Differential Equation Notes PDF
Document Details
Uploaded by StupendousRomanArt
Tags
Summary
These notes cover various topics related to differential equations. They include introductions to different types of differential equations, solutions, and applications in electrical circuits. The notes also cover advanced mathematics topics such as Laplace transforms.
Full Transcript
# TABLE OF CONTENTS ## I. INTRODUCTION TO DIFFERENTIAL EQUATIONS (D.E.) * **A. TYPES OF DIFFERENTIAL EQUATIONS** * **B. ORDER OF DIFFERENTIAL EQUATIONS** * **C. DEGREE OF DIFFERENTIAL EQUATIONS** * **D. BASIC SOLUTIONS TO D.E.** ## II. SOLUTIONS TO DIFFERENTIAL EQUATIONS * **A. ELIMINATION OF AR...
# TABLE OF CONTENTS ## I. INTRODUCTION TO DIFFERENTIAL EQUATIONS (D.E.) * **A. TYPES OF DIFFERENTIAL EQUATIONS** * **B. ORDER OF DIFFERENTIAL EQUATIONS** * **C. DEGREE OF DIFFERENTIAL EQUATIONS** * **D. BASIC SOLUTIONS TO D.E.** ## II. SOLUTIONS TO DIFFERENTIAL EQUATIONS * **A. ELIMINATION OF ARBITRARY CONSTANT** * **B. ELIMINATION OF ARBITRARY CONSTANT USING ELIMINATION METHOD** * **C. FAMILIES OF CURVE** * **D. VARIABLE SEPARABLE D.E.** * **E. HOMOGENEOUS D.E.** * **F. EXACT DE.** * **G. NON-EXACT D.E.** * **H. FIRST ORDER LINEAR D.E.** * **I. BERNOULLIS EQUATION** ## III. APPLICATION OF FIRST ORDER D.E. * **A. LAWS OF GROWTH & DECAY** * **B. NEWTON'S LAW OF COOLING** ## IV. APPLICATION OF FIRST ORDER D.E. IN ELECTRICAL CIRCUITS * **A. RL CIRCUITS** * **B. RC CIRCUITS** ## V. HOMOGENEOUS D.E. W/CONSTANT COEFFICIENTS * **A. AUXILIARY EQUATION W/DISTINCT ROOTS** * **B. AUXILIARY EQUATION W/REPEATED ROOTS** ## VI. LAPLACE TRANSFORM INTRODUCTION IN ADVANCE MATHEMATICS * **A. LAPLACE TRANSFORM INTRODUCTION** * **B. LAPLACE TRANSFORM OF SINEX COSINE FUNCTION** * **C. LAPLACE TRANSFORM OF EXPONENTIAL FUNCTION** # **DIFFERENTIAL EQUATIONS** * Is a mathematical equation that relates some function with its derivatives. ## **ORDINARY D.E.** * Is a D.E. containing one or more functions of one independent variable, and has derivatives of those functions. ## **PARTIAL D.E.** * Is a **D.E.** that involves two or more independent variables, an unknown function (dependent on those variables) and partial derivatives of unknown function. ## **ORDER OF D.E.** * It is the highest/largest derivative present in the D.E. ## **DEGREE OF D.E.** * It is the exponent at which the order is raised. ## **EXAMPLES:** 1. $ay'' + by' + cy = g(t)$ * ODE, 2nd order, 1st degree 2. $\frac{dy}{dx} = (-y) + y^2e^y$ * ODE, 2nd order, 1st degree. 3. $y^2 + 10y''' - 4y' + 2y = cos(t)$ * ODE, 4th order, 1st degree 4. $\frac{d^2x}{dt^2} + k^2x = 0$ * ODE, 2nd order, 1st degree 5. $(\sqrt{\frac{dy}{dx}} + 3y)\frac{d^2y}{dx^2} = (\frac{d^2y}{dx^2} + 3y)^2$ * ODE, 2nd order, 2nd degree 6. $(1 + (\frac{dy}{dx})^2)^2 = (1+ \frac{d^2y}{dx^2} - y (\frac{d^2y}{dx^2})^2)^2$ * ODE, 3rd order, 4th degree 7. $\frac{d^2y}{dx^2} + k^2y = c + g(t)$ * PDE, 2nd order, 1st degree ## **SOLUTIONS TO D.E.** 1. **Verify** that $y(x) = \frac{x}{k}$ is a solution to the D.E. $4x^2y'' + 2xy' + 3y=0$. * **Solution:** * $y(x)=x^2$, * $4xy'' + 12xy' + 3y= 0$ * $y'= \frac{1}{2}x^\frac{-3}{2}$ * $y''= \frac{-5}{4}x^\frac{-7}{2}$ * Substitute to the Equation. * $4x^2(\frac{-5}{4}x^\frac{-7}{2}) + 12x(\frac{1}{2}x^\frac{-3}{2}) +3(x^2) = 0$ * $-\frac{5}{2}x^\frac{-3}{2}+ 6x x^\frac{-3}{2} + 3x^2 = 0$ * $0 = 0$ 2. **Verify** that $e^{2x} = y$ is a solution to the equation $y'''- 3y' + 2y = 0$. * **Solution:** * $y = e^{2x}$ * $y' = 2e^{2x}$ * $y'' = 4e^{2x}$ * $y'''= 8e^{2x}$ * Substitute to Equation: * $8e^{2x} - 3(2e^{2x}) + 2e^{2x} = 0$ * $0 = 0$ 3. $Sinkt$; $\frac{d^2x}{dt^2} + k^2x = 0$ * *Solution:* * Substitute to the Equation. * $x = sinkt$ * $\frac{d^2x}{dt^2} = -ksinkt$ and $\frac{dx}{dt} = kcoskt$ * $-ksinkt + k^2sinkt = 0$ * $0 = 0$ 4. $y= Cie^{-2x} + C_2e^{3x}$ * *Solution:* * $y' = -2C_1e^{-2x} + 3C_2e^{3x}$ * $y'' = 4C_1e^{-2x} + 9C_2e^{3x}$ * $y''' = -8C_1e^{-2x} + 27C_2e^{3x}$ 5. $x = C_1cos(\omega t) + C_2sin(\omega t)$ * *Solution:* * $\frac{dx}{dt} = -C_1\omega sin(\omega t) + C_2\omega cos(\omega t)$ * $\frac{d^2x}{dt^2} = -C_1\omega^2cos(\omega t) - C_2\omega^2sin(\omega t)$ * $\frac{d^3x}{dt^3} = C_1\omega^3sin(\omega t) - C_2\omega^3cos(\omega t)$ * $\frac{d^4x}{dt^4} = C_1\omega^4cos(\omega t) + C_2\omega^4sin(\omega t)$ * $\frac{d^4x}{dt^4} = \omega^4(C_1cos(\omega t) + C_2sin(\omega t))$ * $\frac{d^4x}{dt^4} = \omega^4x = 0$ # **ELIMINATION OF ARBITRARY CONSTANT** * The Elimination of Arbitrary Constant is necessary to obtain the differential equation. ## **EXAMPLES:** 1. $ax^2 + bx + cy = 0$ 2. $2ax + b = y'$ 3. $2a = y''$ 4. $y'=0$ * **The** rule is, we will differentiate the given equation based on the number of arbitrary constants. # **ELIMINATION OF ARBITRARY CONSTANT USING ELIMINATION METHOD (DETERMINANT)** 1. $y = C_1 + C_2e^{3x}$ * $y' = 0 + 3C_2e^{3x}$ * $y'' = 0 + 9C_2e^{3x}$ * $-y + C_1 + C_2e^{3x} = 0$ * $-y' + 0 + 3C_2e^{3x} = 0$ * $-y'' + 0 + 9C_2e^{3x} = 0$ * $\begin{vmatrix} -y & 1 & e^{3x} \\ -y' & 0 & 3e^{3x} \\ -y'' & 0 & 9e^{3x} \end{vmatrix} = 0$ * $0 = (0) - b(-y) + (0) - (0 + 0 - ay)$ * $[0 - -3y^2 + 9y’] / \frac{1}{2}$ * $[0 - -y + 3y’] - 1$ * $y'' - 3y' = 0$ 2. $y = C_1e^{2x} + C_2e^{3x}$ * $y' = 2 C_1e^{2x} + 3C_2e^{3x}$ * $y'' = 4C_1e^{2x} + 9C_2e^{3x}$ * $-y + C_1e^{2x} + C_2e^{3x} = 0$ * $-y' - 2C_1e^{2x} + 3C_2e^{3x} = 0$ * $-y'' + 4C_1e^{2x} + 9C_2e^{3x} = 0$ * $\begin{vmatrix} -y & 1 & 1 \\ -y' & 2 & 3 \\ -y'' & 4 & 9 \end{vmatrix} = 0$ * 0 = $y'' - 3y' = 0$ # **FAMILIES OF CURVES** * Are equations that includes arbitrary constants. This equation are mostly standard equations of conic sections of lines, circles, parabolas, ellipse k hyperbolas. ## **EXAMPLES:** 1. **Find** the D.E. satisfied by the families of line with slope and y-intercept equal. * **Solution:** * $y = mx + b$, $m=b$ * $y= mx+m$ * $y'=m$ * $y= y'x+y'$ * $y' y+(y')^2 = 0$ * $y' (x+1) - y = 0$ * $\frac{dy}{dx}(x+1)-y=0$ * $(x+1)dy-ydx = 0$ 2. **Circles** w/ origin at center * **Solution:** * $x^2+y^2=r^2$ * $x^2 + y(y') = 0$ * $x+yy' = 0$ * $dx + yy'dx = 0$ * $xdx +ydy=0$ 3. **Circles** w/ center at x-axis * **Solution:** * $(x-h)^2 + y^2 = r^2$ * $2(x-h)(1) + 2yy' = 0$ * $x-h+ yy' = 0$ * $x + yy' = h$ * $1 + (y')(y'') + (y')(y') = 0$ * $1+yy'' + (y')^2 = 0$. 4. **Straight** lines w/ slope y, x-intercept equal. * **Solution:** * $y = mx + b$ * $o = mx + b$ * $-b = mx$ * $if-x=m$ * $m=-b$ * $m^2 = b$ * $b=m²-m$ * $y = mx - m^2$ * $y'-m = 0$ * $y=y'x-(y')^2$ * $(y')^2 -y'y +y=0$ 5. **Circles** w/ center at y-axis * **Solution:** * $x^2 + (y-k)^2 = r^2$ * $2x + 2(y-k)y' = 0$ * $x+(y-k)y'= 0$ * $x + yy' - ky'=0$ * $x + yy' - ky' = 0$ * $y'(x+yy'' + y'y') - (x+yy')(y'') = 0$ * $\frac{y'}{y}\Bigg(x+yy'' + y'y' - \frac{(x+yy')(y'')}{y'}\Bigg) = 0$ * $-xy'' + (y')^3 + y' = 0$ 5. **Family** of parabolas having their vertices at origin and foci on y-axis * **Solution:** * $4ay=x^2; 4a=a$ * $ay=x^2$ * $ay' = 2x$ * $y' = \frac{2x}{y}$ * $2y = \frac{x^2}{y}$ * $2y^2=x^2$ * $x(\frac{dy}{dx}) -2y = 0$ * $xdy-2ydx = 0$ 6. **Family** of parabolas w/ vertex on y-axis and parallel to y-axis. * **Solution:** * $(x-h)^2=4ay = ay$ * $2(x-h) \frac{dy}{dx} = ay$ * $2x -2h = ay'$ * $2x = ay' + 2h$ * $\frac{2}{y'} = \frac{ay'}{2x}$ * $2x - 2h = \frac{2y}{y'}$ * $x-h = \frac{y}{y'}$ * $(x-h)^2 = (\frac{y}{y'})^2$ * $(x-h)^2 = \frac{y}{y'}(\frac{y}{y'}) + \frac{y}{y'}\Bigg(\frac{y}{y'}\Bigg)'$ * $x^2 - 2x(x-1) + (x-1)^2 = \frac{y}{y'}[2yy'' + (y')^2]$ * $x^2 + 2x - x^2 + 2x = \frac{yy''}{y'} + \frac{y}{y'} (y')^2$ * $x^2 + 2x = (\frac{y}{y'})^2 + y^2$ * $2yy' - (y')^2 = 0$. # **VARIABLE SEPARABLE DIFFERENTIAL EQUATION** * All terms containing x & y must be grouped with dx and dy respectively. If we can group them by dx and py, the D.E. is said to be variable separable. ## **TYPES OF SOLUTION:** 1. **General** solution * A solution that contains, however, the arbitrary constant does not yet defined. 2. **Particular** solution * A solution that no longer contains arbitrary constant. Hence, the arbitrary constant are defined. ## **EXAMPLES:** 1. $y=2x$ * **Solution:** * $\frac{dy}{dx}=2y$ * $\frac{1}{2y}dy = dx$ * $\frac{1}{2}\int \frac{1 }{y}dy =\int dx$ * $\frac{1}{2}[ln(y) =ln(x)+c]2$ * $ln(y) = 2ln(x)+c$ * $ln(y) = ln(x)^2 + c$ * $e^{ln(y)} = e^{ln(x)^2} + c$ * $y = xe^c$ but $e^c=c$ * $y = xe^c$ 2. $2x(y+1)dx-ydy=0$ * **Solution:** * $@x = 1, y= 0$ * $2xdx-ydy = 0$ * $\int 2xdx = \int ydy$ * $2\int xdx = \int \frac{y}{y+1}dy$ * LET: $du = dy$ * $\int du = \int \frac{y}{y+1}dy$ * $u = y + 1$ * $x^2 = \int \frac{y+1-1}{y+1} dy$ * $x^2 = \int dy - \int\frac{1}{y+1}dy$ * $x^2 = y - ln(y+1) + c$ * $@x=1, y = 0$ * $(1)^2 = 0 - ln(0+1) + c$ * $x^2 - y -ln(y+1) + 1 = c$ 3. $2xyy' = 1 + y^2$; $@x = 2, y = 3$ * **Solution:** * $2xy(\frac{dy}{dx}) = 1+y^2$ * $2xydy = (1 + y^2)dx$ * $2xydy = (1 + y^2)dx$ * $[2xydy = (1 + y^2)dx] / 2x(1 + y^2)$ * $\frac{ydy}{1 + y^2} = \frac{dx}{2x}$ * $\int \frac{ydy}{1+y^2} = \int\frac{dx}{2x} $ * LET : $du = 2ydy$ * $\int \frac{du}{u} = \frac{1}{2} \int \frac{dx}{x}$ * $\frac{1}{2}ln(u) = \frac{1}{2}ln(x)+c$ * $\frac{1}{2}ln(y^2 + 1) = \frac{1}{2}ln(x)+c$ * $[ln(y^2 + 1) = ln(x) + c ] 2$ * $ln(y^2 + 1) = ln(x)^2 + c$ * $e^{ln(y^2 + 1)} = e^{ln(x)^2 + c}$ * $y^2 + 1 = e^{ln(x)^2} e^c$ * $y^2 + 1 = Cx$ * $@ x = 2, y = 3$ * $(3)^2 +1 = 2C$ * $C = 5$ * $y^2+ 1 = 5x$ 4. $(x^3 + 2x)y dx - x(y^4 + 3)y dy = 0$ * **Solution:** * $(x^3 + 2x)ydx = x(y^4 + 3)y dy$ * $[(x^3 + 2x)y dx = x^(y^4 + 3)y dy]/yx$ * $\int \frac{x^3 + 2x}{x}dx = \int \frac{y^4+3}{y}dy$ * $\int x^2dx + 2 \int dx = \int y^3 dy + 3\int \frac{1}{y}dy$ * $\int x^2 dx + 2 \int dx = \int y^3dy + 3 \int \frac{1}{y}dy$ * $\frac{1}{3}x^3 + 2ln(x) = \frac{1}{4}y^4 + 3ln(y) + c$ * $@ x = 1, y = 1$ * $(1)^3 + 2ln(1) = \frac{1}{4}(1)^4 + 3ln(1) + c$ * $\frac{1}{3} + c = \frac{1}{4} + c$ * $\frac{1}{3} + c \rightarrow 0$ * $\frac{1}{3}x^3 + 2ln(x) = \frac{1}{4}y^4 + 3ln(y) + \frac{1}{12}$ 5. $ye^{2x}dx = (4+e^{2x})dy$ * **Solution:** * $ye^{2x}dx = (4+e^{2x})dy$ * $ye^{2x}dx = (4+e^{2x})dy$ * $\frac{e^{2x}dx}{4 + e^{2x}} = \frac{dy}{y}$ * LET: $du = 4 + e^{2x}$ * $du = 2e^{2x}dx$ * $\frac{1}{2}\int \frac{du}{u} = \int \frac{dy}{y}$ * $\frac{1}{2}ln(u) = ln(y)+c$ * $[\frac{1}{2}ln(4 + e^{2x})= ln(y) + c]$ * $ln(4 + e^{2x}) = 2ln(y) + c$ * $ln(4 + e^{2x}) = ln(y)^2 + c$ * $e^{ln(4+e^{2x})} = e^{ln(y)^2 + c}$ * $4 + e^{2x} = Cy^2$ # **HOMOGENEOUS DIFFERENTIAL EQUATIONS** * A **differential** equation is said to be a **homogeneous D.E.** if every **term** has the **same degree**. * Homogeneous can be written **as** $M(x, y)dx + N(x, y)dy = 0$ * If M is simpler, **use:** * $x = vy, dx = vdy + ydx$ * If N is simpler **use:** * $y = vx, dy = vdx + xdv$ ## **EXAMPLES:** 1. $(x^2 - xy + y^2)dx - xy^2 dy = 0$ * **Solution:** * Let $y = vx, dy = vdx + xdv$ * $(x^2 - x(vx) + (vx)^2)dx - x(vx)^2(vdx + xdv) = 0$ * $(x^2 - vx^2 + v^2x^2)dx - (x^2)(vdx + vdv) = 0$ * $(x^2 - vx^2 + v^2x^2)dx - v^2x^2dx - v^2xdx = 0$ * $v^2xdx=0$ * $x^2dx - x^2dx - v^2dx + v^2xdx = 0$ * $v^2dx = 0$ * $dv = 0$ * $\int dv = \int 0$ * $\int \frac{dv}{v} = \int 0$ * Let: $du=-dv$ * $lnx = \int \frac{dv}{v} + \int \frac{-du}{u}$ * $lnx = \int \frac{dv}{v} + \int \frac{du}{u}$ * $lnx = - In (1-(1/v)) + ln(u) + c$ * $lnx = - In(1 - \frac{y}{x}) + ln(-y{x}) + c$ * $lnx = In(\frac{x}{x-y}) - In(\frac{y}{x}) + c$ 2. $xydx + (x^2 + y^2)dy = 0$ * **Solution:** * Let $x = vy, dx = vdy + ydx$ * $vy(vdy + ydx) + (v^2y^2 + y^2)dy = 0$ * $vy^2(vdy + ydx) + v^2y^2dy + y^2dy = 0$ * $v^2y^2dy + vy^3dv + v^2y^2dy + y^2dy=0$ * $[2v^2y^2dy + vy^3dv + y^2dy = 0]/ y^2$ * $2v^2dy + vydv + dy = 0$ * $2v^2dy + dy + vydv = 0$ * $2v^2dy + dy = - vdy$ * $\int \frac{2v^2dy + dy}{2v^2 +1} = \int -vdv$ * LET: $u = 2v^2 + 1$ * $du = 4vdv$ * $\int\frac{du}{4u} = \int -vdv$ * $\frac{1}{4}\int \frac{du}{u} = \int -vdv$ * $In y + \frac{1}{4} \int \frac{du}{u} = 0$ * $In y + \frac{1}{4} ln(2v^2 +1) = 0$ * $[In y +\frac{1}{4} ln(2v^2 + 1) = 0] 4$ * $4In y + ln(2v^2 + 1) = c$ * $In y^4 + ln(2v^2 + 1) = c$ * $In y^4 + (2v^2 +1) = c$ * $e^{In y^4 + (2v^2 + 1)} = e^c$ * $y^4(2v^2 + 1) = c$ * LET: $v=\frac{x}{y}$ * $y^4(2(\frac{x}{y})^2 + 1) = c$ * $y^2(2\frac{x^2}{y^2} + 1) = c$ * $y^2(\frac{2x^2 + y^2}{y^2}) = c$ * $2x^2 + y^2 = c$ * WHEN $x=0, y = 1$ * $(1)^2(2(0)^2 + (1)^2) = c$ * $1 = c$ * $y^2(2x^2 + y^2) = 1$ # **EXACT DIFFERENTIAL EQUATION** * A D.E. is said to be exact if: * $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ * **TEST** FOR EXACTNESS (T.F.E) * To solve for the exact d.e., we need to use the **TFE** formulas: * $\frac{\partial F}{\partial x} = M(x, y) < \frac{\partial F}{\partial y} = N(x, y)$ * **WHERE** F is the solution to an exact D.E. ## **EXAMPLES:** 1. $(3x^2y-6x) dx+ (x^2 + 2y)dy = 0$ * **Solution:** * $M = 3x^2y-6x$ * $N = x^2 + 2y$ * $\frac{\partial M}{\partial y} = \frac{d}{dy}(3x^2y - 6x) = 3x^2$ * $\frac{\partial N}{\partial x}= \frac{d}{dx}(x^2 + 2y) = 2x +0 = 2x$ * $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ .. **EXACT** * **dF** = $\int (3x^2y-6x)dx$ * F = $\int 3x^2ydx - \int 6xdx$ * F = $3yxdx - 6 \int xdx$ * F= $y(\frac{x^3}{3}) - 6(\frac{x^2}{2}) + Q(y)$ * F = $x^2y - x^2 + Q(y)$ * $\frac{\partial F}{\partial y} = N(x, y) \rightarrow \frac{\partial F}{\partial y} = x^2 + 2y$ * dF = $\int(x^2 +2y)dy$ * F = $\int x^2 dy + \int 2ydy$ * F = $x^2 \int dy + 2 \int ydy$ * F = $x^2y + 2(\frac{y^2}{2}) + R(x)$ * F = $x^2y + y^2 + R(x)$ * F = $x^2y + y^2 + R(x)$ * $x^2y + y^2 + R(x) = x^2y-3x^2+ Q(y)$ * $R(x) = -3x^2$ * $Q(y) = y^2$ * $x^2y + y^2 - 3x^2 = C$ OR * $x^2y - 3x^2 + y^2 = C$ 2. $(2x^3 - xy^2 - 2y + 3)dx - (x^2y + 2x)dy = 0$ * *Solution:* * M = $(2x^3 - xy^2 - 2y + 3)$ * N = $ - (x^2y + 2x)$ * $\frac{\partial M}{\partial y} = \frac{d}{dy}(2x^3-xy^2-2y +3) = (0 + (-2xy) - 2 + 0) = -2xy - 2$ * $\frac{\partial N}{\partial x}= \frac{d}{dx}(x^2y + 2x) = (2x-2) = - 2xy - 2$ * $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ ... **EXACT D.E.** * **dF**= $\int(2x^3 - xy^2 - 2y +3)dx$ * F= $\int 2x^3dx - \int xy^2 dx - \int2ydx + 3 \int dx$ * F= $2\int x^3dx - y^2\int xdx - 2y \int dx + 3 \int dx$ * F= $2(\frac{x^4}{4})-y^2(\frac{x^2}{2}) -2y(x) + 3(x) + Q(y)$ * F= $2(\frac{x^4}{4}) -y^2(\frac{x^2}{2}) -2yx + 3x + Q(y)$ * $\frac{\partial F}{\partial y} = N(x, y) \rightarrow \frac{\partial F}{\partial y} = (x^2y + 2x)$ * *dF = $\int (-x^2y - 2x)dy$* * F = $\int -x^2ydy - \int 2xdy$ * F = $-x^2\int ydy - 2x\int dy$ * F = $-x^2(\frac{y^2}{2}) - 2xy +R(x)$ * F = $-x^2(\frac {y^2}{2}) -2xy + 3x + Q(y) = -x^2(\frac{y^2}{2}) -2xy + R(x)$ * $Q(y) = 0$; $R(x) = 3x$ * C = $x^2 - x^2y^2 - 4xy + 6x $ # **NON-EXACT D.E. WITH SPECIAL INTEGRATING FACTORS** * If $(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})/N = f(x)$. Then integrating factor: * $I.F. = e^{\int f(x)dx}$ * If $(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})/M = f(y)$. Then integrating factor is slightly different: * $I.F. = e^{\int f(y)dy}$ ## **EXAMPLES:** 1. $(y - xy)dx + xdy = 0$ * **Solution:** * $M = (y - xy)$ * $N = x$ * $\frac{\partial M}{\partial y} = \frac{d}{dy}(y-xy) = 1-x$ * $\frac{\partial N}{\partial x} = \frac{d}{dx}(x) = -1$ * $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ ... **NOT EXACT** * $(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})/N = f(x)$ * $\frac{(1-x)-(-1)}{x} = f(x