Qualitative Chemistry Practice Sheet ACS PDF

Document Details

PlayfulPulsar2615

Uploaded by PlayfulPulsar2615

ACS

Tags

chemical kinetics qualitative chemistry chemistry physical chemistry

Summary

This document is a qualitative chemistry practice sheet from the ACS. It includes problems and solutions related to chemical concepts and calculations.

Full Transcript

¸YMZ imvqb  Engineering Practice Sheet 1 wØZxq Aa¨vq ¸YMZ imvqb Qualitative Chemistry ACS Chemistry Department Gi g‡bvbxZ wjwLZ...

¸YMZ imvqb  Engineering Practice Sheet 1 wØZxq Aa¨vq ¸YMZ imvqb Qualitative Chemistry ACS Chemistry Department Gi g‡bvbxZ wjwLZ cÖkœmg~n Type: Av‡cwÿK cvigvbweK fi: 16 17 18  nh 11| Aw·‡Rb cigvYy‡Z wZbwU AvB‡mv‡Uvc 8 O, 8 O, 8 O h_vµ‡g Type: †K․wYK fi‡eM: mvr =  99.76%, 0.04% Ges 0.2% wn‡m‡e cvIqv hvq| Aw·‡R‡bi mwVK  2  1| †Kv‡bv cigvYyi M Kÿc‡_ AveZ©biZ GKwU e Gi †K․wYK cvigvYweK fi = ? – fi‡eM = ? H Kÿc‡_i e¨vmva© 3.6 × 10–8 cm n‡j MwZ‡eM KZ? DËi: 16 –34 5 DËi: 3.1624 ×10 Js ; 9.64 × 10 m/s 1 2 12| H Gi `ywU AvB‡mv‡Uvc 1H I 1H; mvaviY H Gi cvigvYweK fi Type: e– Gi e¨vmva©, MwZ‡eM, kw³: 1 2 1.008 n‡j †g․jwU‡Z 1H I 1H AvB‡mv‡Uv‡ci kZKvi cwigvY = ? 1 H cigvYyi e– wUi †eM hw` Av‡jvi †e‡Mi 1 2| 275 Ask n‡q _v‡K, DËi: 99.2%  1H 2 Z‡e e– wU †Kvb Kÿc‡_i? 0.8%  1H DËi: n = 2 Type: cvigvYweK msL¨v fi msL¨v AYyi msL¨v: 3| H cvigvYyi 3q Kÿc‡_ AveZ©bkxj e– Gi †eM wbY©q K‡iv| wbDwK¬qvm‡K wN‡i GB e– cÖwZ †m‡K‡Û KZevi AveZ©b K‡i? 13| 54 AvYweK fi Ges 26 cvigvYweK msL¨vwewkó X †g․j Y DËi: 7.28 × 107 cms–1 ; 2.43 × 1014 evi †g․‡ji mv‡_ AvB‡mvUwbK| Y Gi cvigvYweK fi 56 n‡j Y Gi cvigvYweK msL¨v KZ? 4| H cigvYyi 1g Kÿc‡_i e¨vmva© 0.53Å n‡j 3Li2+ Gi e¨vmva© DËi: 28 KZ? DËi: 0.177Å hc c 1 Type:†dvU‡bi kw³: E = , E = h,  = , V– = – 5| H cigvYyi 1g I 3q K‡ÿ AveZ©bkxj e Gi †eM wbY©q Ki|    †Kvb K‡ÿi MwZ‡eM †ewk? – 14| H cigvYyi e Gi `ywU wfbœ kw³¯Í‡ii kw³i cv_©K¨ 245.9 DËi: V1 = 3V3; 1g K‡ÿi †eM †ewk| KJ/mol| D”PZi kw³¯Íi †_‡K wb¤œZi kw³¯Í‡i e– jvwd‡q co‡j wewKwiZ Av‡jvK iwk¥i Zi½‣`N©¨ I K¤úv¼ = ? 6| Na cigvYyi 3q kw³¯Í‡i N~Y©vqgvb 11 Zg e– Gi MwZ‡eM wbY©q DËi: 6.1616 × 1014 Hz ; 4.867 × 102 nm K‡iv| DËi: 80.169 × 105 m/s 15| GKwU wewKwiZ iwk¥i Zi½‣`N©¨ 530 nm| G iwk¥i K¤úv¼ I Zi½ msL¨v = ? wewKwiZ iwk¥i eY© = ? 7| m¦vfvweK Ae¯vq H cigvYyi N~Y©vqgvb e– wbDwK¬qvm n‡Z KZ DËi: 5.66 × 1014 Hz ; 1.8868 × 104 cm–1 nm `~iZ¡ cwiågb K‡i MYbv K‡iv| Zi½‰`N©¨ 530 nm nIqvq GwU meyR eY©| DËi: 0.5292Å 16| H cigvYyi e– wU 3q †evi Kÿc_ n‡Z 1g Kÿc‡_ jvwd‡q 8| †evib Gi 3q †evi K‡ÿi e¨vmva© = ? co‡j weKxY© kw³i Zi½‣`N©¨ Å GK‡K †ei Ki| DËi: 9.62 × 10–2 nm DËi: 1025.8 Å 9| H cvigvYyi e– hLb K †k‡j Ae¯vb K‡i, ZLb Zvi kw³i gvb = ? 17| Zi‡½i K¤úv¼ 3.35 × 108 Hz; Ryj GK‡K kw³ KZ? DËi: – 2.176 × 10–11 erg wK‡jvRyj/†gvj GK‡K kw³i cwigvY KZ? DËi: 1.34 × 10–4 KJ/mol Type: B‡jKUªb †cÖvUb, wbDUªb, AvB‡mv‡Uvc, AvB‡mvevi 18| He cigvYy e– hLb PZz_© kw³¯Íi n‡Z wØZxq kw³¯Í‡i hvq, ZLb 10| 0.8 g CH4 M¨vm e– KZwU? DËi: 3.0115 × 1023 wU m„ó eY©vjx †iLvi Zi½‣`N©¨ I wewKi‡Yi eY© = ? DËi:  = 121.56 nm `„k¨gvb bq| st 2  Chemistry 1 Paper Chapter-2 19| `ywU Av‡jvi K¤úv¼ 5.46 × 1014 Hz I 4.4117 × 108 MHz 29| Li2+ Avq‡bi e– hLb 4_© kw³¯Íi n‡Z 2q kw³¯Í‡i cwZZ nq, Av‡jv `ywUi eY© wbaviY K‡iv Ges Zv‡`i Zi½‣`N©¨i cv_©K¨ wbY©q Ki| ZLb eY©vjx †iLvi Zi½‣`N©¨ I eY©vjxi eY© wbY©q Ki| DËi: 1g Av‡jv meyR ; cv_©K¨ = 130.55 nm DËi: 54.03 nm ; eY©vjx `„k¨gvb bq| 2q Av‡jv jvj 30| H Gi eY©vjxi eªv‡KU wmwi‡Ri Z…Zxq jvBb Gi Zi½‣`N©¨ wbY©q Ki| 3 20| H cigvYy (fi 1.66 × 10 Kg) 5.1625 × 10 J MZxq DËi: 2.1656 × 10 nm –27 –27 kw³‡Z Nyi‡Q| H cigvYyi wW-eªMjx Zi½‣`N©¨ wbY©q Ki| DËi: 1.6 × 10–7 m. 31| H Gi AvqbxKiY wefe = ? DËi: 13.6 eV 21| 4.8 MeV MwZkw³m¤úbœ GKwU -KYvi wW-eªMwj Zi½‣`N©¨i 32| evgvi wmwi‡Ri H Ges H †iLv `ywUi Zi½‣`N©¨ KZ? gvb wbY©q Ki| DËi: 4.863 × 10–5 cm DËi: 6.55 × 10–15 g 33| Li2+ Avq‡bi e– 7g kw³¯Íi †_‡K 2q kw³¯Í‡i avcvšÍ‡ii d‡j 22| mÄq`v`v 150 g f‡ii GKwU wµ‡KU ej‡K 80 km/h †e‡M Qz‡o wewKwiZ eY©vwj‡Z cÖvß †gvU †iLvi msL¨v wbY©q Ki| w`‡qwQj| wµ‡KU e‡ji wW-eªMwj Zi½‣`N©¨ wbY©q Ki| GwU DËi: 15 cwigvc‡hvM¨ wKbv = ? DËi:  = 1.987 × 10–25 nm ; GB gvb A‡bK ÿz`ª ZvB cwigvc‡hvM¨ bq| Type: `ª‡e¨i `ªve¨Zv wbY©q: 34| 30C ZvcgvÎvq 110 ml m¤ú„³ Rjxq `ªe‡Y 1.15 Av‡cwÿK 23| GKwU KYvi fi‡e‡Mi AwbðqZv 1.15 × 10 kgm/s KYvwUi ¸iæ‡Z¡i †Kv‡bv c`v‡_©i 20.7 g `ªexf~Z Av‡Q| 30C G `ª‡e¨i `ªve¨Zv –8 Ae¯v‡bi AwbðqZv KZ? wbY©q Ki| –27 DËi: x  4.587 × 10 m DËi: 22.5 24| †gvU B‡jKUªb msL¨v MYbv K‡iv| 35| 30C ZvcgvÎvq †Kv‡bv je‡Yi `ªve¨Zv 80g/100g H2O| G – 2– 2+ (i) F (ii) S (iii) Mg (iv) PH4+ ZvcgvÎvq 80g `ªe‡Yi g‡a¨ 30g jeY `ªexf~Z Av‡Q| G Ae¯vq DËi: (i) 10 ; (ii) 18 ; (iii) 10 ; (iv) 18 `ªeYwU‡K m¤ú„³ Ki‡Z cÖ‡qvRbxq je‡Yi cwigvY wbY©q Ki| DËi: 10g 1 1 1  Type: wiWevM© aªæeK:  = RH 2 – 2 × Z2 36| 30C I 50C ZvcgvÎvq †Kv‡bv `ª‡e¨i `ªe¨Zv h_vµ‡g 60 I  n 1 n 2   80| 50C ZvcgvÎvq 50g m¤ú„³ `ªeY‡K 30C ZvcgvÎvq kxZj 25| H cigvYyi e– Amxg n‡Z me©wb¤œ kw³¯Í‡i avcvšÍi n‡j †h kw³ Ki‡j Kx cwigvY `ªe `ªeY n‡Z †ewi‡q Avm‡e? wewKwiZ nq, Zvi Zi½‣`N©¨ wbY©q Ki| DËi: 5.552g DËi: 91.175 nm 37| 95% weky× Lv`¨ jeY w`‡q 80C ZvcgvÎvq cvwb‡Z 600 ml 26| H cigvYyi jvB‡gb wmwi‡Ri n«vmZg/ÿz`ªZg Zi½‣`N©¨ b¨v‡bvwgUv‡i KZ n‡e? wK‡jvRyj/ †gvj †dvU‡bi kw³ ZLb KZ? m¤ú„³ `ªeY cÖ¯‧Z Ki‡Z 195g Lv`¨ jeY cÖ‡qvRb nq| 80C G DËi: 91.175 nm; 1312.85 KJ/mol NaCl Gi `ªve¨Zv = ? H `ªeY‡K 25C G kxZj Ki‡j KZ MÖvg weï× NaCl †KjvwmZ n‡e? 25C G NaCl Gi `ªve¨Zv 240 g/L 27| He+ Avq‡bi D‡ËwRZ e– 4_© kw³¯Íi †_‡K ¯vbvšÍwiZ n‡j DËi: 41.25g †KjvwmZ; 80C G `ªve¨Zv = 308.75 g/L jvB‡gb wmwi‡R †iLv eY©vjx Zwi Ki‡j wewKwiZ iwk¥i Zi½msL¨v I Zi½‣`N©¨ = ? 38| 750 mL m¤ú„³ `ªe‡Y 200g NaCl `ªexf~Z Av‡Q| MÖvg I †gvj –1 DËi: Zi½msL¨v = 4.112 × 10 cm ;  = 24.3136 nm 5 GK‡K cÖwZ wjUvi m¤ú„³ `ªe‡Y NaCl Gi `ªve¨Zv MYbv Ki| DËi: 266.67 g/L and 4.558 mol/L Type: eY©vjx msµvšÍ MvwYwZK mgm¨v 39| cvwb‡Z 15C I 75C ZvcgvÎvq CuSO4 Gi `ªve¨Zv 19 I 55 28| H cigvYyi e Z…Zxq Kÿ †_‡K cÖ_g K‡ÿ jvwd‡q co‡j m„ó n‡j 77.5g m¤ú„³ Kcvi mvj‡dU `ªeY‡K 75 n‡Z 15C ch©šÍ VvÛv – eY©vjxi Av‡jvK‡iLvi K¤úv¼ Ges Zi½‣`N©¨ nm GK‡K †ei K‡iv| Ki‡j Kx cwigvY CuSO4 Rgv co‡e? 15 DËi: 2.92 × 10 Hz DËi: 18g ¸YMZ imvqb  Engineering Practice Sheet 3 –8 40| 25C ZvcgvÎvq 100g f‡ii GKwU `ªe‡K 300 ml dzUšÍ cvwb‡Z 49| 35C ZvcgvÎvq PbI2 Gi `ªve¨Zvi ¸Ydj 1.55 × 10 `ªexf~Z K‡i m¤ú„³ `ªeY Zwi Kiv nj| G `ªeY‡K 50C G kxZj mol3/L3 n‡j G ZvcgvÎvq `ªe‡Y PbI2 Gi 80% we‡qvwRZ n‡j PbI2 Ki‡j KZ MÖv‡g `ªe `ªeY n‡Z †ewi‡q Avb‡e? 50C ZvcgvÎvq `ªewUi Gi `ªve¨Zv = ? `ªve¨Zv 54.4 DËi: = 1.963 × 10–3 mol/L DËi: 25g 50| BaSO4 Gi `ªve¨Zv ¸Ydj 1.1 × 10–10 mol2/L2 n‡j Type: †nbixi m~Î e¨envi K‡i `ªve¨Zv wbY©q: (i) weï× cvwb‡Z Gi `ªve¨Zv = ? (ii) 0.1 M BaCl2 `ªe‡Y Gi `ªve¨Zv = ? S = KH × P; S `ªve¨Zv DËi: (i) 1.048 × 10–5 mol/L KH †nbixi aªæeK (ii) 1.1 × 10–19 mol/L P Pvc| 51| 25C ZvcgvÎvq K¨vjwmqvg A·v‡j‡Ui (CaC2O4) `ªve¨Zv 41| 20C ZvcgvÎvq cvwb‡Z CO2 M¨vm `ªexf~Z nIqvi †ÿ‡Î ¸Ydj 2.34 × 10–9 mol2/L2 n‡j, cÖwZ 100 ml m¤ú„³ `ªe‡Y KZ †nbixi aªæeK 0.8725 g/100g H2O/atm| 20C ZvcgvÎv I 15.5 MÖvg CaC O `ªexf~Z Av‡Q = ? 2 4 atm Pv‡c CO2 M¨v‡mi `ªve¨Zv = ? DËi: 6.1824 × 10–4 g DËi: 13.524g/100g H2O 52| 25C G Fe(OH)3 Gi m¤ú„³ `ªe‡Y OH– Avq‡bi MvpZ¡ 42| †Kvgj cvbxq Gi g‡a¨ 25C ZvcgvÎvq I 2.65 atm Pv‡c 9.843 × 10–9 g/L; g/L; Fe(OH) Gi `ªve¨Zv Gi ¸Ydj wbY©q Ki| 3 CO2 M¨vm `ªexf~Z Av‡Q| †evZ‡ji wQwc Lyj‡j Pvc 1.05 atm n‡j DËi: 3.74 × 10–38 250 ml `ªeY n‡Z KZ †gvj CO2 †ewi‡q Avm‡e? 25C G †nbixi aªæeK 1.75 × 10–2 m/atm. 53| 25C ZvcgvÎvq AgCl I PbCl2 Gi `ªve¨Zv ¸Ydj h_vµ‡g DËi: 7 × 10–3 mol 1.6 × 10–10 mol2/L2 I 1.6 × 10–5 mol3/L3 n‡j †Kvb jeYwUi m¤ú„³ `ªe‡Y Cl– Gi NbgvÎv AwaK? 43| 25C ZvcgvÎvq CO2 M¨v‡mi †ÿ‡Î †nbixi mgvbycvwZK DËi: 3.1748 × 102 mol/L aªæe‡Ki gvb 1.67 × 108 Pa n‡j H ZvcgvÎvq 2.5 atm Pv‡c 2.25 L †mvWv IqvUv‡ii g‡a¨ KZ MÖvg CO2 `ªexf~Z Av‡Q wbY©q| 54| 25C G, Fe(OH)3 `ªve¨Zv ¸Ydj 3.98 × 10–38| G m¤ú„³ DËi: 8.615 g CO2 `ªe‡Y 0.1 mol NaOH †hvM Ki‡j Fe3+ Avq‡bi NbgvÎvi Kxiƒc cwieZ©b n‡e? Type: `ªve¨Zv I `ªve¨Zv ¸Ydj wbY©q I mgAvqb cÖfve DËi: cÖv_wgK `ªve¨Zv = 1.9594 × 10–10 M –12 44| 25C ZvcgvÎvq Rjxq `ªe‡Y PbS Gi `ªve¨Zv 4.40964 × 10 g/L wgkÖ `ªe‡Y `ªve¨Zv = 3.98 × 10–35 M n‡j PbS Gi `ªve¨Zv ¸Ydj = ? [Pb = 207, S = 32] DËi: 3.4 × 10–28 mol2/L2 55| 25C ZvcgvÎvq GK wjUvi `ªe‡Y m‡e©v”P 1 × 10–3 mol PbI2 45| 25C ZvcgvÎvq CaF2 Gi `ªve¨Zv 0.002 mol/L n‡j Gi `ªexf~Z Av‡Q| (i) PbI2 Gi Ksp = ? (ii) I(aq) Avq‡bi NbgvÎv wظY `ªve¨Zv ¸Ydj wbY©q Ki| Ki‡j PbI2(s) Gi mv‡_ mvg¨ve¯vq _vKv Pb2+(aq) Gi NbgvÎvq DËi: 3.2 × 10–11 mol3/L3 Kxi~c cÖfve co‡e? DËi: (i) Ksp = 4 × 10–9 46| Fe(OH)3 Gi Ksp = 4.5 × 10–22 mol4/L4; g/L GK‡K Gi 1 (ii) `ªve¨Zv, S1 = × 1 × 10–3 4 `ªve¨Zv = ? 1 DËi: 2.158 × 10–4 g/L  Pb2+ Avq‡bi †gvjvwiwU n‡e| 4 47| 25C ZvcgvÎvq Cu(II) mvjdvBW Gi `ªve¨Zv ¸Ydj 56| AgCl Gi Ksp = 1.8 × 10–10 n‡j H ZvcgvÎvq 0.1M 6.3 × 10–36 mol2/L2 n‡j Gi `ªve¨Zv = ? AgNO3 `ªe‡Y AgCl Gi `ªve¨Zv = ? DËi: 2.5 × 10–18 mol/L DËi: 1.8 × 10–9 mol/L 48| 25C ZvcgvÎvq Al(OH)3 Gi `ªve¨Zv ¸Ydj 3.7 × 10–15 57| 25C ZvcgvÎvq weï× cvwb‡Z Ni(OH)2 Gi AvqwbK ¸Ydj mol4/L4 Al(OH)3 Gi m¤ú„³ `ªe‡Y Al3+ Avqb I OH– Avq‡bi 1.75 × 10–15; 14 pH Gi gv‡bi NaOH `ªe‡Y Ni(OH)2 Gi NbgvÎv Ges Al(OH)3 Gi `ªve¨Zv = ? `ªve¨Zv mol/L GK‡K KZ? DËi: 1.08 × 10–4 mol/L DËi: S = 1.75 × 10–15 mol/L st 4  Chemistry 1 Paper Chapter-2 58| 25C ZvcgvÎvq weï× cvwb‡Z AgCN Gi `ªve¨Zv I 2M 68| 25C ZvcgvÎvq Ca(OH)2 Gi Ksp = 4.42 × 10–5| G NaCN Gi Rjxq `ªe‡Y Ag+ Avq‡bi NbgvÎv mol/L GK‡K wbY©q Ca(OH)2 Gi 500 ml m¤ú„³ `ªe‡Y mgAvqZb 0.4M NaOH †hvM Ki| Ksp = 6 × 10–17 Ges Kf = 5.6 × 1018 Kiv n‡jv| G‡Z Ca(OH)2 Gi nªvmK…Z `ªve¨Zv KZ Ges KZ wgwj MÖvg DËi: 3.46 × 10–28 mol/L Ca(OH)2 Aatwÿß n‡e? DËi: S1 = 110.5 × 10–5 mol/L 59| wbw`©ó ZvcgvÎvq `ywU ¯^í `ªve¨ jeY XY I X 2Y Gi `ªve¨Zv Aat‡ÿc 783.23 mg ¸Yd‡ji gvb h_vµ‡g 10–10 I 10–13; m¤ú„³ Rjxq `ªeY †KvbwUi `ªve¨Zv †ewk? 69| AgNO3 Gi 0.1M Rjxq `ªe‡Y PO43– Avq‡bi NbgvÎv KZ n‡j –5 DËi: XY S = 10 ; X 2Y Gi `ªve¨Zv †ewk| Ag3PO4 Gi Aat‡ÿcb ïiæ n‡e| [Ksp(Ag3PO4) = 1.3 × 10–20] –5 X 2Y S = 2.92 × 10 DËi: [PO43–] = 1.3 × 10–17 M 60| 25C ZvcgvÎvq CaF2 Gi `ªve¨Zv ¸Yd‡ji gvb 4 × 10–11; H 70| mgAvqZ‡bi 0.002M NbgvÎvi NaIO3 I Cu(CIO3)2 `ªeY‡K ZvcgvÎvq CaF2 Gi m¤ú„³ `ªe‡Y Gi `ªve¨Zv Ges †h․MwU †_‡K Drcbœ wgwkÖZ Kiv n‡jv| Gi d‡j Cu(IO3)2 Gi Aat‡ÿc co‡e wK? Avqb¸‡jvi †gvjvi NbgvÎv wbY©q Ki| [Cu(IO3)2 Gi Ksp = 7.4 × 10–7] DËi: CaF2 Gi `ªve¨Zv = 2.15 × 10–4 mol/L DËi: Kip = 1 × 10–9 ; co‡e bv| [Ca2+] = 2.15 × 10–4 M [F–] = 4.3 × 10–4 M 71| mg‡gvjvi NbgvÎvwewkó FeSO4 I Na2S `ªeY‡K mgAvqZ‡b wgwkÖZ Kiv n‡q‡Q| D³ `ªeY؇qi cÖwZwUi m‡e©v”P NbgvÎv KZ n‡j Avqib 61| 30C ZvcgvÎvq CaCl2 Gi `ªve¨Zv ¸Ydj 1.55 × 10–8 mvjdvB‡Wi Aat‡ÿc co‡e? [Ksp(FeS) = 6.3 × 10–18] mol3/L3, H ZvcgvÎvq CaCl2 Gi 80% we‡qvwRZ n‡jv CaCl2 Gi DËi: Aat‡ÿc co‡e bv| `ªve¨Zv wbY©q Ki| DËi: 1.963 × 10–3 mol/L 72| †Kv‡bv `ªeY †hLv‡b Pb2+ I Zn2+ Dfq Avq‡bi NbgvÎv 62| weï× cvwb I 0.025 NaCl `ªe‡Y c„_Kfv‡e AgCl `ªexf~Z Kiv 0.01M; H2S m¤ú„ ³ `ªe‡Y [H+] Gi NbgvÎv Kx cwigvb n‡j †Kej 2+ 2+ n‡jv| weï× cvwb I D³ NaCl `ªe‡Y Ag+ Avq‡bi NbgvÎvi Abycv‡Z gvÎ `ªe‡Yi Pb Aatwÿß n‡e wKš‧ Zn Aatwÿß n‡e bv? wbY©q Ki| AgCl Gi Ksp = 1.75 × 10–10 [Ksp(H2S) = 1.1 × 10–22, Ksp(ZnS) = 1 × 10–21] DËi: 1.65 × 10–2 M DËi: 1.88 × 103 63| 25C G cvwb‡Z Al(OH)3 Gi Ksp = 2 × 10–33 pH = 13 73| i³ cøvRgvq Ca2+ Gi NbgvÎv 0.0025M| hw` C2O42– Gi Giƒc GKwU Rjxq `ªe‡Y Al(OH)3 Gi `ªve¨Zv 2 × 10–x mol/L n‡j NbgvÎv 1 × 10–7 M nq, Z‡e CaC2O4 Gi Aat‡ÿc Drcbœ n‡e Kx? x Gi gvb KZ? CaC2O4 Gi Ksp = 2.3 × 10–3 DËi: x = 30 DËi: Kip = 2.5 × 10–10; Aat‡ÿc co‡e bv| 64| 25C ZvcgvÎvq AgCl Gi Ksp = 1.8 × 10–10 mol2/L2; 74| `ªe‡Yi pH gvb KZ n‡j 1.5 × 10–15 M CdCl2 Gi Rjxq `ªe‡Y AgCl Gi 1L m¤ú„³ `ªe‡Yi g‡a¨ 1 mol NH3 †hvM Kiv n‡j `ªe‡Y H2S M¨vm Pvjbv Ki‡j CdS Aatwÿß n‡e? Ksp(CdS) = 10–28; Ag+ Avq‡bi †gvjvi NbgvÎv wbY©q Ki| [Kf = 1.7 × 107] Ksp(H2S) = 10–22 DËi: 7.88 × 10–13 mol/L DËi: 4.4 Type: Aat‡ÿc Type: †Kjvmb: C2 = bZzb `ªve‡K `ª‡e¨i NbgvÎv 65| 10 mol 0.25 M FeCl3 `ªe‡Y 1 ml 0.5M NH4OH `ªeY †hvM C1 = Av‡Mi/cÖ_g `ªve‡K `ª‡e¨i NbgvÎv Kiv n‡jv| 25C ZvcgvÎvq Fe(OH)3 Gi `ªve¨Zv ¸Ydj 3.74 × 10–38 C2 n‡j †Kv‡bv Aat‡ÿc co‡e wKbv? * KD = C1 DËi: co‡e  V n * Wn = W KDS + V 66| 0.02 M CaCl2 Gi `ªe‡Y 0.0003M Na2SO4 `ªeY mgAvqZ‡b KD e›UY ¸bv¼ [KD Gi gvb 1 Gi †P‡q eo n‡e|] wgwkÖZ Kiv n‡jv| Gi d‡j wgkÖ‡Y CaSO4 Gi Aat‡ÿc co‡e wKbv? V ïiæi `ªe‡Yi AvqZb; W ïiæi `ª‡e¨i fi CaSO4 Gi Ksp = 2.4 × 10–5 S bZzb `ªve‡Ki AvqZb DËi: Aat‡ÿc co‡e bv| Wn Awb®‥vwkZ `ª‡e¨i fi; n wb®‥vlb msL¨v 67| 25C ZvcgvÎvq 2 × 10–3 M CaCl2 `ªe‡Yi 500 ml Gi mv‡_ 75| 100 ml Rjxq `ªe‡Y wKQz cwigvY I `ªexf~Z Av‡Q| 50 ml 2 1.5 × 10–2 M Na2CO3 `ªe‡Yi 1L †K wgwkÖZ Ki‡j CaCO3 Gi CCl †hvM Ki‡j 50% I wb®‥vwkZ nq| K = ? 4 2 D Aa©t‡ÿc co‡e wKbv? [Ksp (CaCO3) = 9 × 10–9 mol2/L2] DËi: KD = 2 DËi: Aat‡ÿc co‡e (Kip > Ksp) ¸YMZ imvqb  Engineering Practice Sheet 5 76| CCl4 I H2O †Z I2 Gi e›Ub ¸Yv¼ 80 †Kv‡bv ZvcgvÎvq cÖwZ 84| Calculate the energy required to excite one liter of wjUv‡i cvwb‡Z 0.35g Av‡qvwWb m¤ú„³ `ªeY Zwi K‡i| H ZvcgvÎvq H2 at 1atm and 298 K to the first excited state of atomic Kve©b †UUªv‡K¬vivB‡W (CCl4) G I2 Gi `ªve¨Zv = ? H. The energy for dissociation of H-H bond is 436 J/mol. DËi: 28 g/L DËi: 10.93 × 1014 sec–1 or Hz 77| GK wjUvi Rjxq `ªe‡Y 1g Av‡qvwWb `ªexf~Z Av‡Q| 85| The ionization energy of He+ is 19.6 × 10–18 J/atom (i) H `ªeY‡K 50 ml CCl4 mn SuvKv‡j Rjxq `ªe‡Y Avi KZ Av‡qvwWb  Calculate the first stationary state of Li2+ Aewkó _vK‡e? (ii) 50 ml CCl4 †K 10 ml K‡i cuvPevi e¨envi DËi: 4.41 × 10–17 J Ki‡j Rjxq `ªe‡Y Avi KZ I2 _vK‡e? [CCl4 I cvwbi g‡a¨ I2 Gi e›Ub ¸Yv¼ 80|] 86| D”PZi kw³¯Íi †_‡K e– kw³ Z¨vM K‡i wb‡P Avmvi mgq 6wU DËi: (i) 0.2 g ; (ii) 0.053 g 64 †iLv cvIqv hvq| D”PZi Ges wb¤œZi kw³¯Í‡ii kw³i AbycvZ 100. kw³¯Íi Øq Kx Kx? 78| H cigvYyi Rb¨ weve function 2s = 1.  1  DËi: n = 12 ; n = 15 1 2 a0 L H 4 (2) –r/a0 2 – r  87| In an atom, the total electrons having quantum 2s AiweUv‡ji †iwWqvj †bv‡Wi e¨vmva© av Gi gva¨‡g  a0e 1 numbers n = 4, |mL| = – 1 and ms = – =? cÖKvk Ki| 2 DËi: r = 2a0 DËi: 6 th + 79| The max and min for certain radiation are 121.65 nm 88| In 4 shell of He find the wavelength of electron. –10 and 91.24 nm. Find the color of the radiation =? DËi: 6.66 × 10 m DËi: n2  2 89| In one liter saturated solution of AgCl [Ksp = 1.6 × 10–10] = 1.0 × 10–10) is added. The resultant 80| -particles of 6 MeV energy is scattetced back from 0.1 mol of CuCl (Ksp + –x concentration of Ag in solution = 1.6 × 10 ; x = ? a silver toil calculate maximum volume in which the entire positive charge of the atom is supposed to be DËi: x = 7 concentrated. Z = 47 DËi: 48 × 10–42 m3 90| The solubility of CdSO4 in water is 8 × 10–4 molL–1. It’s solubility in 0.01M H2SO4 = ? –6 81| The dissociation energy of H2 is 430.53 kJmol–1. If H2 DËi: 64 × 10 is exposed to radiation of wavelength 253.7 nm what % of radiant energy will be converted to kinetic energy? Last of all: DËi: 0.68 × 10–19 J ; 8.68% (i) †Kvqv›Uvg msL¨v (ii) MRI I IR G‡`i g~j bxwZ I e¨envi 82| A bulb emits light of  = 4500Å The bulb is rated as (iii) Avqb kbv³ KiY| 150W and 8% of the energy is emitted as light. How many (iv) e– web¨vm| photons are emitted by bulb per second? GB UwcK¸‡jv n‡Z gyL¯Í Question Av‡m, GKUz fv‡jv K‡i †`Lv iv‡Lv| DËi: 27.2 × 1018 photons. Ze2 83| prove that Un = mrn where u is the velocity of electron in a one electron atom at no. Z at distance rn from nucleus, m and are mass and charge of electron. Ze2 DËi: mrn st 6  Chemistry 1 Paper Chapter-2 4 ACS Chemistry Department Gi g‡bvbxZ eûwbe©vPwb cÖkm œ g~n 11. 2He Gi GKwU cigvYyi cÖK…Z fi 4.003 a.m.u; 1wU proton Gi fi 1.0075 a. m. u Ges 1wU wbDUª‡bi fi 1.0089 a. m. Type: B‡j±ªb I †cÖvUb msL¨v u n‡j He cigvYy‡Z wbDwK¬qvi kw³i cwigvY KZ? 5.62 × 10–8 J 3.59 × 10–10 J 18 –12 1. 8 O2– Gi KqwU B‡jKUªb Av‡Q? 4.45 × 10 J 4.22 × 10–10 J 4wU 6wU 10wU 12wU Type: cigvYyi g‡Wj: 12. †KvbwUi eY©vjx †evi ZË¡vbyhvqx e¨vL¨v Kiv m¤¢e bq? 2. †Kvb cigvYyi †Kv‡bv wbDUªb †bB? He+ Li2+ H wWD‡Uwiqvg 2 H Be2+ wUªwUqvg meKwU 1 13. mvaviYZ †evi B‡jKUªb Kÿc‡_ AveZ©bKv‡j KqwU mgmsL¨K 3. B‡jKUªb Nb‡Z¡i w`K †_‡K mwVK µg †KvbwU? c~Y©Zi½ m„wó K‡i? 1s > 2s > 3s > 4s 1s < 2s < 3s < 4s n n2 1s = 2s = 3s = 4s †KvbwUB bq n+1 2l 4. wb‡Pi †Kvb †mUwU K‡¤úvwRU KwYKv? 14. †Kv‡bv ¯v‡b B‡jKUªb cvIqvi m¤¢vebv eySvq Kx Øviv? Electron, proton, neutron  Øviv 2 Øviv -particle, deuteron x Øviv dx Øviv positron, messon photon 15. û‡Ûi wbq‡g f¨vbvwWqvg (V) †g․‡j KqwU we‡Rvo electron _v‡K? 5. cigvYyi 5th kw³¯Í‡i m‡ev©”P electron aviYÿgZvÑ 1 wU 3 wU 28 32 5 wU 0 wU 50 82 16. GKwU cigvYy‡Z GKwU B‡jKUªb 4_© kw³¯Í‡i GKwU c~Y© AveZ©b 6. fvix cvwb †KvbwU? Ki‡Z KqwU c~Y© Zi½ m„wó Ki‡e? H2O D2O 2 3 H 2O 2 D”P Nb‡Z¡i LwbR cvwb 4 5 7. wb‡Pi †Kvb cigvby¸”Q AvB‡mv‡UvwbK? 17. Zeeman effecr Gi †ÿ‡Î f~wgKv iv‡LÑ 40 40 40 39 40 17 18 Ar, 19K, 20Ca 19 K, 20Ca, 37Cl evwn¨K Pz¤^K‡ÿÎ evwn¨K Zwor †ÿÎ 16 17 18 30 31 32 O, 8 O, 8 O Si, 15P, 16S a+b None 8 14 79 81 18. †KvbwU mwVK mgxKiY? 8. 35 Br Ges 35 Br Gi Av‡cwÿK AvB‡mv‡UvwcK fi h_vµv‡g   78.919 Ges 80.917 Ges G‡`i kZKiv cwigvY h_vµ‡g  0 2 dv = 0  0  dv = 0 0 50.52% Ges 49.48| Br Gi cvigvYweK fi KZ? – 2 dv = 1 None 79.9896 79.91 0 DËi: – 2 dv = 1 79 80 9. 54 56 X Ges a Y AvB‡mv‡UvwbK n‡j a = ? Type: †Kvqv›Uvg msL¨v 26 26 27 19. wb‡Pi †Kvqv›Uvg b¤^‡ii †Kvb †mUwU Aev¯Íe? 28 None 1 (n = 2, l = 0, m = 0, s =  ) 2 Type: †ZRw¯…qZv: (n = 2, l = 1, m = + 1, s =  ) 1 228 212 2 10. 90 Th 83 Bi GB †ZRw¯…q wewµqvq wbM©Z  I  KYvi msL¨v 1 KZ? (n = 2, l = 1, m = 0, s =  ) 2 1wU, 4wU 4wU, 1wU 1 (n = 2, l = 0, m = + 1, s =  ) 7wU, 4wU None 2 ¸YMZ imvqb  Engineering Practice Sheet 7 20. wb‡Pi †KvbwU n Zg kw³¯Í‡i †gvU AiweUv‡ji msL¨v cÖKvk K‡i? 31. nvB‡Rbev‡M©i AwbðqZv bxwZ Abyhvqx MwZkxj †Kvb KYvi Ae¯vb n n wbfzj © fv‡e wbY©q Kiv m¤¢e n‡j †KvbwU wbY©q AwbwðZ n‡q c‡o? {1 + (2n – 2)} {1 + (2n – 1)} 2 2 K¤úv¼ mgq e¨eavb n n fi‡eM kw³ {2 + (2n + 1)} {2 + (2n – 1)} 2 2 32. †¯ªvwWÄv‡ii Zi½ mgxKiY Kx‡mi Zi½ ag© e¨vL¨v K‡i? 21. hw` †P․¤^Kxq †Kvqv›Uvg msL¨v m Ges mnKvix †Kvqv›Uvg msL¨v l B‡jKUªb †cÖvUb nq, Z‡eÑ wbDUªb mKj e¯‘ KYvi m = 2(l + 1) m=2+l m–1 m+1 33. wb‡Pi †KvbwU AvDdevD bxwZ Agvb¨ K‡i? l= l= 2 2 ↿⇂ ↿⇂ ↿ ⇂ ↿⇂ ↿ ↿ ↿ ↿⇂ ↿⇂ ↿ ↿ ↿⇂ ↿ ↿ 1 1 22. s = 0, + , – n‡j †Kv‡bv cÖavb kw³¯Í‡i m‡e©v”P B‡jKUªb aviY 2 2 Type: eY©vjx: ÿgZv KZ? 34. wb‡¤œi wewKiY¸‡jvi g‡a¨ †KvbwUi kw³ me‡P‡q †ewk? 2n2 n2 infrared visible 3n2 None ultraviolet microwave 23. wb‡Pi †Kvb AiweUv‡j †bvW (Node) _v‡K bv? 35. H-cvigvYweK eY©vwji †Kvb wmwiRwU‡Z `„k¨gvb A‡ji iwk¥ 1s 2s †`Lv hvq? 2p None c¨v‡ðb jvB‡gb evgvi eªv‡KU 24. 3s AiweUv‡j node msL¨v KqwU? 1wU 2wU 36. cigvYyi †ÿ‡Î †iLv eY©vjx †`Lv hvq KLb? 3wU †h‡Kv‡bv msL¨K n‡Z cv‡i kw³ †kvl‡Yi mgq kw³ wewKi‡Yi mgq Both None 25. l = 1 Gi †ÿ‡Î mswkøó AiweUv‡ji AvK…wZ †Kgb? 37. wiWevM© aªæe‡Ki Rb¨ †KvbwU mwVK? eZz©jvKvi dumbbell Gi b¨vq 22me3 22me4 double dumbbell Gi b¨vq None RH = ch4 RH = ch3  me 2 3  me4 2 26. kw³i gv‡bi wfwˇZÑ RH = 4 RH = ch ch3 px = py = pz p x > py > pz px  py  pz p x < py < pz 38. jvj e‡Y©i iwk¥i Zi½‣`N©¨ 7000Å (A¨vs÷ªg) n‡j Gi Zi½ msL¨v KZ? 27. px AiweUv‡ji nodal plane †KvbwU? 1.428 × 10–3 nm 14.28 × 103 cm–1 xy yz 1.428 × 10–3 m–1 14.28 × 10–3 Å zx x2 – y2 39. wiWevM© aªæeK RH Øviv cÖKvwkZ, H cigvYyi eY©vwji evgvi wmwi‡R 28. û‡Ûi bxwZ †Kvb AiweUv‡ji †ÿ‡Î cÖ‡hvR¨ bq? me©wb¤œ Zi½ msL¨vi wewKwiZ iwk¥ †KvbwU? 3RH 5RH s d 4 36 f None 8RH 9RH 9 144 29. †KvbwU û‡Ûi bxwZ Agvb¨ K‡i‡Q? 40. wewKi‡Yi Zi½msL¨v 1.65 × 104 cm–1 n‡j ¯ú›`b msL¨v KZ? ↿⇂ ↿⇂ ↿ ↿ ↿⇂ ↿ ↿ ↿ 1.818 × 106 Hz 4.95 × 1014 Hz ↿⇂ ↿⇂ ↿ ↿ ↿ ↿ ↿ 12 4.95 × 10 Hz Data insufficent 30. wb‡Pi †KvbwU cwji eR©b bxwZ Agvb¨ K‡i‡Q? 41. c¨v‡ðb wmwi‡Ri Rb¨ H cigvYyi †iLv eY©vjxi `xN©Zg Zi½‣`N©¨ ↿⇂ ↿ ↿ ↿ ↿⇂ ↿⇂ ↿↿ ↿ KZ n‡e? 820.4 nm 1281 nm ↿⇂ ↿⇂ ↿ ↿ ↿⇂ ↿⇂ ↿ 1875 nm wbY©q Kiv Am¤¢e st 8  Chemistry 1 Paper Chapter-2 42. n1 = 3 wmwi‡Ri Rb¨ H cigvYyi †iLv eY©vjxi me©wb¤œ Zi½‣`N©¨ 51. wb‡Pi †Kvb `ªve¨Zvi µgwU mwVK? KZ? Mg(OH)2 > Ca(OH)2 > Sr(OH)2 > Ba(OH)2 820.4 nm 1875 nm Mg(OH)2 < Ca(OH)2 < Sr(OH)2 < Ba(OH)2 91.15 nm 1281 nm Mg(OH)2 < Ca(OH)2 < Ba(OH)2 > Sr(OH)2 None 43. jvB‡gb wmwi‡Ri 2q jvB‡bi K¤úvsK KZ? 52. wb‡Pi †KvbwU cvwb‡Z A`ªeYxq? 2.924 × 1015 Hz 9.749 × 10–4 Hz Na2CO3 CaCO3 3 1.025 × 10 Hz 32.48 × 10–3 Hz ZnCO3 b+c Type: `ªve¨Zv I `ªve¨Zv ¸Ydj: 53. wb‡Pi †Kvb †mUwU‡Z mg-Avqb cÖfve we`¨gvb? 44. 25C ZvcgvÎvq AgCl Gi `ªve¨Zv ¸Yd‡ji gvb 4 × 10–10 H2S, HCl NaCl, CH3Cl 2 –2 CH ,HCl CaCl2, C6H5Cl mol L | 0.00001 M NaCl `ªe‡Y AgCl Gi `ªve¨Zv KZ 4 g/L? 4 × 10–5 5.74 × 10–3 54. ZvcgvÎvq e„w×i mv‡_ mv‡_ †Kvb †h․MwUi `ªve¨Zv K‡g? –5 –3 NaOH CaCrO4 1.56 × 10 2.2386 × 10 Ce2(SO4)3 me¸‡jv 45. 25C ZvcgvÎvq 1 wjUvi K¨vjwmqvg A·v‡jU (CaC2O4) Gi 55. cUvwmqvg †mvwWqvg †n·vd¬z‡iv A¨vjywg‡bU K3[Na3(AlF6)2] m¤ú„³ `ªeY‡K ev®úxf~Z K‡i 0.0061g CaC2O4 cvIqv †Mj| H `ªve¨Zv S mol L–1 n‡j Gi `ªve¨Zv ¸YdjÑ ZvcgvÎvq CaC2O4 Gi `ªve¨Zv ¸Ydj KZ wQj? 16s3 18s3 2 × 10–9 molL–1 4.6 × 10–9 mol2L–2 32s 8 2916s8 2.344 × 10–9 mol2L–2 2.27 × 10–9 mol2L–2 56. 25C G Fe(OH)3 Gi `ªve¨Zv 2.1153 × 10–8 gL–1; H 46. ÿviavZzi †Kvb †h․MwU cvwb‡Z cÖvq A`ªeYxq? ZvcgvÎvq Gi `ªve¨Zv ¸Ydj KZ? [Fe = 55.85] LiF Na2H2Sb2O7 4.147 × 10–38 3.416 × 10–32 –28 K3[Co(NO2)6] me¸‡jv 3.08 × 10 2.162 × 10–22 57. 25C ZvcgvÎvq cÖwZ wjUvi `ªe‡Y 0.1 mol Zn2+ Avqb Dcw¯Z| 47. 20C ZvcgvÎvq my‡µv‡Ri `ªve¨Zv 203g/100g water| Zvn‡j G `ªe‡Yi pH gvb KZ n‡j `ªeY †_‡K Zn(OH)2 Aat‡ÿc ïiæ H ZvcgvÎvq 100g m¤ú„³ my‡µvR `ªeY †c‡Z KZ MÖvg cvwb Ges n‡e| [Ksp = 1.0 × 10–22] KZ †gvj my‡µvR cÖ‡qvRb? 7.5 8.0 20 60g cvwb, mole my‡µvR 8.5 9.0 171 25 58. 25C-G Al2(SO4)3 Gi `ªve¨Zv S n‡j, ZLb Gi AvqwbK 50g cvwb, mole my‡µvR 171 ¸Ydj n‡e †KvbwU? 67 s5 6s5 33g cvwb, mole my‡µvR 342 27s5 108s5 11 67g cvwb, mole my‡µvR 342 59. 25C ZvcgvÎvq †Kv‡bv je‡Yi `ªve¨Zv 40 n‡j H ZvcgvÎvq 700g m¤ú„³ `ªeY cÖ¯‧Z Ki‡Z KZUzKz jeY cÖ‡qvRb n‡e? 48. Na2SO4.10H2O Gi `ªve¨Zv 19C †_‡K 40C Gi g‡a¨Ñ 280g 200g µgvMZ ev‡o µgvMZ K‡g 466.67g None cÖ_‡g ev‡o, Zvici K‡g †KvbwUB bq 60. 50 mL m¤ú„³ `ªe‡Y 5g CaCl2 Av‡Q| wjUvi cÖwZ CaCl2 Gi `ªve¨Zv KZ? 49. 25C ZvcgvÎvq Ca(OH)2 Gi Ksp = 8 × 10–6| H ZvcgvÎvq 10.0 gL–1 100 gL–1 Gi m¤ú„³ Rjxq `ªe‡Yi pH KZ? 101 gL –1 1011 gL–1 12.1003 1.8607 12.4014 wbY©q Am¤¢e 61. 30C ZvcgvÎvq NaCl Gi 13.12g m¤ú„³ `ªeY‡K ev®úxf~Z K‡i m¤ú~Y©iƒ‡c ï®‥ Ki‡j 3.175g Ae‡kl _v‡K| H ZvcgvÎvq 50. wb‡Pi †KvbwU cvwb‡Z `ªeYxq bq? NaCl Gi `ªve¨Zv KZ? NaNO3 Ca(NO3)2 24.199 75.80 Zn(NO3)2 Pb(NO3)2 31.925 None ¸YMZ imvqb  Engineering Practice Sheet 9 Type: UV, IR, MRI: 73. Cu2+ jeY wkLv cixÿvq †Kvb eY© †`q? 62. MÖx®§cÖavb †`‡k Sunbath mvaviYZ †`Lv hvq bv, KviYÑ meyRvf njy` bxjvf meyR MÖx®§cÖavb †`‡k m~h©v‡jv‡K ÿwZKi UV Ask †ewk _v‡K Av‡c‡ji b¨vq meyR None MÖx®§cÖavb †`‡k m~h©v‡jv‡K IR iwk¥ _v‡K bv MÖx®§cÖavb †`‡k m~h© n‡Z cÖvß iwk¥i AwaKvskB  iwk¥ Type: Avqb kbv³KiY a I b DfqB 74. GKwU je‡Yi `ªe‡Y †j‡Wi wPwb †hvM Kivi ci mv`v Aat‡ÿc cvIqv †Mj hv DËß Ki‡j `ªexf~Z nq bv Ges jNy HNO3 †hv‡MI 63. Crystallography †Z Kx ai‡bi iwk¥ e¨envi Kiv nq? AcwiewZ©Z _v‡K| Zvn‡j wb‡¤œi †Kvb AvqbwU jeYwUi g‡a¨ UV IR Dcw¯Z? X-Ray -Ray Pb2+ Cl– 2– – SO 4 NO3 64. wb‡Pi †Kvb cigvYymg~‡n magnetic moment _v‡K? 1 H 19 F 75. FeCl2 †h․‡M Kx †hvM Ki‡j Mvp bxj e‡Y©i Aat‡ÿc c‡o? 1 9 7 K4[Fe(CN)6] K3[Fe(CN)6] 3 Li All K2H2Sb2O7 None 65. wb‡Pi †KvbwU wbDwK¬qvmwU NMR mwµq? 76. Fe3+ †h․‡M cUvwkqvg †d‡ivmvqvbvBW †hvM Ki‡j †Kvb †h․‡Mi 16 O 12 C Aat‡ÿc c‡o? 8 8 32 1 KFe[Fe(CN)6] K2Fe[Fe(CN)6] 16 S 1 H Fe[Fe(CN)6] Fe4[Fe(CN)6] Typy: wkLv cixÿv: 77. Ca2+ Avq‡bi cixÿvq †ÿ‡Î A¨v‡gvwbqvg A·v‡jU †hvM Ki‡j 66. wkLv cixÿv †k‡l HCl G A`ªeYxq Ac`ªe¨ cøvwUbvg Zvi n‡Z `~i Kx‡mi Aat‡ÿc c‡o? Ki‡Z e¨envi Kiv nqÑ CaCOONH4 Ca(COO)2 Mvp HNO3 A¨v‡Kvqv †iwRqv CaCOOH Aat‡ÿc c‡o bv Mvp H2SO4 weMwjZ KHSO4 78. †bmjvi weKviK †Kvb Avqb kbv³ Ki‡Z e¨envi Kiv nq? + 67. Ba 2+ wkLv cixÿvq Kx eY© cÖ`vb K‡i? N3– NH 4 nvjKv †e¸bx mv`v‡U bxj Na+ None bxjvf meyR Av‡c‡ji b¨vq meyR 79. ÔAv‡qvWvBW Ae wgjbm †emÕ †KvbwU? 68. B‡Ui b¨vq jvj e‡Y©i wkLv †`q †K? NH2[Hg2I3] KHgI2 + KOH Cu2+ Ca2+ K2[HgI4] + NaOH None 2+ Sr K+ 69. wkLv cixÿvq HCl e¨envi Kiv nq †Kb? 80. †bmjvi `ªeY Kx? HCl eY© cwieZ©b K‡i Hg2I4 K2HgI4 AbyØvqx je‡bi DØvqx je‡Y cwiYZ K‡i K2HgI4 + KOH KHgI4 + NaOH mKj avZe †hŠM HCl Gi mv‡_ wewµqv †`q 81. nvB‡Wªv‡Rb cigvYyi 2q kw³¯Í‡i e– Gi MwZkw³ KZ? None [a0 †evi e¨vmva©] 70. wkLv cixÿvq †Kvevë Kv‡Pi ga¨ w`‡q Na+ Gi Kx eY© †`Lv hvq? h2 h2 2 2 4 ma0 162ma02 †mvbvjx njy` meyRvf njy` 2 h h2 †Mvjvcx jvj eY©nxb 2 2 32 ma0 642ma02 71. wkLv cixÿvq K+ Kx eY© †`q? |2| B‡Ui gZ jvj nvjKv †e¸wb †Mvjvcx None 82. †Kvb AiweUvj wb‡`©k f‡i? 72. Sr2+ wkLv cixÿvq Kx eY© †`Lvq? r µxgmb †iW meyRvf bxj 1s 2s 3s 4s njy`vf meyR None st 10  Chemistry 1 Paper Chapter-2 83. For a Ôb’ electron the angular momentum is = ? 90. The ratio of momentum of a proton and an – particle which are accelerated from rest by a 6  2  h h 2 2 potential difference of 200 V.mp and m are masscs of proton and -particles: 2  h h 2 2 2mp mp m 2m 84. what energy is the needed for elimination the electron mp 2m nd of H from 2 orbit? 2m mp –20 – 5.44 × 10 J – 3.4 eV 91. The frequency ratio of revolution of electron Is + 3.4 eV + 5.44 × 10–20 J excited state He+ and I excited state of H atom: 27 32 85. Spin angular momentum of electron is given by 32 27 3h 3h 1 4 4  4 8 1 3h 4h 4 3 92. In which of the following systems will the radius of the first orbit is minimum: Doubly ionized lithium 86. The radius of first Bohr’s orbit in H atoms is r1. The singly ionized helium nd corresponding wave length of an electron in 2 orbit = ? Deuterum atom 6r1 4r1 H atom 2r1 3r1 93. An electron in the ground state of hydrogen has an 87. The de-Broglie wave length of a particle of mass m angular momentum L1 and electron in the first orbit and temperature TK is given by: of Li2+ has an angular momentum L2, then h h L1 = L2 L1 = 3L2 3L1 = L2 L1 = 6L2 2mkt 3mkt h h 94. Ionization potential to hydrogen atom is 13.6 eV. It 4mkt mkt ground state of H atom is excited by monochromatic radiations of 12.1 eV, then the number of spectral 88. The ration of angular momentums of electron in two lines emitted by H atom on de excitation = ? a 1 2 successive orbit is a (a > 1) and their difference is b  =? 3 4 b n n+1 h. 95. It the speed of electron in Bohr’s first orbit of ÔHe+Õ n+1 n 2 atom is Ôx’ the speed of electron in the third orbit of n+1 n + 1 2. ÔLi2+’ is =? n n h x x 9 2 89. If a0 is the radius of first Bohr orbit of H atom, the 3x 2x de Broglie wavelength of an electron moving 1 orbit 96. The electron in He+ ion is excited to next higher state. is = ? The ratio of area of shell of excited state to ground 6a0 3a0 state is =? 2a0 9a0 9 4 16 12 DËigvjv: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 ------

Use Quizgecko on...
Browser
Browser