Sets and Functions Past Paper PDF - Government High School Jamal Aro
Document Details
Uploaded by PrudentPortland
Government High School Jamal Aro
Tags
Summary
This is a mathematics exam paper focusing on sets and functions for secondary school. The exam, titled "Sets and Functions", contains multiple-choice questions covering various aspects of the subject. The paper is likely part of a larger curriculum.
Full Transcript
**GOVERNMENT HIGH SCHOOL JAMAL ABRO MEHAR-II** **[MATHEMATICS-X]{.smallcaps}** **TIME ALLOWED: 30 MINUTES SETS AND FUNCTIONS TOTAL MARKS: 40** **NAME:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ DATE:\_\_\_\_\_\_\_\_\_\_\_\_\_\_** *[**NOTE**: Assess the provided options carefully and sel...
**GOVERNMENT HIGH SCHOOL JAMAL ABRO MEHAR-II** **[MATHEMATICS-X]{.smallcaps}** **TIME ALLOWED: 30 MINUTES SETS AND FUNCTIONS TOTAL MARKS: 40** **NAME:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ DATE:\_\_\_\_\_\_\_\_\_\_\_\_\_\_** *[**NOTE**: Assess the provided options carefully and select the correct answers by marking them with a tick.]* - **Q.1 A function is one-to-one if:** --- ------------------------ --- ---------------------------- --- ----------------------------------------- --- -------------------------- A It has only one output B It maps subsets to subsets C Different inputs give different outputs D All outputs are the same --- ------------------------ --- ---------------------------- --- ----------------------------------------- --- -------------------------- - **Q.2 The domain of a function is:** --- ----------------------------- --- ---------------------------- --- -------------------------------------- --- ------------------- A Set of all possible outputs B Set of all possible inputs C Set of all elements in the co-domain D None of the above --- ----------------------------- --- ---------------------------- --- -------------------------------------- --- ------------------- - **Q.3 A function is a relation where each input has:** --- ------------------ --- ----------------- --- --------------------- --- ----------- A Multiple outputs B A unique output C At least one output D No output --- ------------------ --- ----------------- --- --------------------- --- ----------- - **Q.4 For the function**[**f**(**x**)**=x**^**2**^ **−** **1**]{.math.inline}**, what is**[ f(**0**)]{.math.inline}**?** --- --- --- --- --- --- --- ----------- A 0 B 3 C 1 D Undefined --- --- --- --- --- --- --- ----------- - **Q.5 If A={1,2,3}, then the number of proper subsets of A is:** --- --- --- --- --- --- --- --- A 7 B 8 C 3 D 4 --- --- --- --- --- --- --- --- - **Q.6 If X**[**∈**]{.math.inline}**A and X**[**∈**]{.math.inline}**B, then X is:** --- -------------------------------- --- ------------------------- --- ----------------------- --- ------------------------ A In the intersection of A and B B In the union of A and B C In the difference A-B D In the complement of B --- -------------------------------- --- ------------------------- --- ----------------------- --- ------------------------ - **Q.7 The Cartesian product A×B consist of:** +--------+--------+--------+--------+--------+--------+--------+--------+ | A | All | B | All | C | All | D | Only | | | subset | | elemen | | ordere | | pairs | | | s | | ts | | d | | (a, | | | of A | | of A | | pairs | | | | | and B | | and B | | (a, b) | | b) | | | | | | | where | | where | | | | | | | a[∈]{. | | a=b | | | | | | | math | | | | | | | | |.inlin | | | | | | | | | e}A | | | | | | | | | and | | | | | | | | | b[∈]{. | | | | | | | | | math | | | | | | | | |.inlin | | | | | | | | | e}B | | | +--------+--------+--------+--------+--------+--------+--------+--------+ - **Q.8 Which of the following is not a function?** --- --------------------- --- --------------------- --- --------------- --- --------------- A {(1,2),(2,3),(3,4)} B {(1,2),(1,3),(3,4)} C {(2,3),(3,4)} D {(1,1),(2,2)} --- --------------------- --- --------------------- --- --------------- --- --------------- - **Q.9 If** [**f** **:** **A** **→** **B**]{.math.inline} **is a function, A is called the:** --- ----------- --- -------- --- ------- --- --------- A Co-domain B Domain C Range D Mapping --- ----------- --- -------- --- ------- --- --------- - **Q.10 The inverse of one-to-one function is:** --- ------------------- --- ---------------------- --- ---------------- --- ------------------- A Always a function B A quadratic function C Not a function D None of the above --- ------------------- --- ---------------------- --- ---------------- --- ------------------- - **Q.11 How many elements in the power set of {a, b}?** --- --- --- --- --- ---- --- --- A 8 B 9 C 10 D 6 --- --- --- --- --- ---- --- --- - **Q.12 Which of the following is not a property of functions?** --- -------------------------- --- ---------------------------------- --- --------------------------------------------- --- ------------------------------- A Functions must be unique B They can map to multiple outputs C No input have the same output more than one D They relate inputs to outputs --- -------------------------- --- ---------------------------------- --- --------------------------------------------- --- ------------------------------- - **Q.13 The cardinality of the set {2, 4, 6} is:** --- --- --- --- --- ---- --- ------ A 8 B 3 C 12 D Even --- --- --- --- --- ---- --- ------ - **Q.14 Which of the following is true?** --- ------------------------------------------------------------ --- ------------------------------------------------------------ --- ------------------------------------------------------------ --- ------------------------------------------------------------ A P[⊑]{.math.inline}N[⊑]{.math.inline}Z[⊑]{.math.inline}W B P[⊑]{.math.inline}N[⊑]{.math.inline}W[⊑]{.math.inline}Z C P[⊑]{.math.inline}W[⊑]{.math.inline}N[⊑]{.math.inline}Z D P[⊑]{.math.inline}Z[⊑]{.math.inline}N[⊑]{.math.inline}W --- ------------------------------------------------------------ --- ------------------------------------------------------------ --- ------------------------------------------------------------ --- ------------------------------------------------------------ - **Q.15 If A={a,b,c}, the number of elements in the Cartesian product A×A is:** --- --- --- --- --- --- --- ---- A 3 B 6 C 9 D 12 --- --- --- --- --- --- --- ---- - **Q.16 Which of the following statements is false?** --- -------------------------- --- ------------------------------------ --- ------------------------------------------------ --- ------------------------------------------------------------------------ A Ø is subset of every set B A[⊑]{.math.inline}A for any set A C A[∩]{.math.inline}B=A if A[⊆]{.math.inline}B D A[∪]{.math.inline}B=[*Ø*]{.math.inline} if A and B are non-empty set --- -------------------------- --- ------------------------------------ --- ------------------------------------------------ --- ------------------------------------------------------------------------ - **Q.17 Which is true about a Bijective function?** --- ----------------------------- --- --------------------------- --- -------------------------------------- --- ---------------------------------------- A It is not defined for all x B It is one-to-one and onto C Bijective function is not invertible D It is neither injective nor surjective --- ----------------------------- --- --------------------------- --- -------------------------------------- --- ---------------------------------------- - **Q18 What type of set is {x\|x is an even integer}** --- ------------ --- ----------- --- --------------- --- -------------- A Finite set B Empty set C Singleton Set D Infinite set --- ------------ --- ----------- --- --------------- --- -------------- - **Q.19 The power set of a set with n elements has how many members?** --- --- --- --------------------------- --- --------------------------- --- ---- A n B \ C \ D 2n [*n*^2^]{.math.display}\ [2^*n*^]{.math.display}\ --- --- --- --------------------------- --- --------------------------- --- ---- - **Q.20 If A={x\|x is an even number} and B={x\|x is a prime number}, which of the following is true?** --- -------------------------- --- -------------------------- --- ---------------------------- --- ------------------------ A A[∩]{.math.inline}B={1} B A[∩]{.math.inline}B={2} C A[∩]{.math.inline}B={1,2} D A[∩]{.math.inline}B=Ø --- -------------------------- --- -------------------------- --- ---------------------------- --- ------------------------ **\*\*\*GOOD LUCK\*\*\***