🎧 New: AI-Generated Podcasts Turn your study notes into engaging audio conversations. Learn more

Qualitative Chemistry Practice Sheet ACS PDF

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Document Details

PlayfulPulsar2615

Uploaded by PlayfulPulsar2615

ACS

Tags

chemical kinetics qualitative chemistry chemistry physical chemistry

Summary

This document is a qualitative chemistry practice sheet from the ACS. It includes problems and solutions related to chemical concepts and calculations.

Full Transcript

¸YMZ imvqb  Engineering Practice Sheet 1 wØZxq Aa¨vq ¸YMZ imvqb Qualitative Chemistry ACS Chemistry Department Gi g‡bvbxZ wjwLZ...

¸YMZ imvqb  Engineering Practice Sheet 1 wØZxq Aa¨vq ¸YMZ imvqb Qualitative Chemistry ACS Chemistry Department Gi g‡bvbxZ wjwLZ cÖkœmg~n Type: Av‡cwÿK cvigvbweK fi: 16 17 18  nh 11| Aw·‡Rb cigvYy‡Z wZbwU AvB‡mv‡Uvc 8 O, 8 O, 8 O h_vµ‡g Type: †K․wYK fi‡eM: mvr =  99.76%, 0.04% Ges 0.2% wn‡m‡e cvIqv hvq| Aw·‡R‡bi mwVK  2  1| †Kv‡bv cigvYyi M Kÿc‡_ AveZ©biZ GKwU e Gi †K․wYK cvigvYweK fi = ? – fi‡eM = ? H Kÿc‡_i e¨vmva© 3.6 × 10–8 cm n‡j MwZ‡eM KZ? DËi: 16 –34 5 DËi: 3.1624 ×10 Js ; 9.64 × 10 m/s 1 2 12| H Gi `ywU AvB‡mv‡Uvc 1H I 1H; mvaviY H Gi cvigvYweK fi Type: e– Gi e¨vmva©, MwZ‡eM, kw³: 1 2 1.008 n‡j †g․jwU‡Z 1H I 1H AvB‡mv‡Uv‡ci kZKvi cwigvY = ? 1 H cigvYyi e– wUi †eM hw` Av‡jvi †e‡Mi 1 2| 275 Ask n‡q _v‡K, DËi: 99.2%  1H 2 Z‡e e– wU †Kvb Kÿc‡_i? 0.8%  1H DËi: n = 2 Type: cvigvYweK msL¨v fi msL¨v AYyi msL¨v: 3| H cvigvYyi 3q Kÿc‡_ AveZ©bkxj e– Gi †eM wbY©q K‡iv| wbDwK¬qvm‡K wN‡i GB e– cÖwZ †m‡K‡Û KZevi AveZ©b K‡i? 13| 54 AvYweK fi Ges 26 cvigvYweK msL¨vwewkó X †g․j Y DËi: 7.28 × 107 cms–1 ; 2.43 × 1014 evi †g․‡ji mv‡_ AvB‡mvUwbK| Y Gi cvigvYweK fi 56 n‡j Y Gi cvigvYweK msL¨v KZ? 4| H cigvYyi 1g Kÿc‡_i e¨vmva© 0.53Å n‡j 3Li2+ Gi e¨vmva© DËi: 28 KZ? DËi: 0.177Å hc c 1 Type:†dvU‡bi kw³: E = , E = h,  = , V– = – 5| H cigvYyi 1g I 3q K‡ÿ AveZ©bkxj e Gi †eM wbY©q Ki|    †Kvb K‡ÿi MwZ‡eM †ewk? – 14| H cigvYyi e Gi `ywU wfbœ kw³¯Í‡ii kw³i cv_©K¨ 245.9 DËi: V1 = 3V3; 1g K‡ÿi †eM †ewk| KJ/mol| D”PZi kw³¯Íi †_‡K wb¤œZi kw³¯Í‡i e– jvwd‡q co‡j wewKwiZ Av‡jvK iwk¥i Zi½‣`N©¨ I K¤úv¼ = ? 6| Na cigvYyi 3q kw³¯Í‡i N~Y©vqgvb 11 Zg e– Gi MwZ‡eM wbY©q DËi: 6.1616 × 1014 Hz ; 4.867 × 102 nm K‡iv| DËi: 80.169 × 105 m/s 15| GKwU wewKwiZ iwk¥i Zi½‣`N©¨ 530 nm| G iwk¥i K¤úv¼ I Zi½ msL¨v = ? wewKwiZ iwk¥i eY© = ? 7| m¦vfvweK Ae¯vq H cigvYyi N~Y©vqgvb e– wbDwK¬qvm n‡Z KZ DËi: 5.66 × 1014 Hz ; 1.8868 × 104 cm–1 nm `~iZ¡ cwiågb K‡i MYbv K‡iv| Zi½‰`N©¨ 530 nm nIqvq GwU meyR eY©| DËi: 0.5292Å 16| H cigvYyi e– wU 3q †evi Kÿc_ n‡Z 1g Kÿc‡_ jvwd‡q 8| †evib Gi 3q †evi K‡ÿi e¨vmva© = ? co‡j weKxY© kw³i Zi½‣`N©¨ Å GK‡K †ei Ki| DËi: 9.62 × 10–2 nm DËi: 1025.8 Å 9| H cvigvYyi e– hLb K †k‡j Ae¯vb K‡i, ZLb Zvi kw³i gvb = ? 17| Zi‡½i K¤úv¼ 3.35 × 108 Hz; Ryj GK‡K kw³ KZ? DËi: – 2.176 × 10–11 erg wK‡jvRyj/†gvj GK‡K kw³i cwigvY KZ? DËi: 1.34 × 10–4 KJ/mol Type: B‡jKUªb †cÖvUb, wbDUªb, AvB‡mv‡Uvc, AvB‡mvevi 18| He cigvYy e– hLb PZz_© kw³¯Íi n‡Z wØZxq kw³¯Í‡i hvq, ZLb 10| 0.8 g CH4 M¨vm e– KZwU? DËi: 3.0115 × 1023 wU m„ó eY©vjx †iLvi Zi½‣`N©¨ I wewKi‡Yi eY© = ? DËi:  = 121.56 nm `„k¨gvb bq| st 2  Chemistry 1 Paper Chapter-2 19| `ywU Av‡jvi K¤úv¼ 5.46 × 1014 Hz I 4.4117 × 108 MHz 29| Li2+ Avq‡bi e– hLb 4_© kw³¯Íi n‡Z 2q kw³¯Í‡i cwZZ nq, Av‡jv `ywUi eY© wbaviY K‡iv Ges Zv‡`i Zi½‣`N©¨i cv_©K¨ wbY©q Ki| ZLb eY©vjx †iLvi Zi½‣`N©¨ I eY©vjxi eY© wbY©q Ki| DËi: 1g Av‡jv meyR ; cv_©K¨ = 130.55 nm DËi: 54.03 nm ; eY©vjx `„k¨gvb bq| 2q Av‡jv jvj 30| H Gi eY©vjxi eªv‡KU wmwi‡Ri Z…Zxq jvBb Gi Zi½‣`N©¨ wbY©q Ki| 3 20| H cigvYy (fi 1.66 × 10 Kg) 5.1625 × 10 J MZxq DËi: 2.1656 × 10 nm –27 –27 kw³‡Z Nyi‡Q| H cigvYyi wW-eªMjx Zi½‣`N©¨ wbY©q Ki| DËi: 1.6 × 10–7 m. 31| H Gi AvqbxKiY wefe = ? DËi: 13.6 eV 21| 4.8 MeV MwZkw³m¤úbœ GKwU -KYvi wW-eªMwj Zi½‣`N©¨i 32| evgvi wmwi‡Ri H Ges H †iLv `ywUi Zi½‣`N©¨ KZ? gvb wbY©q Ki| DËi: 4.863 × 10–5 cm DËi: 6.55 × 10–15 g 33| Li2+ Avq‡bi e– 7g kw³¯Íi †_‡K 2q kw³¯Í‡i avcvšÍ‡ii d‡j 22| mÄq`v`v 150 g f‡ii GKwU wµ‡KU ej‡K 80 km/h †e‡M Qz‡o wewKwiZ eY©vwj‡Z cÖvß †gvU †iLvi msL¨v wbY©q Ki| w`‡qwQj| wµ‡KU e‡ji wW-eªMwj Zi½‣`N©¨ wbY©q Ki| GwU DËi: 15 cwigvc‡hvM¨ wKbv = ? DËi:  = 1.987 × 10–25 nm ; GB gvb A‡bK ÿz`ª ZvB cwigvc‡hvM¨ bq| Type: `ª‡e¨i `ªve¨Zv wbY©q: 34| 30C ZvcgvÎvq 110 ml m¤ú„³ Rjxq `ªe‡Y 1.15 Av‡cwÿK 23| GKwU KYvi fi‡e‡Mi AwbðqZv 1.15 × 10 kgm/s KYvwUi ¸iæ‡Z¡i †Kv‡bv c`v‡_©i 20.7 g `ªexf~Z Av‡Q| 30C G `ª‡e¨i `ªve¨Zv –8 Ae¯v‡bi AwbðqZv KZ? wbY©q Ki| –27 DËi: x  4.587 × 10 m DËi: 22.5 24| †gvU B‡jKUªb msL¨v MYbv K‡iv| 35| 30C ZvcgvÎvq †Kv‡bv je‡Yi `ªve¨Zv 80g/100g H2O| G – 2– 2+ (i) F (ii) S (iii) Mg (iv) PH4+ ZvcgvÎvq 80g `ªe‡Yi g‡a¨ 30g jeY `ªexf~Z Av‡Q| G Ae¯vq DËi: (i) 10 ; (ii) 18 ; (iii) 10 ; (iv) 18 `ªeYwU‡K m¤ú„³ Ki‡Z cÖ‡qvRbxq je‡Yi cwigvY wbY©q Ki| DËi: 10g 1 1 1  Type: wiWevM© aªæeK:  = RH 2 – 2 × Z2 36| 30C I 50C ZvcgvÎvq †Kv‡bv `ª‡e¨i `ªe¨Zv h_vµ‡g 60 I  n 1 n 2   80| 50C ZvcgvÎvq 50g m¤ú„³ `ªeY‡K 30C ZvcgvÎvq kxZj 25| H cigvYyi e– Amxg n‡Z me©wb¤œ kw³¯Í‡i avcvšÍi n‡j †h kw³ Ki‡j Kx cwigvY `ªe `ªeY n‡Z †ewi‡q Avm‡e? wewKwiZ nq, Zvi Zi½‣`N©¨ wbY©q Ki| DËi: 5.552g DËi: 91.175 nm 37| 95% weky× Lv`¨ jeY w`‡q 80C ZvcgvÎvq cvwb‡Z 600 ml 26| H cigvYyi jvB‡gb wmwi‡Ri n«vmZg/ÿz`ªZg Zi½‣`N©¨ b¨v‡bvwgUv‡i KZ n‡e? wK‡jvRyj/ †gvj †dvU‡bi kw³ ZLb KZ? m¤ú„³ `ªeY cÖ¯‧Z Ki‡Z 195g Lv`¨ jeY cÖ‡qvRb nq| 80C G DËi: 91.175 nm; 1312.85 KJ/mol NaCl Gi `ªve¨Zv = ? H `ªeY‡K 25C G kxZj Ki‡j KZ MÖvg weï× NaCl †KjvwmZ n‡e? 25C G NaCl Gi `ªve¨Zv 240 g/L 27| He+ Avq‡bi D‡ËwRZ e– 4_© kw³¯Íi †_‡K ¯vbvšÍwiZ n‡j DËi: 41.25g †KjvwmZ; 80C G `ªve¨Zv = 308.75 g/L jvB‡gb wmwi‡R †iLv eY©vjx Zwi Ki‡j wewKwiZ iwk¥i Zi½msL¨v I Zi½‣`N©¨ = ? 38| 750 mL m¤ú„³ `ªe‡Y 200g NaCl `ªexf~Z Av‡Q| MÖvg I †gvj –1 DËi: Zi½msL¨v = 4.112 × 10 cm ;  = 24.3136 nm 5 GK‡K cÖwZ wjUvi m¤ú„³ `ªe‡Y NaCl Gi `ªve¨Zv MYbv Ki| DËi: 266.67 g/L and 4.558 mol/L Type: eY©vjx msµvšÍ MvwYwZK mgm¨v 39| cvwb‡Z 15C I 75C ZvcgvÎvq CuSO4 Gi `ªve¨Zv 19 I 55 28| H cigvYyi e Z…Zxq Kÿ †_‡K cÖ_g K‡ÿ jvwd‡q co‡j m„ó n‡j 77.5g m¤ú„³ Kcvi mvj‡dU `ªeY‡K 75 n‡Z 15C ch©šÍ VvÛv – eY©vjxi Av‡jvK‡iLvi K¤úv¼ Ges Zi½‣`N©¨ nm GK‡K †ei K‡iv| Ki‡j Kx cwigvY CuSO4 Rgv co‡e? 15 DËi: 2.92 × 10 Hz DËi: 18g ¸YMZ imvqb  Engineering Practice Sheet 3 –8 40| 25C ZvcgvÎvq 100g f‡ii GKwU `ªe‡K 300 ml dzUšÍ cvwb‡Z 49| 35C ZvcgvÎvq PbI2 Gi `ªve¨Zvi ¸Ydj 1.55 × 10 `ªexf~Z K‡i m¤ú„³ `ªeY Zwi Kiv nj| G `ªeY‡K 50C G kxZj mol3/L3 n‡j G ZvcgvÎvq `ªe‡Y PbI2 Gi 80% we‡qvwRZ n‡j PbI2 Ki‡j KZ MÖv‡g `ªe `ªeY n‡Z †ewi‡q Avb‡e? 50C ZvcgvÎvq `ªewUi Gi `ªve¨Zv = ? `ªve¨Zv 54.4 DËi: = 1.963 × 10–3 mol/L DËi: 25g 50| BaSO4 Gi `ªve¨Zv ¸Ydj 1.1 × 10–10 mol2/L2 n‡j Type: †nbixi m~Î e¨envi K‡i `ªve¨Zv wbY©q: (i) weï× cvwb‡Z Gi `ªve¨Zv = ? (ii) 0.1 M BaCl2 `ªe‡Y Gi `ªve¨Zv = ? S = KH × P; S `ªve¨Zv DËi: (i) 1.048 × 10–5 mol/L KH †nbixi aªæeK (ii) 1.1 × 10–19 mol/L P Pvc| 51| 25C ZvcgvÎvq K¨vjwmqvg A·v‡j‡Ui (CaC2O4) `ªve¨Zv 41| 20C ZvcgvÎvq cvwb‡Z CO2 M¨vm `ªexf~Z nIqvi †ÿ‡Î ¸Ydj 2.34 × 10–9 mol2/L2 n‡j, cÖwZ 100 ml m¤ú„³ `ªe‡Y KZ †nbixi aªæeK 0.8725 g/100g H2O/atm| 20C ZvcgvÎv I 15.5 MÖvg CaC O `ªexf~Z Av‡Q = ? 2 4 atm Pv‡c CO2 M¨v‡mi `ªve¨Zv = ? DËi: 6.1824 × 10–4 g DËi: 13.524g/100g H2O 52| 25C G Fe(OH)3 Gi m¤ú„³ `ªe‡Y OH– Avq‡bi MvpZ¡ 42| †Kvgj cvbxq Gi g‡a¨ 25C ZvcgvÎvq I 2.65 atm Pv‡c 9.843 × 10–9 g/L; g/L; Fe(OH) Gi `ªve¨Zv Gi ¸Ydj wbY©q Ki| 3 CO2 M¨vm `ªexf~Z Av‡Q| †evZ‡ji wQwc Lyj‡j Pvc 1.05 atm n‡j DËi: 3.74 × 10–38 250 ml `ªeY n‡Z KZ †gvj CO2 †ewi‡q Avm‡e? 25C G †nbixi aªæeK 1.75 × 10–2 m/atm. 53| 25C ZvcgvÎvq AgCl I PbCl2 Gi `ªve¨Zv ¸Ydj h_vµ‡g DËi: 7 × 10–3 mol 1.6 × 10–10 mol2/L2 I 1.6 × 10–5 mol3/L3 n‡j †Kvb jeYwUi m¤ú„³ `ªe‡Y Cl– Gi NbgvÎv AwaK? 43| 25C ZvcgvÎvq CO2 M¨v‡mi †ÿ‡Î †nbixi mgvbycvwZK DËi: 3.1748 × 102 mol/L aªæe‡Ki gvb 1.67 × 108 Pa n‡j H ZvcgvÎvq 2.5 atm Pv‡c 2.25 L †mvWv IqvUv‡ii g‡a¨ KZ MÖvg CO2 `ªexf~Z Av‡Q wbY©q| 54| 25C G, Fe(OH)3 `ªve¨Zv ¸Ydj 3.98 × 10–38| G m¤ú„³ DËi: 8.615 g CO2 `ªe‡Y 0.1 mol NaOH †hvM Ki‡j Fe3+ Avq‡bi NbgvÎvi Kxiƒc cwieZ©b n‡e? Type: `ªve¨Zv I `ªve¨Zv ¸Ydj wbY©q I mgAvqb cÖfve DËi: cÖv_wgK `ªve¨Zv = 1.9594 × 10–10 M –12 44| 25C ZvcgvÎvq Rjxq `ªe‡Y PbS Gi `ªve¨Zv 4.40964 × 10 g/L wgkÖ `ªe‡Y `ªve¨Zv = 3.98 × 10–35 M n‡j PbS Gi `ªve¨Zv ¸Ydj = ? [Pb = 207, S = 32] DËi: 3.4 × 10–28 mol2/L2 55| 25C ZvcgvÎvq GK wjUvi `ªe‡Y m‡e©v”P 1 × 10–3 mol PbI2 45| 25C ZvcgvÎvq CaF2 Gi `ªve¨Zv 0.002 mol/L n‡j Gi `ªexf~Z Av‡Q| (i) PbI2 Gi Ksp = ? (ii) I(aq) Avq‡bi NbgvÎv wظY `ªve¨Zv ¸Ydj wbY©q Ki| Ki‡j PbI2(s) Gi mv‡_ mvg¨ve¯vq _vKv Pb2+(aq) Gi NbgvÎvq DËi: 3.2 × 10–11 mol3/L3 Kxi~c cÖfve co‡e? DËi: (i) Ksp = 4 × 10–9 46| Fe(OH)3 Gi Ksp = 4.5 × 10–22 mol4/L4; g/L GK‡K Gi 1 (ii) `ªve¨Zv, S1 = × 1 × 10–3 4 `ªve¨Zv = ? 1 DËi: 2.158 × 10–4 g/L  Pb2+ Avq‡bi †gvjvwiwU n‡e| 4 47| 25C ZvcgvÎvq Cu(II) mvjdvBW Gi `ªve¨Zv ¸Ydj 56| AgCl Gi Ksp = 1.8 × 10–10 n‡j H ZvcgvÎvq 0.1M 6.3 × 10–36 mol2/L2 n‡j Gi `ªve¨Zv = ? AgNO3 `ªe‡Y AgCl Gi `ªve¨Zv = ? DËi: 2.5 × 10–18 mol/L DËi: 1.8 × 10–9 mol/L 48| 25C ZvcgvÎvq Al(OH)3 Gi `ªve¨Zv ¸Ydj 3.7 × 10–15 57| 25C ZvcgvÎvq weï× cvwb‡Z Ni(OH)2 Gi AvqwbK ¸Ydj mol4/L4 Al(OH)3 Gi m¤ú„³ `ªe‡Y Al3+ Avqb I OH– Avq‡bi 1.75 × 10–15; 14 pH Gi gv‡bi NaOH `ªe‡Y Ni(OH)2 Gi NbgvÎv Ges Al(OH)3 Gi `ªve¨Zv = ? `ªve¨Zv mol/L GK‡K KZ? DËi: 1.08 × 10–4 mol/L DËi: S = 1.75 × 10–15 mol/L st 4  Chemistry 1 Paper Chapter-2 58| 25C ZvcgvÎvq weï× cvwb‡Z AgCN Gi `ªve¨Zv I 2M 68| 25C ZvcgvÎvq Ca(OH)2 Gi Ksp = 4.42 × 10–5| G NaCN Gi Rjxq `ªe‡Y Ag+ Avq‡bi NbgvÎv mol/L GK‡K wbY©q Ca(OH)2 Gi 500 ml m¤ú„³ `ªe‡Y mgAvqZb 0.4M NaOH †hvM Ki| Ksp = 6 × 10–17 Ges Kf = 5.6 × 1018 Kiv n‡jv| G‡Z Ca(OH)2 Gi nªvmK…Z `ªve¨Zv KZ Ges KZ wgwj MÖvg DËi: 3.46 × 10–28 mol/L Ca(OH)2 Aatwÿß n‡e? DËi: S1 = 110.5 × 10–5 mol/L 59| wbw`©ó ZvcgvÎvq `ywU ¯^í `ªve¨ jeY XY I X 2Y Gi `ªve¨Zv Aat‡ÿc 783.23 mg ¸Yd‡ji gvb h_vµ‡g 10–10 I 10–13; m¤ú„³ Rjxq `ªeY †KvbwUi `ªve¨Zv †ewk? 69| AgNO3 Gi 0.1M Rjxq `ªe‡Y PO43– Avq‡bi NbgvÎv KZ n‡j –5 DËi: XY S = 10 ; X 2Y Gi `ªve¨Zv †ewk| Ag3PO4 Gi Aat‡ÿcb ïiæ n‡e| [Ksp(Ag3PO4) = 1.3 × 10–20] –5 X 2Y S = 2.92 × 10 DËi: [PO43–] = 1.3 × 10–17 M 60| 25C ZvcgvÎvq CaF2 Gi `ªve¨Zv ¸Yd‡ji gvb 4 × 10–11; H 70| mgAvqZ‡bi 0.002M NbgvÎvi NaIO3 I Cu(CIO3)2 `ªeY‡K ZvcgvÎvq CaF2 Gi m¤ú„³ `ªe‡Y Gi `ªve¨Zv Ges †h․MwU †_‡K Drcbœ wgwkÖZ Kiv n‡jv| Gi d‡j Cu(IO3)2 Gi Aat‡ÿc co‡e wK? Avqb¸‡jvi †gvjvi NbgvÎv wbY©q Ki| [Cu(IO3)2 Gi Ksp = 7.4 × 10–7] DËi: CaF2 Gi `ªve¨Zv = 2.15 × 10–4 mol/L DËi: Kip = 1 × 10–9 ; co‡e bv| [Ca2+] = 2.15 × 10–4 M [F–] = 4.3 × 10–4 M 71| mg‡gvjvi NbgvÎvwewkó FeSO4 I Na2S `ªeY‡K mgAvqZ‡b wgwkÖZ Kiv n‡q‡Q| D³ `ªeY؇qi cÖwZwUi m‡e©v”P NbgvÎv KZ n‡j Avqib 61| 30C ZvcgvÎvq CaCl2 Gi `ªve¨Zv ¸Ydj 1.55 × 10–8 mvjdvB‡Wi Aat‡ÿc co‡e? [Ksp(FeS) = 6.3 × 10–18] mol3/L3, H ZvcgvÎvq CaCl2 Gi 80% we‡qvwRZ n‡jv CaCl2 Gi DËi: Aat‡ÿc co‡e bv| `ªve¨Zv wbY©q Ki| DËi: 1.963 × 10–3 mol/L 72| †Kv‡bv `ªeY †hLv‡b Pb2+ I Zn2+ Dfq Avq‡bi NbgvÎv 62| weï× cvwb I 0.025 NaCl `ªe‡Y c„_Kfv‡e AgCl `ªexf~Z Kiv 0.01M; H2S m¤ú„ ³ `ªe‡Y [H+] Gi NbgvÎv Kx cwigvb n‡j †Kej 2+ 2+ n‡jv| weï× cvwb I D³ NaCl `ªe‡Y Ag+ Avq‡bi NbgvÎvi Abycv‡Z gvÎ `ªe‡Yi Pb Aatwÿß n‡e wKš‧ Zn Aatwÿß n‡e bv? wbY©q Ki| AgCl Gi Ksp = 1.75 × 10–10 [Ksp(H2S) = 1.1 × 10–22, Ksp(ZnS) = 1 × 10–21] DËi: 1.65 × 10–2 M DËi: 1.88 × 103 63| 25C G cvwb‡Z Al(OH)3 Gi Ksp = 2 × 10–33 pH = 13 73| i³ cøvRgvq Ca2+ Gi NbgvÎv 0.0025M| hw` C2O42– Gi Giƒc GKwU Rjxq `ªe‡Y Al(OH)3 Gi `ªve¨Zv 2 × 10–x mol/L n‡j NbgvÎv 1 × 10–7 M nq, Z‡e CaC2O4 Gi Aat‡ÿc Drcbœ n‡e Kx? x Gi gvb KZ? CaC2O4 Gi Ksp = 2.3 × 10–3 DËi: x = 30 DËi: Kip = 2.5 × 10–10; Aat‡ÿc co‡e bv| 64| 25C ZvcgvÎvq AgCl Gi Ksp = 1.8 × 10–10 mol2/L2; 74| `ªe‡Yi pH gvb KZ n‡j 1.5 × 10–15 M CdCl2 Gi Rjxq `ªe‡Y AgCl Gi 1L m¤ú„³ `ªe‡Yi g‡a¨ 1 mol NH3 †hvM Kiv n‡j `ªe‡Y H2S M¨vm Pvjbv Ki‡j CdS Aatwÿß n‡e? Ksp(CdS) = 10–28; Ag+ Avq‡bi †gvjvi NbgvÎv wbY©q Ki| [Kf = 1.7 × 107] Ksp(H2S) = 10–22 DËi: 7.88 × 10–13 mol/L DËi: 4.4 Type: Aat‡ÿc Type: †Kjvmb: C2 = bZzb `ªve‡K `ª‡e¨i NbgvÎv 65| 10 mol 0.25 M FeCl3 `ªe‡Y 1 ml 0.5M NH4OH `ªeY †hvM C1 = Av‡Mi/cÖ_g `ªve‡K `ª‡e¨i NbgvÎv Kiv n‡jv| 25C ZvcgvÎvq Fe(OH)3 Gi `ªve¨Zv ¸Ydj 3.74 × 10–38 C2 n‡j †Kv‡bv Aat‡ÿc co‡e wKbv? * KD = C1 DËi: co‡e  V n * Wn = W KDS + V 66| 0.02 M CaCl2 Gi `ªe‡Y 0.0003M Na2SO4 `ªeY mgAvqZ‡b KD e›UY ¸bv¼ [KD Gi gvb 1 Gi †P‡q eo n‡e|] wgwkÖZ Kiv n‡jv| Gi d‡j wgkÖ‡Y CaSO4 Gi Aat‡ÿc co‡e wKbv? V ïiæi `ªe‡Yi AvqZb; W ïiæi `ª‡e¨i fi CaSO4 Gi Ksp = 2.4 × 10–5 S bZzb `ªve‡Ki AvqZb DËi: Aat‡ÿc co‡e bv| Wn Awb®‥vwkZ `ª‡e¨i fi; n wb®‥vlb msL¨v 67| 25C ZvcgvÎvq 2 × 10–3 M CaCl2 `ªe‡Yi 500 ml Gi mv‡_ 75| 100 ml Rjxq `ªe‡Y wKQz cwigvY I `ªexf~Z Av‡Q| 50 ml 2 1.5 × 10–2 M Na2CO3 `ªe‡Yi 1L †K wgwkÖZ Ki‡j CaCO3 Gi CCl †hvM Ki‡j 50% I wb®‥vwkZ nq| K = ? 4 2 D Aa©t‡ÿc co‡e wKbv? [Ksp (CaCO3) = 9 × 10–9 mol2/L2] DËi: KD = 2 DËi: Aat‡ÿc co‡e (Kip > Ksp) ¸YMZ imvqb  Engineering Practice Sheet 5 76| CCl4 I H2O †Z I2 Gi e›Ub ¸Yv¼ 80 †Kv‡bv ZvcgvÎvq cÖwZ 84| Calculate the energy required to excite one liter of wjUv‡i cvwb‡Z 0.35g Av‡qvwWb m¤ú„³ `ªeY Zwi K‡i| H ZvcgvÎvq H2 at 1atm and 298 K to the first excited state of atomic Kve©b †UUªv‡K¬vivB‡W (CCl4) G I2 Gi `ªve¨Zv = ? H. The energy for dissociation of H-H bond is 436 J/mol. DËi: 28 g/L DËi: 10.93 × 1014 sec–1 or Hz 77| GK wjUvi Rjxq `ªe‡Y 1g Av‡qvwWb `ªexf~Z Av‡Q| 85| The ionization energy of He+ is 19.6 × 10–18 J/atom (i) H `ªeY‡K 50 ml CCl4 mn SuvKv‡j Rjxq `ªe‡Y Avi KZ Av‡qvwWb  Calculate the first stationary state of Li2+ Aewkó _vK‡e? (ii) 50 ml CCl4 †K 10 ml K‡i cuvPevi e¨envi DËi: 4.41 × 10–17 J Ki‡j Rjxq `ªe‡Y Avi KZ I2 _vK‡e? [CCl4 I cvwbi g‡a¨ I2 Gi e›Ub ¸Yv¼ 80|] 86| D”PZi kw³¯Íi †_‡K e– kw³ Z¨vM K‡i wb‡P Avmvi mgq 6wU DËi: (i) 0.2 g ; (ii) 0.053 g 64 †iLv cvIqv hvq| D”PZi Ges wb¤œZi kw³¯Í‡ii kw³i AbycvZ 100. kw³¯Íi Øq Kx Kx? 78| H cigvYyi Rb¨ weve function 2s = 1.  1  DËi: n = 12 ; n = 15 1 2 a0 L H 4 (2) –r/a0 2 – r  87| In an atom, the total electrons having quantum 2s AiweUv‡ji †iwWqvj †bv‡Wi e¨vmva© av Gi gva¨‡g  a0e 1 numbers n = 4, |mL| = – 1 and ms = – =? cÖKvk Ki| 2 DËi: r = 2a0 DËi: 6 th + 79| The max and min for certain radiation are 121.65 nm 88| In 4 shell of He find the wavelength of electron. –10 and 91.24 nm. Find the color of the radiation =? DËi: 6.66 × 10 m DËi: n2  2 89| In one liter saturated solution of AgCl [Ksp = 1.6 × 10–10] = 1.0 × 10–10) is added. The resultant 80| -particles of 6 MeV energy is scattetced back from 0.1 mol of CuCl (Ksp + –x concentration of Ag in solution = 1.6 × 10 ; x = ? a silver toil calculate maximum volume in which the entire positive charge of the atom is supposed to be DËi: x = 7 concentrated. Z = 47 DËi: 48 × 10–42 m3 90| The solubility of CdSO4 in water is 8 × 10–4 molL–1. It’s solubility in 0.01M H2SO4 = ? –6 81| The dissociation energy of H2 is 430.53 kJmol–1. If H2 DËi: 64 × 10 is exposed to radiation of wavelength 253.7 nm what % of radiant energy will be converted to kinetic energy? Last of all: DËi: 0.68 × 10–19 J ; 8.68% (i) †Kvqv›Uvg msL¨v (ii) MRI I IR G‡`i g~j bxwZ I e¨envi 82| A bulb emits light of  = 4500Å The bulb is rated as (iii) Avqb kbv³ KiY| 150W and 8% of the energy is emitted as light. How many (iv) e– web¨vm| photons are emitted by bulb per second? GB UwcK¸‡jv n‡Z gyL¯Í Question Av‡m, GKUz fv‡jv K‡i †`Lv iv‡Lv| DËi: 27.2 × 1018 photons. Ze2 83| prove that Un = mrn where u is the velocity of electron in a one electron atom at no. Z at distance rn from nucleus, m and are mass and charge of electron. Ze2 DËi: mrn st 6  Chemistry 1 Paper Chapter-2 4 ACS Chemistry Department Gi g‡bvbxZ eûwbe©vPwb cÖkm œ g~n 11. 2He Gi GKwU cigvYyi cÖK…Z fi 4.003 a.m.u; 1wU proton Gi fi 1.0075 a. m. u Ges 1wU wbDUª‡bi fi 1.0089 a. m. Type: B‡j±ªb I †cÖvUb msL¨v u n‡j He cigvYy‡Z wbDwK¬qvi kw³i cwigvY KZ? 5.62 × 10–8 J 3.59 × 10–10 J 18 –12 1. 8 O2– Gi KqwU B‡jKUªb Av‡Q? 4.45 × 10 J 4.22 × 10–10 J 4wU 6wU 10wU 12wU Type: cigvYyi g‡Wj: 12. †KvbwUi eY©vjx †evi ZË¡vbyhvqx e¨vL¨v Kiv m¤¢e bq? 2. †Kvb cigvYyi †Kv‡bv wbDUªb †bB? He+ Li2+ H wWD‡Uwiqvg 2 H Be2+ wUªwUqvg meKwU 1 13. mvaviYZ †evi B‡jKUªb Kÿc‡_ AveZ©bKv‡j KqwU mgmsL¨K 3. B‡jKUªb Nb‡Z¡i w`K †_‡K mwVK µg †KvbwU? c~Y©Zi½ m„wó K‡i? 1s > 2s > 3s > 4s 1s < 2s < 3s < 4s n n2 1s = 2s = 3s = 4s †KvbwUB bq n+1 2l 4. wb‡Pi †Kvb †mUwU K‡¤úvwRU KwYKv? 14. †Kv‡bv ¯v‡b B‡jKUªb cvIqvi m¤¢vebv eySvq Kx Øviv? Electron, proton, neutron  Øviv 2 Øviv -particle, deuteron x Øviv dx Øviv positron, messon photon 15. û‡Ûi wbq‡g f¨vbvwWqvg (V) †g․‡j KqwU we‡Rvo electron _v‡K? 5. cigvYyi 5th kw³¯Í‡i m‡ev©”P electron aviYÿgZvÑ 1 wU 3 wU 28 32 5 wU 0 wU 50 82 16. GKwU cigvYy‡Z GKwU B‡jKUªb 4_© kw³¯Í‡i GKwU c~Y© AveZ©b 6. fvix cvwb †KvbwU? Ki‡Z KqwU c~Y© Zi½ m„wó Ki‡e? H2O D2O 2 3 H 2O 2 D”P Nb‡Z¡i LwbR cvwb 4 5 7. wb‡Pi †Kvb cigvby¸”Q AvB‡mv‡UvwbK? 17. Zeeman effecr Gi †ÿ‡Î f~wgKv iv‡LÑ 40 40 40 39 40 17 18 Ar, 19K, 20Ca 19 K, 20Ca, 37Cl evwn¨K Pz¤^K‡ÿÎ evwn¨K Zwor †ÿÎ 16 17 18 30 31 32 O, 8 O, 8 O Si, 15P, 16S a+b None 8 14 79 81 18. †KvbwU mwVK mgxKiY? 8. 35 Br Ges 35 Br Gi Av‡cwÿK AvB‡mv‡UvwcK fi h_vµv‡g   78.919 Ges 80.917 Ges G‡`i kZKiv cwigvY h_vµ‡g  0 2 dv = 0  0  dv = 0 0 50.52% Ges 49.48| Br Gi cvigvYweK fi KZ? – 2 dv = 1 None 79.9896 79.91 0 DËi: – 2 dv = 1 79 80 9. 54 56 X Ges a Y AvB‡mv‡UvwbK n‡j a = ? Type: †Kvqv›Uvg msL¨v 26 26 27 19. wb‡Pi †Kvqv›Uvg b¤^‡ii †Kvb †mUwU Aev¯Íe? 28 None 1 (n = 2, l = 0, m = 0, s =  ) 2 Type: †ZRw¯…qZv: (n = 2, l = 1, m = + 1, s =  ) 1 228 212 2 10. 90 Th 83 Bi GB †ZRw¯…q wewµqvq wbM©Z  I  KYvi msL¨v 1 KZ? (n = 2, l = 1, m = 0, s =  ) 2 1wU, 4wU 4wU, 1wU 1 (n = 2, l = 0, m = + 1, s =  ) 7wU, 4wU None 2 ¸YMZ imvqb  Engineering Practice Sheet 7 20. wb‡Pi †KvbwU n Zg kw³¯Í‡i †gvU AiweUv‡ji msL¨v cÖKvk K‡i? 31. nvB‡Rbev‡M©i AwbðqZv bxwZ Abyhvqx MwZkxj †Kvb KYvi Ae¯vb n n wbfzj © fv‡e wbY©q Kiv m¤¢e n‡j †KvbwU wbY©q AwbwðZ n‡q c‡o? {1 + (2n – 2)} {1 + (2n – 1)} 2 2 K¤úv¼ mgq e¨eavb n n fi‡eM kw³ {2 + (2n + 1)} {2 + (2n – 1)} 2 2 32. †¯ªvwWÄv‡ii Zi½ mgxKiY Kx‡mi Zi½ ag© e¨vL¨v K‡i? 21. hw` †P․¤^Kxq †Kvqv›Uvg msL¨v m Ges mnKvix †Kvqv›Uvg msL¨v l B‡jKUªb †cÖvUb nq, Z‡eÑ wbDUªb mKj e¯‘ KYvi m = 2(l + 1) m=2+l m–1 m+1 33. wb‡Pi †KvbwU AvDdevD bxwZ Agvb¨ K‡i? l= l= 2 2 ↿⇂ ↿⇂ ↿ ⇂ ↿⇂ ↿ ↿ ↿ ↿⇂ ↿⇂ ↿ ↿ ↿⇂ ↿ ↿ 1 1 22. s = 0, + , – n‡j †Kv‡bv cÖavb kw³¯Í‡i m‡e©v”P B‡jKUªb aviY 2 2 Type: eY©vjx: ÿgZv KZ? 34. wb‡¤œi wewKiY¸‡jvi g‡a¨ †KvbwUi kw³ me‡P‡q †ewk? 2n2 n2 infrared visible 3n2 None ultraviolet microwave 23. wb‡Pi †Kvb AiweUv‡j †bvW (Node) _v‡K bv? 35. H-cvigvYweK eY©vwji †Kvb wmwiRwU‡Z `„k¨gvb A‡ji iwk¥ 1s 2s †`Lv hvq? 2p None c¨v‡ðb jvB‡gb evgvi eªv‡KU 24. 3s AiweUv‡j node msL¨v KqwU? 1wU 2wU 36. cigvYyi †ÿ‡Î †iLv eY©vjx †`Lv hvq KLb? 3wU †h‡Kv‡bv msL¨K n‡Z cv‡i kw³ †kvl‡Yi mgq kw³ wewKi‡Yi mgq Both None 25. l = 1 Gi †ÿ‡Î mswkøó AiweUv‡ji AvK…wZ †Kgb? 37. wiWevM© aªæe‡Ki Rb¨ †KvbwU mwVK? eZz©jvKvi dumbbell Gi b¨vq 22me3 22me4 double dumbbell Gi b¨vq None RH = ch4 RH = ch3  me 2 3  me4 2 26. kw³i gv‡bi wfwˇZÑ RH = 4 RH = ch ch3 px = py = pz p x > py > pz px  py  pz p x < py < pz 38. jvj e‡Y©i iwk¥i Zi½‣`N©¨ 7000Å (A¨vs÷ªg) n‡j Gi Zi½ msL¨v KZ? 27. px AiweUv‡ji nodal plane †KvbwU? 1.428 × 10–3 nm 14.28 × 103 cm–1 xy yz 1.428 × 10–3 m–1 14.28 × 10–3 Å zx x2 – y2 39. wiWevM© aªæeK RH Øviv cÖKvwkZ, H cigvYyi eY©vwji evgvi wmwi‡R 28. û‡Ûi bxwZ †Kvb AiweUv‡ji †ÿ‡Î cÖ‡hvR¨ bq? me©wb¤œ Zi½ msL¨vi wewKwiZ iwk¥ †KvbwU? 3RH 5RH s d 4 36 f None 8RH 9RH 9 144 29. †KvbwU û‡Ûi bxwZ Agvb¨ K‡i‡Q? 40. wewKi‡Yi Zi½msL¨v 1.65 × 104 cm–1 n‡j ¯ú›`b msL¨v KZ? ↿⇂ ↿⇂ ↿ ↿ ↿⇂ ↿ ↿ ↿ 1.818 × 106 Hz 4.95 × 1014 Hz ↿⇂ ↿⇂ ↿ ↿ ↿ ↿ ↿ 12 4.95 × 10 Hz Data insufficent 30. wb‡Pi †KvbwU cwji eR©b bxwZ Agvb¨ K‡i‡Q? 41. c¨v‡ðb wmwi‡Ri Rb¨ H cigvYyi †iLv eY©vjxi `xN©Zg Zi½‣`N©¨ ↿⇂ ↿ ↿ ↿ ↿⇂ ↿⇂ ↿↿ ↿ KZ n‡e? 820.4 nm 1281 nm ↿⇂ ↿⇂ ↿ ↿ ↿⇂ ↿⇂ ↿ 1875 nm wbY©q Kiv Am¤¢e st 8  Chemistry 1 Paper Chapter-2 42. n1 = 3 wmwi‡Ri Rb¨ H cigvYyi †iLv eY©vjxi me©wb¤œ Zi½‣`N©¨ 51. wb‡Pi †Kvb `ªve¨Zvi µgwU mwVK? KZ? Mg(OH)2 > Ca(OH)2 > Sr(OH)2 > Ba(OH)2 820.4 nm 1875 nm Mg(OH)2 < Ca(OH)2 < Sr(OH)2 < Ba(OH)2 91.15 nm 1281 nm Mg(OH)2 < Ca(OH)2 < Ba(OH)2 > Sr(OH)2 None 43. jvB‡gb wmwi‡Ri 2q jvB‡bi K¤úvsK KZ? 52. wb‡Pi †KvbwU cvwb‡Z A`ªeYxq? 2.924 × 1015 Hz 9.749 × 10–4 Hz Na2CO3 CaCO3 3 1.025 × 10 Hz 32.48 × 10–3 Hz ZnCO3 b+c Type: `ªve¨Zv I `ªve¨Zv ¸Ydj: 53. wb‡Pi †Kvb †mUwU‡Z mg-Avqb cÖfve we`¨gvb? 44. 25C ZvcgvÎvq AgCl Gi `ªve¨Zv ¸Yd‡ji gvb 4 × 10–10 H2S, HCl NaCl, CH3Cl 2 –2 CH ,HCl CaCl2, C6H5Cl mol L | 0.00001 M NaCl `ªe‡Y AgCl Gi `ªve¨Zv KZ 4 g/L? 4 × 10–5 5.74 × 10–3 54. ZvcgvÎvq e„w×i mv‡_ mv‡_ †Kvb †h․MwUi `ªve¨Zv K‡g? –5 –3 NaOH CaCrO4 1.56 × 10 2.2386 × 10 Ce2(SO4)3 me¸‡jv 45. 25C ZvcgvÎvq 1 wjUvi K¨vjwmqvg A·v‡jU (CaC2O4) Gi 55. cUvwmqvg †mvwWqvg †n·vd¬z‡iv A¨vjywg‡bU K3[Na3(AlF6)2] m¤ú„³ `ªeY‡K ev®úxf~Z K‡i 0.0061g CaC2O4 cvIqv †Mj| H `ªve¨Zv S mol L–1 n‡j Gi `ªve¨Zv ¸YdjÑ ZvcgvÎvq CaC2O4 Gi `ªve¨Zv ¸Ydj KZ wQj? 16s3 18s3 2 × 10–9 molL–1 4.6 × 10–9 mol2L–2 32s 8 2916s8 2.344 × 10–9 mol2L–2 2.27 × 10–9 mol2L–2 56. 25C G Fe(OH)3 Gi `ªve¨Zv 2.1153 × 10–8 gL–1; H 46. ÿviavZzi †Kvb †h․MwU cvwb‡Z cÖvq A`ªeYxq? ZvcgvÎvq Gi `ªve¨Zv ¸Ydj KZ? [Fe = 55.85] LiF Na2H2Sb2O7 4.147 × 10–38 3.416 × 10–32 –28 K3[Co(NO2)6] me¸‡jv 3.08 × 10 2.162 × 10–22 57. 25C ZvcgvÎvq cÖwZ wjUvi `ªe‡Y 0.1 mol Zn2+ Avqb Dcw¯Z| 47. 20C ZvcgvÎvq my‡µv‡Ri `ªve¨Zv 203g/100g water| Zvn‡j G `ªe‡Yi pH gvb KZ n‡j `ªeY †_‡K Zn(OH)2 Aat‡ÿc ïiæ H ZvcgvÎvq 100g m¤ú„³ my‡µvR `ªeY †c‡Z KZ MÖvg cvwb Ges n‡e| [Ksp = 1.0 × 10–22] KZ †gvj my‡µvR cÖ‡qvRb? 7.5 8.0 20 60g cvwb, mole my‡µvR 8.5 9.0 171 25 58. 25C-G Al2(SO4)3 Gi `ªve¨Zv S n‡j, ZLb Gi AvqwbK 50g cvwb, mole my‡µvR 171 ¸Ydj n‡e †KvbwU? 67 s5 6s5 33g cvwb, mole my‡µvR 342 27s5 108s5 11 67g cvwb, mole my‡µvR 342 59. 25C ZvcgvÎvq †Kv‡bv je‡Yi `ªve¨Zv 40 n‡j H ZvcgvÎvq 700g m¤ú„³ `ªeY cÖ¯‧Z Ki‡Z KZUzKz jeY cÖ‡qvRb n‡e? 48. Na2SO4.10H2O Gi `ªve¨Zv 19C †_‡K 40C Gi g‡a¨Ñ 280g 200g µgvMZ ev‡o µgvMZ K‡g 466.67g None cÖ_‡g ev‡o, Zvici K‡g †KvbwUB bq 60. 50 mL m¤ú„³ `ªe‡Y 5g CaCl2 Av‡Q| wjUvi cÖwZ CaCl2 Gi `ªve¨Zv KZ? 49. 25C ZvcgvÎvq Ca(OH)2 Gi Ksp = 8 × 10–6| H ZvcgvÎvq 10.0 gL–1 100 gL–1 Gi m¤ú„³ Rjxq `ªe‡Yi pH KZ? 101 gL –1 1011 gL–1 12.1003 1.8607 12.4014 wbY©q Am¤¢e 61. 30C ZvcgvÎvq NaCl Gi 13.12g m¤ú„³ `ªeY‡K ev®úxf~Z K‡i m¤ú~Y©iƒ‡c ï®‥ Ki‡j 3.175g Ae‡kl _v‡K| H ZvcgvÎvq 50. wb‡Pi †KvbwU cvwb‡Z `ªeYxq bq? NaCl Gi `ªve¨Zv KZ? NaNO3 Ca(NO3)2 24.199 75.80 Zn(NO3)2 Pb(NO3)2 31.925 None ¸YMZ imvqb  Engineering Practice Sheet 9 Type: UV, IR, MRI: 73. Cu2+ jeY wkLv cixÿvq †Kvb eY© †`q? 62. MÖx®§cÖavb †`‡k Sunbath mvaviYZ †`Lv hvq bv, KviYÑ meyRvf njy` bxjvf meyR MÖx®§cÖavb †`‡k m~h©v‡jv‡K ÿwZKi UV Ask †ewk _v‡K Av‡c‡ji b¨vq meyR None MÖx®§cÖavb †`‡k m~h©v‡jv‡K IR iwk¥ _v‡K bv MÖx®§cÖavb †`‡k m~h© n‡Z cÖvß iwk¥i AwaKvskB  iwk¥ Type: Avqb kbv³KiY a I b DfqB 74. GKwU je‡Yi `ªe‡Y †j‡Wi wPwb †hvM Kivi ci mv`v Aat‡ÿc cvIqv †Mj hv DËß Ki‡j `ªexf~Z nq bv Ges jNy HNO3 †hv‡MI 63. Crystallography †Z Kx ai‡bi iwk¥ e¨envi Kiv nq? AcwiewZ©Z _v‡K| Zvn‡j wb‡¤œi †Kvb AvqbwU jeYwUi g‡a¨ UV IR Dcw¯Z? X-Ray -Ray Pb2+ Cl– 2– – SO 4 NO3 64. wb‡Pi †Kvb cigvYymg~‡n magnetic moment _v‡K? 1 H 19 F 75. FeCl2 †h․‡M Kx †hvM Ki‡j Mvp bxj e‡Y©i Aat‡ÿc c‡o? 1 9 7 K4[Fe(CN)6] K3[Fe(CN)6] 3 Li All K2H2Sb2O7 None 65. wb‡Pi †KvbwU wbDwK¬qvmwU NMR mwµq? 76. Fe3+ †h․‡M cUvwkqvg †d‡ivmvqvbvBW †hvM Ki‡j †Kvb †h․‡Mi 16 O 12 C Aat‡ÿc c‡o? 8 8 32 1 KFe[Fe(CN)6] K2Fe[Fe(CN)6] 16 S 1 H Fe[Fe(CN)6] Fe4[Fe(CN)6] Typy: wkLv cixÿv: 77. Ca2+ Avq‡bi cixÿvq †ÿ‡Î A¨v‡gvwbqvg A·v‡jU †hvM Ki‡j 66. wkLv cixÿv †k‡l HCl G A`ªeYxq Ac`ªe¨ cøvwUbvg Zvi n‡Z `~i Kx‡mi Aat‡ÿc c‡o? Ki‡Z e¨envi Kiv nqÑ CaCOONH4 Ca(COO)2 Mvp HNO3 A¨v‡Kvqv †iwRqv CaCOOH Aat‡ÿc c‡o bv Mvp H2SO4 weMwjZ KHSO4 78. †bmjvi weKviK †Kvb Avqb kbv³ Ki‡Z e¨envi Kiv nq? + 67. Ba 2+ wkLv cixÿvq Kx eY© cÖ`vb K‡i? N3– NH 4 nvjKv †e¸bx mv`v‡U bxj Na+ None bxjvf meyR Av‡c‡ji b¨vq meyR 79. ÔAv‡qvWvBW Ae wgjbm †emÕ †KvbwU? 68. B‡Ui b¨vq jvj e‡Y©i wkLv †`q †K? NH2[Hg2I3] KHgI2 + KOH Cu2+ Ca2+ K2[HgI4] + NaOH None 2+ Sr K+ 69. wkLv cixÿvq HCl e¨envi Kiv nq †Kb? 80. †bmjvi `ªeY Kx? HCl eY© cwieZ©b K‡i Hg2I4 K2HgI4 AbyØvqx je‡bi DØvqx je‡Y cwiYZ K‡i K2HgI4 + KOH KHgI4 + NaOH mKj avZe †hŠM HCl Gi mv‡_ wewµqv †`q 81. nvB‡Wªv‡Rb cigvYyi 2q kw³¯Í‡i e– Gi MwZkw³ KZ? None [a0 †evi e¨vmva©] 70. wkLv cixÿvq †Kvevë Kv‡Pi ga¨ w`‡q Na+ Gi Kx eY© †`Lv hvq? h2 h2 2 2 4 ma0 162ma02 †mvbvjx njy` meyRvf njy` 2 h h2 †Mvjvcx jvj eY©nxb 2 2 32 ma0 642ma02 71. wkLv cixÿvq K+ Kx eY© †`q? |2| B‡Ui gZ jvj nvjKv †e¸wb †Mvjvcx None 82. †Kvb AiweUvj wb‡`©k f‡i? 72. Sr2+ wkLv cixÿvq Kx eY© †`Lvq? r µxgmb †iW meyRvf bxj 1s 2s 3s 4s njy`vf meyR None st 10  Chemistry 1 Paper Chapter-2 83. For a Ôb’ electron the angular momentum is = ? 90. The ratio of momentum of a proton and an – particle which are accelerated from rest by a 6  2  h h 2 2 potential difference of 200 V.mp and m are masscs of proton and -particles: 2  h h 2 2 2mp mp m 2m 84. what energy is the needed for elimination the electron mp 2m nd of H from 2 orbit? 2m mp –20 – 5.44 × 10 J – 3.4 eV 91. The frequency ratio of revolution of electron Is + 3.4 eV + 5.44 × 10–20 J excited state He+ and I excited state of H atom: 27 32 85. Spin angular momentum of electron is given by 32 27 3h 3h 1 4 4  4 8 1 3h 4h 4 3 92. In which of the following systems will the radius of the first orbit is minimum: Doubly ionized lithium 86. The radius of first Bohr’s orbit in H atoms is r1. The singly ionized helium nd corresponding wave length of an electron in 2 orbit = ? Deuterum atom 6r1 4r1 H atom 2r1 3r1 93. An electron in the ground state of hydrogen has an 87. The de-Broglie wave length of a particle of mass m angular momentum L1 and electron in the first orbit and temperature TK is given by: of Li2+ has an angular momentum L2, then h h L1 = L2 L1 = 3L2 3L1 = L2 L1 = 6L2 2mkt 3mkt h h 94. Ionization potential to hydrogen atom is 13.6 eV. It 4mkt mkt ground state of H atom is excited by monochromatic radiations of 12.1 eV, then the number of spectral 88. The ration of angular momentums of electron in two lines emitted by H atom on de excitation = ? a 1 2 successive orbit is a (a > 1) and their difference is b  =? 3 4 b n n+1 h. 95. It the speed of electron in Bohr’s first orbit of ÔHe+Õ n+1 n 2 atom is Ôx’ the speed of electron in the third orbit of n+1 n + 1 2. ÔLi2+’ is =? n n h x x 9 2 89. If a0 is the radius of first Bohr orbit of H atom, the 3x 2x de Broglie wavelength of an electron moving 1 orbit 96. The electron in He+ ion is excited to next higher state. is = ? The ratio of area of shell of excited state to ground 6a0 3a0 state is =? 2a0 9a0 9 4 16 12 DËigvjv: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 ------

Use Quizgecko on...
Browser
Browser