Robbins Essential Pathology - PDF

Summary

This chapter from Robbins Essential Pathology discusses neoplasia, focusing on the cellular and molecular mechanisms of tumor growth, angiogenesis, and evasion of apoptosis. It details the crucial role of growth factors, radiation, chemicals, DNA damage, and mutation of p53 in the development of neoplasia.

Full Transcript

80 CHAPTER 5 Neoplasia Lke norma ssues, umors requre dever y o oxygen and nurens...

80 CHAPTER 5 Neoplasia Lke norma ssues, umors requre dever y o oxygen and nurens Deficiency of ROS and remova o wase producs. Tumors are ony abe o grow o a sze growth factors Radiation and survival o 1 o 2 mm n e absence o angogeness, presumaby because s Chemicals signals sze represens e maxma dsance across wc oxygen, nurens, and wase can dfuse rom preexsng bood vesses. For neopasms o grow beyond s sze m, ey ave o smuae neoangogeness, n wc vesses sprou rom prevousy exsng capares. Neovascuar- zaon as a dua efec on umor grow: Peruson suppes needed DNA nurens and oxygen, and newy ormed endoea ces smuae e damage grow o adjacen umor ces by secreng grow acors. Aoug e resung umor vascuaure s efecve a deverng nurens and Mutation of p53 removng wases,  s no norma: he vesses are eaky and daed w Overexpression p53 response of MDM2 a apazard paern o connecon. Invasve umor ces may ready penerae ese vesses, conrbung o measass. Activation of BAX/BAK various Tumor angogeness may be s muaed by proangogenc ac ors sensors  a are pro duced by  e umor ces, nlammaor y ces (e.g., mac- BCL-2 ropages), and o er resden s roma ces (e.g., umor-ass o caed BCL-XL brobass). Proe as es eab oraed by  e umor ces or by s roma MCL-1 Mitochondria ces may as o ree as e p ep des w  angogenc ac  vy  rom  e exraceuar mar x. In  u-bown cancers,  e proangogenc s ae s  ur  er renorced by s e vera o er a era ons  a ncre as e e ves Cytochrome c APAF-1 o vas c uar endo ea grow  ac or (VEGF), a ke y proangogenc c yokne. Mos no aby, ssue yp oxa s abzes yp oxa-nduced ac or (HIF), an oxygen-s ens ve  rans cr p on ac or  a drec  y IAP Caspase 9 upreguaes VEGF expresson. hs cre aes an angogenc g raden  a smuaes  e proera on o endo ea  ces and gudes  e Caspase 3 grow  o ne w vess es oward  e umor. Mu a ons nvovng umor suppress ors oten   e baance o avor angogeness. For exampe, p53 repress es  e expresson o VEGF and s muaes  e expres- Apoptosis son o anangogenc moec ues. hus, oss o p53 n umor ces Fig. 5.21 Intrinsic pathway of apoptosis and mechanisms used by provdes a more p er mssve envronmen or angogeness. Grow  tumor cells to evade cell death. Evasion mechanisms in tumor cells ac or–recepor sgnang and MYC as o s muae  e expresson o are in red and include: (1) Loss of p53, leading to reduced function of VEGF. proapoptotic factors such as BAX. (2) Reduced egress of cytochrome Te dep endence o umors on ang  ogeness c an be e x poe d c from mitochondria as a result of upregulation of antiapoptotic factors  erap eu c a  y. Te proo y p e an  ang  o genes s dr ug , b e vac  zumab, such as BCL2, BCL-XL, and MCL-1. (3) Loss of apoptotic peptidase-acti- s an an b o dy  a neu ra  ze s VE GF and s approve d or  e  re a - vating factor 1 (APAF1). (4) Upregulation of inhibitors of apoptosis (IAP). men o mu  pe c ancers. Howe ver, ang o ge nes s  n  bors ave no b e en as e e c  ve as or  g  na  y op e d; presumaby, sub cones o As dscussed prevousy n e conex o ceuar agng (see Caper umor ce s w   g re aer  nvasve c ap ac  y and  e ab  y o mg rae 1), mos norma uman ces can doube 60 o 70 mes, ater wc e o exs ng bo o d vess es eme rge,  ereby s d esepp ng  e ne e d or ces ose e aby o dvde and ener senescence. hs penomenon s ne o ang ogeness. due o progressve sorenng o teomeres a e ends o cromosomes. he consequences o eomere sorenng, wen pronounced, Invasion and Metastasis are drasc. Sor eomeres are recognzed as doube-sranded DNA Invasion and metastasis result from complex interactions involv- breaks by e ce’s DNA damage “sensors, ” eadng o p53-medaed ing cancer cells, stromal cells, and the extracellular matrix. ce c yce arres and apoposs or senescence Even n ces w TP53 Mos sudes peran o carcnomas, wc are our ocus ere. For muaons, aemps o repar e damage roug oer DNA repar e purpose o dscusson, nvason and measass can be broken down paways eads o cromosome nsaby, wc evenuay eads o no a successve sequence o evens, dscussed nex. ce dea. I, owever, e ce reacvaes e enzyme eomerase (a specazed RNA-proen compex a uses s own RNA as a em- Invasion of the Extracellular Matrix pae or addng nuceodes o e ends o cromosomes), ce dea Tssues are organzed no comparmens separaed rom eac oer may be avered. by wo ypes o exraceuar marx (ECM), basemen membranes and Teomerase s acve n norma sem ces and s absen rom, or nersa connecve ssue, eac composed o coagens, gycopro- presen a ver y ow eves n, mos somac ces. In 85% o 95% o can- ens, and proeogycans (see Caper 2). Tumor ces nerac w e cers, eomere manenance s due o upreguaon o eomerase. he ECM a severa sages n e measac cascade (Fg. 5.22). A carc- remanng umors a o express eomerase and use anoer meca- noma ce mus rs breac e underyng basemen membrane, en nsm ermed aternatve engtenng of teomeres a depends on DNA raverse e nersa connecve ssue, and umaey gan access o recombnaon o manan eomeres. e crcuaon by penerang e vascuar basemen membrane. hs process s repeaed n reverse wen umor ces exravasae a dsan Sustained Angiogenesis ses. Invason o e ECM naes e measac cascade and s an In order to grow, solid tumors develop their own blood supply by acve process a can be resoved no severa sequena seps, as inducing angiogenesis. oows: CHAPTER 5 Neoplasia 81 metaoproteases (MMPs) produced by umor ces or sroma ces Transformed (e.g., brobass and nlammaor y ces) reacng o e umor. he cell PRIMARY Clonal expansion, eves o meaoproease nbors aso are reduced n carcnomas, TUMOR growth, diversification, urer ng e baance oward ssue degradaon. angiogenesis    Locomoton, e na sep o nvason, propes umor ces roug e degraded basemen membranes and zones o marx proeo- yss. Suc movemen may be poenaed and dreced by umor Metastatic subclone ce–derved cemoknes. In addon, ceavage producs o marx Basement componens (e.g., coagen, amnn) and some grow acors ave membrane Adhesion to and cemoacc acvy or umor ces, and sroma ces aso produce invasion of basement paracrne efecors o ce moy. membrane Vascular Dissemination and Homing of Tumor Cells Passage through Tumor ces requeny escape er ses o orgn and ener e crcua- extracellular matrix on roug bood vesses or ympacs. Mons o umor ces are sed Intravasation day rom even sma cancers. Severa acors seem o m e mea- sac poena o crcuang umor ces: We n e crcuaon, umor ces are vunerabe o desrucon by os mmune ces, and e process o adeson o vascuar beds and nvason o norma ssues may be more dicu an e na nvason. Even oowng exravasaon, umor Interaction with host lymphoid cells ces a grow we n er prmary se may ack crca sroma suppor or be suppressed by resden mmune ces. Despe ese mng acors, Host  negeced, vruay a magnan umors w evenuay produce mac- lymphocyte roscopc measases. The sites of metastases are related to two factors: the anatomic Platelets Tumor cell location and vascular or lymphatic drainage of the primary tumor, embolus and the tropism of particular tumors for specic tissues. Extracellular Mos measases arse n e rs capar y bed avaabe o e umor, matrix bu naura paways o dranage canno woy expan e dsrbu- Adhesion to on o measases. As menoned earer, or exampe, ung carcnoma basement membrane as a g procvy or spread o e adrena gands and e bran, and meanoma o e eye amos aways spreads o e ver. Suc organ ropsm may be reaed o e expresson o ssue-seecve adeson Extravasation moecues, e producon o specc cemoknes n dferen ssues or wc umor ces express recepors, and e presence o sroma Metastatic ces a suppor e grow o umors. A o ese acors make d- deposit eren ssues avorabe or unavorabe “so” or dferen umors. Metastasis Angiogenesis Tumors vary greay n er aby o measasze, n par because o METASTATIC neren dferences n beavor. In genera, arge umors are more key TUMOR o measasze an sma umors, presumaby because arge umors are Growth ypcay presen n e paen or onger perods o me, provdng add- ona cances or measass o occur. However, umor sze and ype can- no adequaey expan e beavor o ndvdua cancers, and  s s open o queson weer measass s probabsc (a maer o cance muped by umor ce number and me) or deermnsc (relecng neren dferences n measac poena rom umor o umor). Fig. 5.22 The metastatic cascade: The sequential steps involved in the Evasion of Immune Surveillance hematogenous spread of a tumor. The host immune system is capable of destroying tumors, but can- cers evolve to evade or inhibit immune responses.    L oos enng of nterceuar connec tons between tumor ce s. C ar- Tumor ces can be recognzed as “oregn” and emnaed by e cnoma ce s are nor ma  y ed oge er by ad eson proens, mmune sysem; mmune surveance reers o e roe o e mmune suc as E-c ad er n. E-c ad er n  unc  on s o en os n me a - sysem n consany “scannng” e body or emergng magnan ces s a c c arcnomas due o e er deeer ous mu a ons n E-c ad- and desroyng em. Tumor-specc T ces and anbodes are ound er n or s encng o E-c ad er n expresson. L oss o E-c ad er n n many paens, and e exen and quay o mmune nraes n s ass o c ae d w   canges n ce  sap e, ncre as e d ce  mo   y, cancers s oten correaed w e cnca oucome (e.g., coon can- and upregu  a on o genes  a are more  ypc a  o mes ency ma  cer). here s an ncreased ncdence o ceran cancers n mmuno- ce s (e.g.,  brob ass). Tes e canges are reer re d o as ep e- decency saes. Receny, erapeuc agens a ac by smuang a -mes ency ma   rans on (EMT). aen os T-ce responses (descrbed aer) ave sown efecveness    Loca degradaton of te basement membrane and nterstta n some advanced cancers. connectve tssue by proeoyc enzymes, parcuary matrx 82 CHAPTER 5 Neoplasia Because e mmune sysem s capabe o recognzng and em- angens. he presence o uncona CD8+ T ces s predcve o e nang nascen cancers, cancer sur vva requres a e umor ces be oucome o many cancers, and quancaon o e mmune ce n- nvsbe o e os mmune sysem or acvey suppress os mmu- rae (e mmunoscore) as some predcve vaue. he sgncance o ny. hs undersandng as ed o a modern revouon n cancer oer kng mecansms (e.g., macropages and NK ces) s uncear. mmunoerapy. Immune Escape Tumor Antigens Tumor cells evade the immune system either by being invisible to The major antigens of tumors that elicit immune responses are lymphoid cells or by hijacking inhibitory pathways designed for the products of mutated genes that produce neoantigens with regulation of immunity. MHC-binding mutated sequences. Severa mecansms o mmune evason ave been descrbed and Because ese angens are nove and are no presen normay, ey ave erapeuc vaue (Fg. 5.23): are seen as oregn by e os’s mmune sysem. Lke a cyosoc pro-    Antgen oss varants. As umor subcones evove, ey end o eer ens, ese angens are processed and dspayed as cass I MHC-as- ose expresson o e angens a are arges o os mmuny or, socaed pepdes o CD8+ T ces. Some umor angens are no e more oten, ose expresson o cass I MHC moecues or compo- producs o muaed genes bu are expressed n cancer ces a muc nens o angen-processng paways, prevenng e presenaon ger eves an n norma ces (e.g., yrosnase n meanomas), o angens o T ces. and oers are normay expressed eary n deveopmen, repressed n    Inbton of T ces usng ceckpont receptors. he wo bes-known maure ces, and derepressed n cancer ces (e.g., e so-caed cancer– recepors a mpose “ceckpons” n T-ce acvaon are PD-1 ess angens). Many oer angens ave been dened n umors and CTLA-4. Wen PD-1 and CTLA-4 expressed on CD8+ T ces because o er recognon by anbodes, bu mos o ese are aso engage er gands, e acvaon and uncon o ese ces are presen n norma ces and ey are neer nducers nor arges o nbed. hese ceckpons evoved o preven mmune responses anumor mmuny. agans se-angens and are “jacked” by umor ces o sence CD8+ T ces. PD-1 s engaged n umors because umor ces oten Immune Mechanisms of Tumor Destruction express e gands or ese recepors (PDL-1 and PDL-2) or nduce he mos mporan mecansm o umor emnaon s e kng o expresson o PDL-1 and PDL-2 on oer ces n e mmune n- umor ces by CD8+ cyooxc T ympocyes (CTLs) specc or umor rae. Bockng eer PD-1 or CTLA-4 w anbodes eads o Dendritic Dendritic cell cell Tumor peptide-MHC Tumor peptide-MHC Primed CTL capable CD28 of killing tumor cells TCR TCR CD28 B7 B7 CTLA-4 CTLA-4 CD8+ CD8+ CTL T cell T cell Anti- CTLA-4 A Lymph node NO COSTIMULATION COSTIMULATION Inhibited Activated CD8+ CD8+ Cytotoxic CTL CTL granules CTL CTL TCR TCR Peptide-MHC Peptide- PD-1 MHC PD-1 ligand Anti-PD-1 Killing of tumor cell Tumor Tumor cell cell Anti-PD-1 ligand B Tumor tissue Fig. 5.23 Activ ation of hos t a n titu m o r im m un i t y by c h e c k p oi n t in h i b i t or s. (A ) B l o c k a de of the C TL A - 4 surfac e m olecule with inh ib ito ry a nt i b od y a ll o w s cytolytic C D8 + T c el l s ( CT L s ) to en ga g e B7 f a mi l y co-re- ceptors, lea ding to T c ell a c t iv a tio n. (B ) B l o c k ad e of P D -1 re c e pt or or P D -1 ligand a br og a t e s i n h i b i t or y signals trans mitte d by PD- 1, again le a d i n g to activation of CTLs. ( Re p r i n t e d from A b ba s AK, Lichtman AH, Pilla i S: Cellular and mole c u la r im m u n o log y , ed 7, Phila delphia , 2012, Sa u n de r s.) CHAPTER 5 Neoplasia 83 e regresson o many umors, ncudng meanoma, non–sma nuceode excson repar sysem, wc s deecve n paens w s ce ung cancer, badder cancer, Hodgkn ympoma, and oers. dsease. he rae o somac muaon n sun-exposed skn s greay acce- hs approac, caed ceckpon bockade, s now an mporan eraed, resung n an exraordnary g ncdence o skn cancers suc componen o ancancer erapy. B ecause e ceckpons evoved as basa ce carcnoma and squamous ce carcnoma n ese paens. normay o preven auommuny, paens gven ese reamens Diseases with Defects in DNA Repair by Homologous oten deveop auommune nlammaon, ncudng cos, as we as nlammaon o e endocrne organs, ear, and oer ssues. Recombination    Oter mecansms by wc umors nb mmune responses he auosoma recessve dsorders Boom sy ndrome, ataxa-teang- ncude nducon o reguaor y T ces and e oca producon o ectasa, and Fancon anema are caracerzed by ypersensvy o mmunosuppressve cyoknes suc as TGF- DNA-damagng agens, suc as onzng radaon (n Boom syn- drome and aaxa-eangecasa) or DNA cross-nkng agens suc Genomic Instability as an Enabler of Malignancy as nrogen musard (n Fancon anema). E ac s caused by deecs Defects in DNA repair pathways enable tumor growth by allowing n genes a are requred or DNA repar by omoogous recomb- accumulation of mutations in cancer genes. naon, n wc a “good” srand o DNA s used o repar a damaged he precedng secon dened e eg denng eaures o pece o DNA a as been broken or covaeny cross-nked. he magnancy, a o wc appear o be produced by genec aeraons penoypes o ese dseases are compex and ncude, n addon nvovng cancer genes. Aoug umans are awas n envronmen- o a predsposon o cancer, neura sympoms (n aaxa-eangec- a muagens, cancers are reavey rare oucomes o ese encouners asa), anema (n Fancon anema), and deveopmena deecs (n because norma ces are abe o sense and repar DNA damage. he Boom syndrome). mporance o DNA repar n mananng e negry o e genome Evdence o e oncogenc roe o deecve omoogous recomb- s gged by persons born w nered deecs n ree ypes o naon aso comes rom e sudy o eredar y breas cancer. Germne DNA repar sysems (msmac repar, nuceode excson repar, and muaons n wo genes a aso uncon n omoogous recombna- recombnaon repar), a o wc are assocaed w an ncreased rsk on, BRCA1 and BRCA2, are ound n 50% o ama breas cancers. or deveopng cancer. Aoug e dscusson beow ocuses on ese In addon o breas cancer, women w BRCA1 muaons ave a nered syndromes, sporadc cancers oten ncur muaons n DNA subsanay ger rsk o ovaran carcnoma and men ave a sgy repar genes, as we. Presumaby, as n ndvduas w nered DNA ger rsk o prosae cancer ; germne muaons n BRCA2 ncrease repar deecs, ese somac muaons speed e accumuaon o drver e rsk o breas cancer n bo men and women, as we as oer car- muaons n cancer genes and ereby e deveopmen o cancer. cnomas, meanoma, and ympomas. Smar o oer umor suppres- sor genes, bo copes o BRCA1 and BRCA2 mus be nacvaed or Hereditary Nonpolyposis Colon Cancer Syndrome cancer o deveop. he roe o DNA msmac repar genes n e predsposon o cancer Tumor-Promoting Inflammation as an Enabler s usraed by e eredtary nonpoyposs coon cancer (HNPCC) syn- drome, a dsorder caracerzed by ama carcnoma o e coon. Wen of Malignancy Inammatory cells can facilitate tumor cell growth and survival by a srand o DNA s beng repared, e proens encoded by ese genes producing soluble factors that inuence the hallmarks of cancer. ac as “spe ceckers. ” For exampe,  ere s an erroneous parng o G Inrang cancers provoke a cronc nlammaor y reacon. In w T, raer an e norma A w T, e msmac repar proens paens w advanced cancers, s nlammaor y reacon can be so correc e deec. Wou ese “prooreaders, ” errors accumuae a an exensve as o cause sysemc sgns and sympoms, suc as anema ncreased rae. Muaons n a eas our msmac repar genes ave been (e anema o cronc nlammaon), ague, and cacexa. Anma ound n paens w HNPCC. One deecve copy o a DNA msmac modes sugges a nlammaor y ces aso mody e umor mcro- repar gene s nered, and a second “” n e oer aee o e same envronmen o enabe many o e amarks o cancer. hese efecs gene occurs n coonc epea ces. In s respec, ey resembe umor may sem rom drec neracons beween nlammaor y ces and suppressor genes. DNA repar genes afec ce grow ndrecy by aow- umor ces, or ndrec efecs o nlammaor y ces on oer resden ng muaons n oer genes durng e process o norma ce dvson. sroma ces, parcuary cancer-assocaed brobass and endoe- A caracersc ndng n e genome o paens w msmac repar a ces. Inlammaor y ces and resden sroma ces may promoe deecs s mcrosaee nsaby (MSI). Mcrosaees are andem cancer deveopmen by producng grow acors a ac on e neo- repeas o one o sx nuceodes ound rougou e genome. Usuay, pasc ces, promong angogeness, acvang ce sur vva paways e eng o ese mcrosaees remans consan. However, n paens n umors, producng enzymes a enance oca umor nvason and w HNPCC, ese saees are unsabe and ncrease or decrease n measass, and suppressng efecve anumor mmune responses. In eng. HNPCC syndrome accouns or ony 2% o 4% o a coonc can- s respec, ey resembe umor suppressor genes. cers, bu MSI can be deeced n abou 15% o sporadc cancers. MSI-asso- hese paopysoogc conceps ave provded a road map or caed umors end o be more responsve o mmune ceckpon nbor e deveopmen o new erapeuc agens or e reamen o can- erapes, presumaby because e deec n msmac repar eads o a cer (Fg. 5.24). As our undersandng o cancer paogeness expands, g burden o muaons producng umor neoangens. In ac, s ype ere s reason o ope a e nex ew years w see e deveopmen o mmunoerapy s now approved or a recurren umors w ms- o many more efecve argeed erapes. mac repar deecs regardess o e umor ype—e rs me a rea- men as been approved based ony on a muaona sgnaure. CLINICAL ASPECTS OF NEOPLASIA Xeroderma Pigmentosum Umaey, e mporance o cancer s s mpac on paens. he o- Paens w e auosoma recessve dsorder xeroderma pgmentosum owng dscusson consders e efecs o umors on er oss, e are a ncreased rsk or cancers arsng n sun-exposed skn. Uravoe gradng and cnca sagng o cancer, and e aboraor y dagnoss o (UV) rays n sung cause cross-nkng o pyrmdne resdues, pre- neopasms. venng norma DNA repcaon. Suc DNA damage s repared by e 84 CHAPTER 5 Neoplasia Checkpoint inhibitors Avoiding immune Evading growth Reactivation of p53 Anti-CTLA-4, anti-PD-1/PD-L1 destruction suppressors MDM2 inhibitors Sustaining Enabling EGFR proliferative replicative inhibitors signaling immortality Deregulating Tumor- cellular promoting energetics inflammation Activating Resisting BCL2 inhibitors invasion and cell death metastasis Inhibitors of Inducing Genome PARP inhibitors VEGF signaling angiogenesis instability and mutation Fig. 5.24 Therapeutic targeting of hallmarks of cancer. Therapies approved for use or in advanced clinical trials are listed. (From Hanahan D, Weiberg RA: The hallmarks of cancer: the next generation. Cell 144:646, 2011.) Clinical Effects of Tumors o e umor or by e eaboraon o ormones ndgenous o e ssue Benign and malignant tumors may cause local and systemic prob- o orgn o e umor hey appear n 10% o 15% o cancer paens, lems through a variety of direct and indirect effects. and er cnca recognon s mporan or severa reasons: Anaomc ocaon s a cruca deermnan o e oca, “space--    hey may be e eares manesaon o an occu neopasm ng” efecs o bo bengn and magnan umors. A sma (1-cm)    hey may be severe and, n some nsances, may even be ea puar y adenoma can compress and desroy e surroundng norma    hey may mmc measac dsease, ereby conoundng rea- gand, gvng rse o ypopuarsm, and a comparaby sma carc- men pannng noma wn e common be duc may nduce aa bar y rac Paraneopasc syndromes are dverse and are assocaed w many obsrucon. Oer mporan oca compcaons ncude spna cord dferen umors (Tabe 5.7). One umor may nduce severa syndromes compresson and paoogc racures due o srucura compromse o concurreny : Broncogenc carcnomas may eaborae producs den- bones by magnan umors. ca o or avng e efecs o ACTH, andurec ormone, paray- L o ca  y nvasve cancers may u cerae  roug  a sur ace, w  rod ormone, seroonn, uman coronc gonadoropn, and oer cons e quen be e dng or s e condar y ne c  on Eroson no maj or ves- boacve subsances. he oowng are e mos common paraneo- s es or  e e ar  can e ad o ca as ropc be e dng, a or unaey rare pasc syndromes: e ven. More common y, s e condar y ne c  on o non e a ng wounds    Hypercacema n cancer paens s mos oten caused by e syn- may be due o ner erence o nor ma  rep ar me cansms by ma g- ess o a parayrod ormone–reaed proen (PTHrP) by umor nan ce s. ces. Sgns and sympoms reaed o ormone producon are common    Cusng syndrome, usuay reaed o producon o ACTH or w bengn and magnan neopasms arsng n endocrne gands. ACTH-ke ormones by cancer ces, s mos commony seen w Tumors arsng n e β ces o e pancreac ses o Langerans can sma ce carcnoma o e ung. produce ypernsunsm, and umors o e adrena corex may eabo-    Hypercoaguabty, eadng o venous romboss and nonbace- rae a varey o serod ormones (e.g., adoserone, eadng o sodum ra romboc endocards, s prmary reaed o canges a reenon, yperenson, and ypokaema). enance e acvy o coaguaon acors (raer an paees). Many cancer p a ens sufer  rom tumor cacexa, w c s Suspeced conrbuors ncude canges n endoea uncon marke d by prog ressve oss o b o dy a and skee a  mus ce accomp a- reaed o e pronlammaor y efecs o cancer, and subsances ne d by proound we a kness and anorexa Tumor cacexa s caus e d reeased rom umor ces (suc as mucns) a drecy acvae e no by  e nu r  ona  demands o  e umor bu by an ncre as e n coaguaon cascade. crc u a ng ac ors  a suppress  e app e e and caus e canges n Grading and Staging of Cancer  e me ab osm o  ssues, suc as a and skee a  mus ce. C a or e exp endure remans g  and  e b as a  me ab oc rae s ncre as e d, Grading and staging are used to estimate the probable clinical despe re duce d o o d n a ke. hes e me ab oc abnor ma  es are aggressiveness of a given neoplasm and to provide a standard p ar  y a r bue d o  e ac  ons o  e c yokne umor ne cross ac- that is used when comparing the outcomes of different treatment or (TNF), pro duce d by ac  vae d macropages or by umor ce s protocols.  ems eves, w c suppress es  e app e e and n bs  e ac  on he sage o e cancer (ow exensve  s n e paen) s assessed o p oproen p as e, pre ven ng  e ree as e o  re e ay acds  rom many by cnca and radoogc sudes, wereas gradng s done by p oproens. paoogc examnaon usng eaures a are descrbed beow. In gen- Paraneopastc syndromes are sympom compexes a occur n era, aoug bo are useu, e umor sage s o greaer prognosc paens w cancer a canno be expaned by oca or dsan spread vaue an e umor grade. CHAPTER 5 Neoplasia 85 Table 5.7 Paraneoplastic Syndromes Clinical Syndrome Associated Neoplasms Causal Mechanism(s)/Agent(s) Endocrinopathies Cushing syndrome Small cell lung carcinoma ACTH or ACTH-like substance Pancreatic carcinoma Neural tumors Syndrome of inappropriate antidiuretic hor- Small cell lung carcinoma Antidiuretic hormone or atrial natriuretic mone secretion (SIADH) Intracranial neoplasms hormones Hypercalcemia Squamous cell lung carcinoma Parathyroid hormone–related protein, TGF- α, Breast carcinoma TNF, IL-1 Renal cell carcinoma Adult T-cell leukemia/lymphoma Hypoglycemia Fibrosarcoma Insulin or insulin-like substances Other mesenchymal sarcomas Ovarian carcinoma Nerve and Muscle Syndromes Myasthenia Lung carcinoma Immunologic Thymoma Disorders of the central and peripheral ner- Breast carcinoma Immunologic vous systems Teratoma Dermatologic Disorders Acanthosis nigricans Gastric carcinoma Immunologic; secretion of epidermal growth Lung carcinoma factor Uterine carcinoma Dermatomyositis Lung carcinoma Immunologic Breast carcinoma Osseous, Articular, and Soft Tissue Changes Hypertrophic osteoarthropathy and clubbing Lung carcinoma Unknown of the fingers Vascular and Hematologic Changes Venous thrombosis (Trousseau phenomenon) Pancreatic carcinoma Hypercoagulability due to secreted tumor Lung carcinoma products (e.g., mucins) that activate clotting Other cancers factors Red cell aplasia Thymoma Immunologic Polycythemia

Use Quizgecko on...
Browser
Browser