumlegierungen ist umformbar / nicht umformbar ? Knetlegierungen sind umformbar z.B.: Fertigungstech.,R.Koether Halbzeuge Quelle: König/Klocke Drücken (Schematisch) Aluminiumreflektoren Gusslegierungen sind nicht umformbar z.B.: K.Kaldenberg [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 26 3.Welche Gruppe von Aluminiumlegierungen ist umformbar / nicht umformbar ? Knetlegierungen sind umformbar z.B.: Fertigungstech.,R.Koether Halbzeuge Quelle: König/Klocke Drücken (Schematisch) Aluminiumreflektoren Gusslegierungen sind nicht umformbar 12,5% Si [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 27 4. Wie kann man bei nicht aushärtbaren Al-Legierungen die Festigkeit steigern? Kaltverfestigung Mischkristallhärtung z.B. durch Mg, Zn Korngrenzenverfestigung [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 28 5. Nennen Sie Legierungselemente bei Al-Knetlegierungen für Mischkristall- bzw. Ausscheidungsverfestigung? Al-Knetlegierung, Mischkristallverfestigung durch: Mg, Zn Al-Knetlegierung, Ausscheidungsverfestigung durch: Cu, Si & Mg (Mg2Si - Ausscheidungen) 6. Warum sind Aluminium-Magnesium-Legierungen nicht aushärtbar? Prinzipiell möglich, jedoch nur mäßige Festigkeitssteigerung Al3Mg2 scheidet sich bevorzugt an Korngrenzen aus → Versprödung → Verschlechterung der Korrosionsbeständigkeit [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 29 7. Nennen Sie die Verfahrensschritte, die für den Vorgang der Ausscheidungshärtung bei Aluminiumlegierungen notwendig sind ? Erläutern Sie, was bei den jeweiligen Verfahrensschritten der Ausscheidungshärtung im Gefüge passiert. Verfahrenssschritte: 1. Lösungsglühen Legierung so hoch erwärmen, das alle Elemente in Lösung gehen → Homogener Mischkristall 2. Abschrecken Durch schnelles Abschrecken wird die Diffusion bzw. die Bildung von Ausscheidungen verhindert → Übersättigter Mischkristall 3. Warmauslagern Geringere Beweglichkeit der Elemente Bildung von Ausscheidungen Beispiele: Legierung: AlCuMg (2xxx) Legierung: AlMgSi (6xxx) Al2Cu- Ausscheidungen Mg2Si- Ausscheidungen Lösungsglühen: 500-540°C Lösungsglühen: 530°C Auslagern: z.B. RT-200°C Auslagern: 18h bei 160°C [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 30 Beispiel anhand des Al-Cu Phasendiagramms 1. Lösungsglühen 3. Warmauslagern 2. Abschrecken Skript: S.8 [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 31 8. Skizzieren Sie die Härte als Funktion der Glühzeit bei der Ausscheidungshärtung für zwei verschiedene Auslagerungstemperaturen und erläutern Sie die Unterschiede in den Bereichen. System Al-Cu 148OC (+) Ausscheidungswachstum (-) Ausscheidungswachstum → Überalterung (Ostwald Reifung) Ca. 120 HB Härte HB Ca. 90 HB Guinier Preston I & II – Zonen 0,01 0,1 1 10 100 Zeit [Tage] [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 32 8. Skizzieren Sie die Härte als Funktion der Glühzeit bei der Ausscheidungshärtung für zwei verschiedene Auslagerungstemperaturen und erläutern Sie die Unterschiede in den Bereichen. System Al-Cu Mit steigender Auslagerungstemperatur sinkt das Härtemaxium 300OC → Mit steigender Temperatur nimmt die Zahl der Ausscheidungen ab, da die Löslichkeit im Wirtsgitter (Al) für Fremdatome zunimmt. Härte HB Ca. 80 HB Beispiel für eine inkohärente Ausscheidung 0,01 0,1 1 10 100 Zeit [Tage] [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 33 9. Mit welchem Legierungselement werden Al-Gusslegierungen in gängigen kommerziellen Legierungen mischkristall- und mit welchem ausscheidungsverfestigt? Ausscheidungsverfestigt: Cu, Si Mischkristallverfestigt: Mg 10. Welche Gießverfahren sind bei Aluminium-Gusslegierungen möglich? K.Kaldenberg K.Kaldenberg Böhler,Edelstahl Sandguss Kokillenguss Druckguss 11. Welche Al-Si-Legierung ist besonders geeignet zum Gießen? Alle eutektischen Legierungen (Schmelzpunkt möglichst gering halten; geringerer Energieeinsatz!) [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 34 12. Wie ist die Schweißeignung der verschieden Aluminium-Gusslegierungen? AlSiMg: Sandguß → schweißgeeignet Kokillenguß → bedingt schweißgeeignet Druckguß → nicht schweißgeeignet, Porengehalt → Problem wegen Oxidhaut mit hohem Schmelzpunkt AlSiCu: Problembehaftete Schweißbarkeit → Rißneigung wegen Dehnung → wegen Oxidhaut mit hohem Schmelzpunkt AlMg: Problembehaftete Schweißbarkeit → wegen Al3Mg2 Ausscheidungen auf Korngrenzen → wegen Oxidhaut mit hohem Schmelzpunkt [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 35 13. Nennen Sie Anwendungsbeispiele für reines Aluminium / Aluminium-Knetlegierungen und Aluminium-Gusslegierungen: Reines Aluminium: Folien, Reflektoren, Tuben Quelle: König/Klocke Aluminium Knetlegierungen: AlMg2 : Bleche für Fassaden AlMg4,5Mn (EN AW 5083) : Profile AlMg3 (EN AW 5754) : Fahrzeugbau Aluminium-Gusslegierungen: GK-AlSi12 (Cu) : Motorblock [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 36 Vielen Dank für die Aufmerksamkeit ! [email protected] Universität Duisburg-Essen, Werkstofftechnik www.uni-due.de/wt Lotharstr. 1, 47057 Duisburg, Germany 37

Use Quizgecko on...
Browser
Browser