Motion in Straight Line PDF
Document Details
Neettoppers
Tags
Related
- ICSE Class 9 Physics Chapter 02 Motion in One Dimension PDF
- General Physics (Phys 1011) Lecture Notes PDF
- Circular Motion in Kinematics Short Notes PDF
- OCR A Physics A-level Topic 3.1: Motion Notes PDF
- OCR A Physics A-level Circular Motion Notes PDF
- Physics I (PHY111): Motion - KSIU Fall 2024 Lecture Notes PDF
Summary
These notes cover the topic of motion in a straight line, including concepts like distance, displacement, speed, velocity, and acceleration. The document provides formulas and examples, making it suitable for high school physics students.
Full Transcript
# Motion in Straight Line - Distance - Actual path or total path - Scalar quantity - Always positive, cannot be negative. - Displacement - Shortest distance between two points. - Change in position = *x* - *x*<sub>0</sub> - Vector quantity - May be positive, negative or z...
# Motion in Straight Line - Distance - Actual path or total path - Scalar quantity - Always positive, cannot be negative. - Displacement - Shortest distance between two points. - Change in position = *x* - *x*<sub>0</sub> - Vector quantity - May be positive, negative or zero. - Area of velocity-time graph - Distance ≥ Displacement | Displacement | Displacement is zero | Displacement is not zero | Displacement is not zero or may not be zero | It distance is not zero | It distance must be zero | Distance must be zero | Distance may or may not be zero | |---|---|---|---|---|---|---|---| | is zero | | | | | | | | | may be zero | | | | | | | | | may not be zero | | | | | | | | | It helps in Assertion & Reasoning Questions | | | | | | | | # Distance & Displacement on Circular Path - Distance = Arc = Rθ - Displacement = 2Rsin(θ/2) - Average velocity = sin(θ/2) / (θ/2) # Important points - Instantaneous velocity = *dv*/ *dt* - Average velocity = Total displacement/Total time - Average speed = Total distance/Total time - |Average velocity| = |Average speed| (Only when direction does not change) - Instantaneous speed = |Instantaneous velocity| (Always) # Important case - An object moving in a straight line covers *x<sub>1</sub>* distance in time *t<sub>1</sub>*, and *x<sub>2</sub>* distance in *t<sub>2</sub>* time. - Average speed = (*x*<sub>1</sub> + *x*<sub>2</sub>)/ (*t*<sub>1</sub> + *t*<sub>2</sub>) - Unequal time intervals with different speed (*V*<sub>1</sub> for *t*<sub>1</sub>, and *V*<sub>2</sub> for *t*<sub>2</sub>) - Average speed = (*V*<sub>1</sub>*t*<sub>1</sub> + *V*<sub>2</sub>*t*<sub>2</sub>) / (*t*<sub>1</sub> + *t*<sub>2</sub>) - Unequal distance covers with different speed (*x*<sub>1</sub> with *V*<sub>1</sub>, and *x*<sub>2</sub> with *V*<sub>2</sub>) - Average speed = (*V*<sub>1</sub>*V*<sub>2</sub> (*x*<sub>1</sub> + *x*<sub>2</sub>) / (*V*<sub>1</sub>*x*<sub>2</sub> + *V*<sub>2</sub>*x*<sub>1</sub>) - Equal distance cover with different speed - Average speed = 2*V*<sub>1</sub>*V*<sub>2</sub> / (*V*<sub>1</sub> + *V*<sub>2</sub>) - Travel half time with speed *V*<sub>1</sub>. Another half time with speed *V*<sub>2</sub>. - Average speed = (*V*<sub>1</sub> + *V*<sub>2</sub>) / 2 # Half distance with speed *V*<sub>1</sub>. In another half distance, half time with *V*<sub>2</sub> and half time with *V*<sub>3</sub>. - Average speed = 2*V*<sub>1</sub>(√2 + √3) / (2*V*<sub>1</sub> + *V*<sub>2</sub>+ *V*<sub>3</sub>) - Travel 3 equal distance with *V*<sub>1</sub>, *V*<sub>2</sub>, *V*<sub>3</sub> respectively. - *V<sub>avg</sub>* = 3*V*<sub>1</sub>*V*<sub>2</sub>*V*<sub>3</sub> / (*V*<sub>1</sub>*V*<sub>2</sub> + *V*<sub>1</sub>*V*<sub>3</sub> + *V*<sub>2</sub>*V*<sub>3</sub>) # Acceleration - Rate of change of velocity. - *a*<sub>inst</sub> = *dv*/ *dt* = *d<sup>2</sup>x*/ *dt<sup>2</sup> * - *a*<sub>avg</sub> = Δ*v*/ Δ*t* = (*V*<sub>f</sub> - *V*<sub>i</sub>)/ *t* = ∫*a* *dt*/ *t* # Golden Rule - Integration = Differentiation - Integration = Differentiaion - Integration = Area under graph - Differentiation = Slope # Case 1 (Acceleration = 0) - *a* = 0 = *d*<sup>2</sup>*x*/ *dt<sup>2</sup> - Velocity = constant (uniform motion) - *V*<sub>inst</sub> = *V*<sub>avg</sub> - distance = *v* *t* # Case 2 (Acc = variable) - Non-uniformly accelerated motion - Then we will use differentiation and integration # Case 3 (Acc = constant) - Acceleration will be constant. - *d*<sup>2</sup> *x*/ *dt<sup>2</sup> = *a* - *v* *dt* = *a* *dx* - *v* = *v*<sub>0</sub> + *a* *t* # Motion with constant Acc. - Uniformly accelerated motion - *v* = *u* + *a* *t* - *s* = *u* *t* + 1/2 *a* *t*<sup>2</sup> - *v*<sup>2</sup> = *u*<sup>2</sup> + 2 *a* *s* - *V*<sub>avg</sub> = (*u* + *v*)/ 2 - *s* = (*u* + *a* *t*) *t*/2 - Distance covered in *n*th sec. - *S*<sub>nth</sub> = *u* + 1/2 *a* (2*n* - 1) - Transitional acc (*a<sub>t</sub>*) = *dv*/ *dt* # Important case - Angle between *v* and *a* is 180° - Speed decrease = -ve - *a* = *a*<sub>avg</sub> *cos* 180° - *a* = -ve - No change in direction - Angle between *v* and *a* is 0° - Speed increase - *a* = *a*<sub>avg</sub> *cos* 0° - *a* = +ve - No change in direction - Angle between *v* and *a* is 90° - Speed constant - direction will change # Object start moving from rest with constant acceleration - u = 0, *a* = constant - 1st sec: *S*<sub>1st sec: </sub> *S*<sub>2nd sec</sub>: *S*<sub>3rd sec</sub> = *x* : 3*x* : 5*x* - *S*<sub>1st sec: </sub> *S*<sub>2nd sec</sub>: *S*<sub>3rd sec</sub> = *x* : 4*x* : 9*x* # Velocity at Mid Point - *V*<sub>mid</sub> = √ *V*<sup>2</sup> + *u*<sup>2</sup> / 2 - *V*<sub>mid</sub> = √ *V*<sup>2</sup> + *u*<sup>2</sup> / 2 # Stopping distance (S) - *S* = *u*<sup>2</sup> / 2*a* - [ : *V* = 0 ] - *S* = *u*<sup>2</sup> / 2*a* # Rest to Rest Motion - Object start from rest - Constant accm *a* for time *t*<sub>1</sub>, and then retard with `β' & comes to rest in time *t*2' - Total time = *T* - *a* *t*<sub>1</sub> = β *t*<sub>2</sub> - *x*<sub>1</sub> = *a* *t*<sub>1</sub><sup>2</sup> / 2 - *x*<sub>2</sub> = β *t*<sub>2</sub><sup>2</sup> / 2 - *V*<sub>max</sub> = (β + *a*) *T* / (2 * √β*a*) # Ratio of time in equal distance - Valid when u = 0, acc = const. - *t*<sub>1</sub>:*t*<sub>2</sub>:*t*<sub>3</sub> = 1: (√2 - 1): (√3 - √2) - *t*<sub>1</sub>:*t*<sub>2</sub>:*t*<sub>3</sub> = 1: (√2 - 1): (√3 - √2) # Motion Under Gravity - Sign Conversion - Velocity: +ve↑ (upward motion) - Velocity: -ve↓ (downward motion) - Acceleration (g) : Always -ve - Displacement (s) : - +ve = final position is above initial position - -ve = final position is below initial position - Zero: final & initial position are at the same level. # Drop from height - *v* = *g* *t* - *v* = √2 *g* *H* - *s* = 1/2 *g* *t*<sup>2</sup> *T* = √2 *H*/ *g* - *V*<sub>avg</sub> = √*g* *H* - Time to cover half (*H*/2) =√*H*/ *g* # Ground to ground - *H*<sub>max</sub> = *u*<sup>2</sup>/ 2 *g* # Time to touch - *T*<sub>up</sub> = *T*<sub>down</sub> = *T*<sub>flight</sub> = 2 *u*/ *g* # If air resistance = `a' - *T*<sub>up</sub> = *u*/ (*g* - *a*) - *T*<sub>down</sub> = *u*/ (*g* + *a*) # Motion under gravity from some height (H) → - *H* = - *u* *t* + 1/2 *g* *t*<sup>2</sup> - *T* = *u* + √*u*<sup>2</sup> + 2 *H* *g* / *g* - *a* = + *g* # Graph # Position - Time graph - *x* - ---(x1,t1) - ---(x2,t2) - ----------- - **(0,0)** ----------| - ----------- - ----------- - ----------- - ----------- - ----------- - **t** - Slope = *dx*/ *dt* = velocity = *tan* θ - Velocity (at *t* = 0) → +ve and constant - Rest (V =0) - *V* = Slope = constant and +ve - Motion: start from 0 and constant velocity - V = +ve - *a* = +ve - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - **t** - V = increasing velocity - V = decreasing velocity - Retardation - --------- - -------- - -------- - -------- - -------- - -------- - Slope (V) = -ve and constant. # Velocity - Time graph - **V** - -------------------- - -------------------- - --------------------- - ----------- - ----------- - **(0,0)** -------- - -------- - -------- - -------- - -------- - -------- - -------- - -------- - -------- - -------- - **t** - Slope = *dv*/ *dt* = *a*<sub>instant</sub>. - Area = ∫*v* *dt* = displacement - Disp = *A*<sub>1</sub> - *A*<sub>2</sub> - Distance = *A*<sub>1</sub> + *A*<sub>2</sub> - **V** - -------------------- - ---------- - ----------- - ----------- - ---------- - ----------- - --------| - --------| - --------| - --------| - --------| - --------| - --------| - --------| - --------| - --------| - **t** - *V* = const - *a* = 0 - **V** - ---------- - ----------- - ----------- - ----------- - ---------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - **t** - *a* < 90° - Slope = *dv*/ *dt* = *a* - Velocity increase. - **V** - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - **t** - *a* = slope = increasing - Velocity increase - **V** - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - **t** - *a* = slope = decreasing - Velocity decrease - Slope = *a* = -ve, const. - 0 > 90° # Velocity - Position graph - **V** - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - --------| - --------| - *x* - Slope = *dv*/ *dx* - *a* = *v* *dv*/ *dx* - *a* = *v* *slope* - Slope = *a*/ *v* # *v*<sup>2</sup> = *x* (graph) - **V** - ----------- - ----------- - ----------- - ----------- - ----------- - ----------- - --------| - **x** - Slope = *dv*<sup>2</sup> / *dx* = *dv*<sup>2</sup> *dv* / *dx* *dv* - Slope = 2 *V* *dv*/ *dx* - Slope = 2 *a* # *a* - *t* (graph) - **a** - ----------- - ----------- - ----------- - --------| - --------| - **t** - Area under (*a* - *t*) = ∫*a* *dt* = Δ*v* - *V*<sub>f</sub> - *V*<sub>i</sub> = Area of graph - *V*<sub>f</sub> -*V*<sub>i</sub> = *A*<sub>1</sub> - *A*<sub>2</sub> # *a* - *x* (graph) - **a** - ----------- - ----------- - ----------- - --------| - --------| - **x** - Area = 1/2 *V*<sub>f</sub><sup>2</sup> - *u*<sup>2</sup>/ 2 # Relative Motion in 1-D - *V*<sub>AB</sub> = *V*<sub>A</sub> - *V*<sub>B</sub> - *V*<sub>AB</sub> = - *V*<sub>BA</sub> # Golden Rule - Same direction = Subtraction - Opposite direction = Addition # Ground - **XR** - ----> - **Xp** - ----> - **XPR** - ----> - **XRP** - ----> - *X*<sub>R</sub> = Position of 'R' from ground - *X*<sub>P</sub> = Position of 'P' from ground - *X*<sub>RP</sub> = Position of 'R' w.r.t 'P' - *X*<sub>PR</sub> = *X*<sub>P</sub> - *X*<sub>R</sub> - *V*<sub>PR</sub> = *V*<sub>P</sub> - *V*<sub>R</sub> - *V*<sub>PR</sub> = *V*<sub>Pg</sub> + (-*V*<sub>Rg</sub>) - *a*<sub>PR</sub> = *a*<sub>P</sub> - *a*<sub>R</sub> # Case 1 - *V*<sub>R</sub> = *V*<sub>P</sub> - *V*<sub>PR</sub> = *V*<sub>P</sub> - *V*<sub>R</sub> = 0 # Case 2 - *V*<sub>R</sub> > *V*<sub>P</sub> - *V*<sub>PR</sub> = *V*<sub>P</sub> - *V*<sub>R</sub> = - ve. - *V*<sub>RP</sub> = + ve # Case 3 - *V*<sub>R</sub> < *V*<sub>P</sub> - *V*<sub>PR</sub> = *V*<sub>P</sub> - *V*<sub>R</sub> = + ve. - *V*<sub>RP</sub> = - ve.