ME4091D Heat Engines Lab Record - Monsoon 2024-2025 PDF
Document Details
National Institute of Technology Calicut
2024
Tags
Summary
This document is a lab record for the ME4091D Heat Engines Laboratory during the Monsoon Semester of 2024-2025 at the National Institute of Technology Calicut. It lists planned lab experiments and their corresponding titles. The document is a laboratory record, not an exam paper.
Full Transcript
**ME4091D HEAT ENGINES LABORATORY** **Seventh Semester Mechanical Engineering** **Monsoon Semester 2024 - 25** **Name:..............................................** **Roll No.:............................** **LABORATORY RECORD** **Department of Mechanical Engineering** **NATIONAL INSTITUTE...
**ME4091D HEAT ENGINES LABORATORY** **Seventh Semester Mechanical Engineering** **Monsoon Semester 2024 - 25** **Name:..............................................** **Roll No.:............................** **LABORATORY RECORD** **Department of Mechanical Engineering** **NATIONAL INSTITUTE OF TECHNOLOGY CALICUT** CONTENTS ======== +-----------------+-----------------+-----------------+-----------------+ | Expt. no. | Title | Page | Marks | | ========= | ===== | ==== | ===== | | | | | | | | | no. | | | | | === | | +=================+=================+=================+=================+ | 1 | a\) Constant | | | | = | speed | | | | | performance | | | | | test on | | | | | Ambassador | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Constant | | | | | speed heat | | | | | balance test | | | | | on Ambassador | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | c\) Study of | | | | | ignition | | | | | system in SI | | | | | engines | | | +-----------------+-----------------+-----------------+-----------------+ | 2 | a\) Constant | | | | = | speed load | | | | | test on | | | | | Maruti 800 | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Morse test | | | | | on Maruti 800 | | | | | Engine | | | +-----------------+-----------------+-----------------+-----------------+ | | c\) Study of | | | | | IC engine | | | | | cooling | | | | | system | | | +-----------------+-----------------+-----------------+-----------------+ | 3 | a) Measurement | | | | = | of liquid | | | | | viscosity using | | | | | Redwood | | | | | viscometer | | | +-----------------+-----------------+-----------------+-----------------+ | | b) | | | | | Determination | | | | | of flash and | | | | | fire point | | | +-----------------+-----------------+-----------------+-----------------+ | | c) | | | | | Determination | | | | | of valve timing | | | | | of Ruston | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | d\) Study of | | | | | fuel systems | | | | | in petrol | | | | | engines | | | +-----------------+-----------------+-----------------+-----------------+ | 4 | a\) Constant | | | | = | speed | | | | | performance | | | | | characteristics | | | | | of Jawahar | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | b) Retardation | | | | | test on Jawahar | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | c\) Study of | | | | | fuel systems | | | | | in CI engines | | | +-----------------+-----------------+-----------------+-----------------+ | 5 | a\) Effect of | | | | = | cooling water | | | | | flow rate on | | | | | performance | | | | | of Kirloskar | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Study of | | | | | IC engine | | | | | lubrication | | | | | system | | | +-----------------+-----------------+-----------------+-----------------+ | 6 | a) Performance | | | | = | test on Kay | | | | | rotary | | | | | compressor | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Study of | | | | | dynamometers | | | +-----------------+-----------------+-----------------+-----------------+ | 7 | a) Performance | | | | = | test on | | | | | Centrifugal air | | | | | blower | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Study of | | | | | starting | | | | | systems in IC | | | | | engines | | | +-----------------+-----------------+-----------------+-----------------+ | 8 | a) Performance | | | | = | characteristics | | | | | of ELGI | | | | | reciprocating | | | | | compressor | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Study of | | | | | fuels and | | | | | fuel | | | | | properties | | | +-----------------+-----------------+-----------------+-----------------+ | 9 | a\) Constant | | | | = | speed load | | | | | test on Comet | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Heat | | | | | balance test | | | | | on Comet | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | c\) Study of | | | | | IC engine | | | | | intake and | | | | | exhaust | | | | | systems | | | +-----------------+-----------------+-----------------+-----------------+ | 10 | a\) Variable | | | | == | speed | | | | | performance | | | | | characteristics | | | | | of Ambassador | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | b\) Heat | | | | | balance test | | | | | at variable | | | | | speed on | | | | | Ambassador | | | | | engine | | | +-----------------+-----------------+-----------------+-----------------+ | | c\) Study of | | | | | two stoke and | | | | | four stroke | | | | | engines | | | +-----------------+-----------------+-----------------+-----------------+ **CERTIFICATE** **Certified that this is the bonafide record of the work done in the Heat Engines Laboratory, Department of Mechanical Engineering, National Institute of Technology Calicut by Mr./Miss...................................................., Reg. no....................., Batch........................., Semester & Year................................** **Faculty in-charge The HOD, MED** **Place:** **Date:** **Experiment No. 1(a) Date:** **CONSTANT SPEED PERFORMANCE TEST ON AMBASSADOR ENGINE** **Aim:** **To perform constant speed performance test on Ambassador engine and draw constant speed characteristics.** **Engine specification:** **BP : 13 hp** **Number of cylinders : 4** **Bore : 73.025 mm** **Stroke length : 88.39 mm** **Speed : 1500 rpm** **Firing order : 1,3,4,2** **Orifice diameter : 33 mm** **Dynamometer constant : 2000 kg/hp.min** **Maximum dynamometer load : 20 kg** **Method of cooling : water cooled** **Theory:** ![](media/image2.jpeg) **Formulae used:** 1. **B**ra**k**e **Power, BP =** [\$\\frac{\\text{WN}}{K}\$]{.math.inline}**\*0.746 (**k**W)** 2. **Maximum Load =**[\$\\text{\\ \\ \\ \\ }\\frac{K\*BP}{N}\$]{.math.inline} **Rated brake power (hp), Speed(rpm)** 3. **Velocity of air, v = C~d~\***[\$\\sqrt{2\\text{ghsinθ}}\$]{.math.inline} **Head of air column, h =** [\$\\frac{\\rho\_{\\text{water}}}{\\rho\_{\\text{air}}}\*\\frac{(h\_{w1} - h\_{w2})}{100}\$]{.math.inline} (m) **h~w~ = head of water column(cm)** **C~d~ = Discharge coefficient of orifice meter** θ = inclination of manometer ρ = density (kg/m^3^) 4. Mass flow rate of air,[ *m*~air~^.^]{.math.inline}= [*ρ*~air~]{.math.inline}**\*a\*v** **a = Cross sectional area of orifice (mm^2^), v= velocity of air(m/s)** 5. Theoretical air flow rate, [\$V\_{t} = \\left( \\frac{\\pi}{4}\*D\^{2}\*L\*\\frac{N}{120} \\right)\*\\text{k\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ }\$]{.math.inline}(m^3^/s) where D : bore (m) L : stroke length (m) N : engine speed (rpm) k : no. of cylinders 6. Actual air flow rate,[*V*~*a*~^.^]{.math.inline} = [\$\\frac{m\_{a}\^{.}}{\\rho\_{\\text{air}}}\$]{.math.inline} 7. **Indicated Power IP = FP + B**P 8. **Fuel Consumption,** [*m*~*f*~^.^ ]{.math.inline}**=** [\$\\frac{(v\_{\\text{cc}}\*\\ 10\^{- 6}\\ \*\\ \\rho\_{\\text{fuel}})\\ }{t\_{f}}\$]{.math.inline} **(kg/s)** 9. **Air-fuel ratio,** [*A*2) \* 60\] \* *k*]{.math.inline}......kg/hr Where A = [(*Π*/4)\**D*^2^]{.math.inline} **= cylinder area in m^2^** L : stroke length in m k : no: of cylinders - **I.M.E.P :** - **B.M.E.P :** - **Volumetric efficiency:** η~v~ = (ṁ~a~ )~act~ /(ṁ~a~)~th~\*100.............% - **Brake thermal efficiency:** [\$\\eta\_{\\mathbf{\\text{bth}}}\\mathbf{=}\\frac{\\text{B.P}\\mathbf{\*3600}}{\\mathbf{ṁf\*CV}}\\mathbf{\*}100\$]{.math.inline}.........% - **Indicated thermal efficiency:** [\$\\eta\_{\\mathbf{\\text{ith}}}\\mathbf{=}\\frac{\\text{I.P}\\mathbf{\*3600}}{\\mathbf{ṁf\*CV}}\\mathbf{\*}100\$]{.math.inline}.........% Where CV : calorific value of fuel in kJ/kg - **Mechanical efficiency:** η~m~ = B.P/I.P\*100.............% - **Air-fuel ratio:** **Expected graphs** 1. Mechanical efficiency, Indicated thermal efficiency, Brake thermal efficiency and Volumetric efficiency vs. B.P 2. BSFC, BMEP, IMEP, Air-fuel Ratio vs B.P **Procedure:** 1. Make sure that the following conditions are ensured a. Open the cooling water valves and ensure water flows through the engine. b. Check whether the lubricant level is within the limit. 2\. Start the engine and allow running on no load condition for a few minutes. 3\. Load engine by adding weights upon the hanger. 4\. Allow the cooling water in the brake drum and adjust it to avoid spilling. 5\. Allow the engine to run at this load for few minutes. 6\. Note the following readings 7\. Repeat the above procedure at different loads and take about 8 to 10 readings. 8\. Stop the engine after removing all weights on the hanger.. **Observation table:** +---------+---------+---------+---------+---------+---------+---------+ | **Sl** | **Load( | **h~w~* | **h~a~* | **t** | | | | | kg)** | * | * | | | | | **No** | | | | **(s)** | | | | | | **(cm)* | **(cm)* | | | | | | | * | * | | | | +=========+=========+=========+=========+=========+=========+=========+ | | **W** | **S** | **W-S** | | | | +---------+---------+---------+---------+---------+---------+---------+ | **1** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | **2** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | **3** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | **4** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | **5** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | **6** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | **7** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ | **8** | | | | | | | +---------+---------+---------+---------+---------+---------+---------+ **\ ** **Results table:** Sl No ma (kg/hr) mf (kg/hr) AFR T (N.m) BP (kW) IP (kW) BMEP (kPa) IMEP (kPa) BSFC (kg/kW.hr) ηvol % ηbth % ηith % ηmech % Theor-etical Actual 1 2 3 4 5 6 7 8 **Sample calculations:** **Graphs:** ![](media/image3.jpeg) **\ ** **Result:** **Inferences:** **\ ** **Experiment No. 4(b) Date:** **RETARDATION TEST ON JAWAHAR ENGINE** **Aim:** To conduct retardation test on four-stroke Jawahar diesel engine to determine the friction power. **Theory:** This test involves the method of retarding the rotation of the engine output shaft by cutting off the fuel supply. When the fuel supply is stopped suddenly, the retardation in engine speed is directly related to the frictional resistance. The engine is made to run at no load and rated speed. When the engine is running at steady state, the supply of fuel is cut off and simultaneously the time of fall in speeds by say 20%, 40%, 60% and 80% of the rated speed is recorded. The tests are repeated with 75% load on the engine. A graph connecting time for fall in speed (x-axis) and speed (y--axis) at no load as well as 75 % load conditions is drawn as shown below: ![](media/image16.png) **Formulae used:** 1. **Brake torque on drum :** 2. **Frictional torque :** 3. **Frictional power :** Where N : engine speed (rpm) **Expected graphs** RPM vs. retardation time at no-load and 75% load **Procedure:** 1\. Check the fuel and lubricating oil levels. 2\. Ensure that the cooling water supply valves are opened.\ 3. Now start the engine at no load condition. 4\. Measure the speed and then cut off the fuel supply using the cut-off valve. 5\. Note down the time for decreasing speed from 1500-1300, then 1500-1200 and so on up to 1500-800 rpm by using stop watch and tachometer. 6\. The above procedure is followed for 75% of maximum load. 7\. After the experiment, the engine is stopped by cutting off the fuel. 8\. The graphs are plotted and frictional torque and power are estimated using the formulae. **Observation table:** W = [ ] kg, S = [ ] kg, Applied torque T = [ ] N.m Sl. No Drop in speed (rpm) Time at no load, t~1~ (s) Time at 75% load, t~2~ (s) -------- --------------------- --------------------------- ---------------------------- 1 1500-1300 2 1500-1200 3 1500-1100 4 1500-1000 5 1500-900 6 1500-800 **Sample calculations:\ ** **Graph:** **Result:** **Inferences:** **Experiment No. 4(c) Date:** **STUDY OF FUEL SYSTEMS IN DIESEL ENGINES** **Introduction:** **Types of fuel injection systems:** - **Individual pump and nozzle system** - **Unit injector system** - **Distributor system** - **Common rail system** **Injector types:** - **Single hole injector** - **Multi-hole injector** - **Pintle type injector** - **Pintaux injector** - **Electronically actuated injectors (solenoid/piezoelectric type)** **1. Individual Pump and Nozzle System:** **2. Unit Injector System:** **\ ** **3. Distributor System:** **4. Common Rail System:** **\ ** **5. Injector Types:** **a. Single Hole Injector:** **b. Multi-hole Injector:** **\ ** **c. Pintle Type Injector:** **d. Pintaux Injector:** **\ ** **e. Electronically actuated injectors:** **\ ** **Experiment No. 5(a) Date:** **EFFECT OF COOLING WATER FLOW RATE ON PERFORMANCE OF KIRLOSKAR ENGINE** **Aim:** To determine the effect of cooling water flow rate on various performance parameters of a single cylinder Kirloskar diesel engine. **Engine specification:** **Experimental setup:** **The setup consists of a Kirloskar single-cylinder water-cooled four-stroke diesel engine, with fuel supply system and an air-box with a manometer attached. An alternator coupled to the engine is used to measure the engine load. Electric load is applied using 35 bulbs powered by the alternator. The cooling water flow rate can be varied using a valve and measured by noting down the time taken for collecting one litre of water in a measuring flask. The engine also has provision for measuring the exhaust temperature.** ![](media/image19.jpg) **Theory:** **The flow rate of cooling water has a direct impact on the heat loss from the engine to the coolant. This affects the in-cylinder thermodynamic state and combustion parameters, which is in turn reflected on the engine performance and emissions. The test is conducted at constant speed and load. It is important that sufficient time is allowed before taking a set of reading once the flow rate is varied.** **Formulae used:** - **Brake power:** Where, n : number of revolutions of energy meter disc t~1~ : time taken for 'n' revolutions (s) k : Energy meter constant = 1200 rev/kW-hr : Alternator efficiency = 75% - **Mass flow rate of Fuel:** Where, - **Actual mass flow rate of air :** Where , a : area of orifice = Π/4\*d^2^ , d =0.020 m C~d~ : coefficient of discharge = 0.6 = (h~w~\*ρ~w~)/(100\* ρ~a~)......(m) - **Theoretical mass flow rate of air :** Where L : stroke length (m) N : rpm c : number of cylinders - **Cooling water flow rate:** - **Specific fuel consumption:** - **Air fuel ratio :** - **B.M.E.P :** - **Volumetric efficiency:** - **Heat input** : Where, - **Brake thermal efficiency:** - **Heat carried by cooling water** : Where, **Graphs Required:** 1. (ṁ~a~)~act,~ **A/F,** ṁ~f~ **and bsfc vs.** **Cooling water exit temperature** 2. **Volumetric efficiency and** **Brake thermal efficiency vs.** **Cooling water exit temperature** **Procedure:** This test is to be conducted at constant load and constant speed. 1. Start the engine taking all the necessary precautions. 2. Allow the engine to run for few minutes at no load with full flow of water. 3. Wait for a few minutes till the outlet water temperature becomes steady. 4. Apply load on the engine by turning on the required set of light bulbs. 5. Note the manometer reading, cooling water inlet and outlet temperatures, exhaust gas temperature, time for 5 rotations of energy meter disc (t~1~), time for 10 cc fuel consumption (t~2~) and the time for water to fill the one liter container (t~3~). 6. Repeat the experiment for different flow rates of cooling water circulation by gradually closing the valve, keeping the load constant. 7. After the completion of experiment, remove the electric load by switching the bulbs off and then stop the engine. **Observation Table:** +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **Sl. | **Tim | **Tim | **Tim | **h~w | **h~a | **T~1 | **T~2 | **T~e | | No** | e** | e** | e** | ~** | ~** | ~** | ~** | xhaus | | | | | | | | | | t~** | | | **t~1 | **t~2 | **t~3 | **(cm | **(cm | **(^0 | **(^0 | | | | ~ | ~ | ~ | )** | )** | ^C)** | ^C)** | **(^0 | | | (s)** | (s)** | (s)** | | | | | ^C)** | +=======+=======+=======+=======+=======+=======+=======+=======+=======+ | **1** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **2** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **3** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **4** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **5** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **6** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **7** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **8** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ Sl.No ṁa (kg/hr) ṁf (kg/hr) A/F ṁw (kg/hr) B.P (kW) BMEP (kPa) BSFC (kg/kW-hr) Qin (kW) QCW (kW) ῃvol (%) ῃbth (%) 1 2 3 4 5 6 7 8 **Results Table:** **Sample calculations:** **\ ** **Graphs:** ![](media/image3.jpeg) **Result:** **Inferences:** **\ ** **Experiment No. 5(b) Date:** **STUDY OF IC ENGINE LUBRICATION SYSTEM** **Introduction:** **\ ** **Types of Lubrication Systems:** 1. Wet Sump Lubrication System. a. Splash lubrication system. b. Splash and pressure system. c. Pressurized lubrication system. 2. Dry Sump Lubrication System. 3. Mist Lubrication System. **1. Wet Sump Lubrication System:** **a) Splash lubrication system:** **\ ** **b) [Splash and pressure system](https://me-mechanicalengineering.com/various-lubrication-systems/#splash_and_pressure_lubrication_system):** **c) [Pressurized lubrication system](https://me-mechanicalengineering.com/various-lubrication-systems/#pressurized_lubrication_system):** **2) Dry Sump Lubrication System:** **3) Mist Lubrication System:** **\ ** **Experiment No. 6(a) Date:** **PERFORMANCE TEST ON KAY ROTARY COMPRESSOR** **Aim:** To conduct a performance test on 'KAY' rotary compressor and to obtain its operating characteristics. **Specification:** Type: Rotary, twin lobe, positive displacement compressor Cooling: Water circulation Size number: 76 Speed: 690 rpm Motor power: 11 kW (15 hp) [*C*~*d*~ ]{.math.inline} 0.6 Delivery pipe diameter: 76.38 mm Orifice diameter: 50 mm Energy meter constant (K): 200 rev/kWh Capacity: 4.585 m^3^/min at 82.736 kN/m^2^ **Theory:** **This is a rotary compressor consisting of two lobes attached to the driving shaft powered by the prime mover. These lobes are oriented at 90^o^ to one another. Thus, if one of the lobes is in horizontal direction, the other lobe will be positioned at 90^o^, i.e., in vertical direction. The air gets trapped from one end and, as the lobes rotate, the air is squeezed into a progressively diminishing volume, thus compressing it. The compressed air is then delivered to delivery line. Lobe compressor is used when high delivery volume is required at low pressure. As wear increases during the operation, the efficiency falls rapidly.* *The other positive displacement rotary compressors are vane compressor, scroll compressor, screw compressors, etc.** **Formulae used:** 1. Pressure of air in the orifice box, *p~a~*= [\$\\frac{\\rho\_{m}gh\_{a}\\sin\\theta}{100}\$]{.math.inline} (N/m^2^) Where *h~a~* = orifice manometer reading (cm); [*ρ*~*m*~]{.math.inline}= density of manometer liquid (kg/m^3^) 2. Density of air in the orifice box, [\$\\rho\_{a} = \\frac{p\_{a} + p\_{\\text{atm}}}{\\text{R\\ }T\_{a}}\$]{.math.inline} (kg/m^3^) Where, *R* = Characteristics gas constant (J/kg K); *T~a~*= Atmospheric temperature (*K*) *p~atm~* = Atmospheric pressure (N/m^2^) 3. Pressure head across the orifice, *H=* [\$\\frac{p\_{a}}{\\rho\_{a}\\text{\\ g}}\$]{.math.inline} (m) 4. Area of orifice, [\$a\_{0} = \\ \\frac{\\pi\\ }{4} \\times {d\_{0}}\^{2}\\ \$]{.math.inline}(m^2^) Where *d~o~*= diameter of orifice (m) 5. Discharge through orifice, *Q = C~d~*[×]{.math.inline}*a~o~*[\$\\ \\times \\sqrt{(2gH)}\$]{.math.inline} (m^3^/s) 6. Mass flow rate of air, [*ṁ*]{.math.inline}*= Q*[ × *ρ*~*a*~]{.math.inline} (kg/s) 7. Static delivery pressure, *p~d~ =* [\$\\frac{\\rho\_{m}\\text{\\ g}h\_{d}\\text{\\ Sinθ}}{100}\$]{.math.inline} (N/m^2^) Where *h~d~* = discharge pressure manometer reading (cm); [*ρ*~*m*~]{.math.inline}= density of manometer liquid (kg/ m^3^); *θ* = inclination of the manometer (degrees) 8. Cross sectional area of discharge pipe, *a~d~=* [\$\\frac{\\pi d\_{d}\^{2}}{4}\$]{.math.inline} (m^2^) Where *d~d~* = diameter of discharge pipe (m*)* 9. Density of air in the pipe, *ρ~d~=* [\$\\frac{p\_{d}\\ + \\ p\_{\\text{atm}}\\ }{R \\times \\ T\_{d}}\$]{.math.inline}(kg/m^3^) Where *T~d~* = discharge air temperature (K); *p~d~* = Static delivery pressure (N/m^2^) 10. Velocity of air in the pipe, *V~d~ =* [\$\\frac{\\dot{m}}{{\\rho\_{d}\\text{\\ a}}\_{d}}\$]{.math.inline} (m/s) 11. Dynamic pressure, *p~k~ = ρ~d~ V~d~^2^/2* (N/m^2^) 12. Absolute total delivery pressure, *p~T~ = p~d~+p~k~* (N/m^2^) 13. Total pressure head, *H~T~ =* [\$\\frac{p\_{T}}{\\rho\_{d} \\times g}\\ \$]{.math.inline}(m) 14. Output power of the compressor, *P~o~=*[\$\\frac{\\rho\_{a}\\text{\\ g\\ Q\\ }H\_{T}}{1000}\\ \$]{.math.inline}(kW) 15. Power input to the compressor, *P~i~=* [\$\\frac{3600\\ \\times n\\ \\times \\ \\eta\_{m}}{K\\ \\times \\ t}\$]{.math.inline} (kW) Where η~m~= efficiency of motor; n = No. of revolutions of energy meter 16. Overall efficiency, *η~o~=* [\$\\frac{Po}{Pi}\\ \\times 100\$]{.math.inline} (%) **Procedure:** 1. Check the oil level in the compressor. 2. Open the cooling water valve to the compressor. 3. Check the manometer liquid levels in both the manometers. 4. Keep all the weights on the relief valve to achieve maximum pressure range. 5. Open the discharge valve fully and start the compressor by switching on the electric motor. 6. Close the discharge valve gradually to the maximum pressure position, restricting the opening of valve (leaving a small opening). 7. After steady state condition is attained, note down the following readings: a. b. c. Time for 'n' revolutions of the energy meter disc and d. Temperature of the air in the discharge pipe 8. Change the discharge pressure by opening the valve slightly and note down the above mentioned readings. 9. Repeat the experiment for different pressures covering the entire range at almost equal intervals. 10. Stop the compressor after fully opening the discharge valve. 11. Note down the ambient pressure and temperature. **Graphs to be drawn:** - Discharge (m^3^/s) vs. Total pressure (N/m^2^) - Static delivery pressure (N/m^2^) vs. Total pressure (N/m^2^) - Power input (kW) vs. Total pressure (N/m^2^) - Compressor efficiency (%) vs. Total pressure (N/m^2^) **Observation and Results Table:** *p~atm~ = \_\_\_\_\_\_\_\_\_\_\_\_\_\_ T~atm~ = \_\_\_\_\_\_\_\_\_\_\_\_\_ n = \_\_\_\_\_\_\_\_\_\_* SI. No. 1 2 3 4 5 6 ---------------------------------------- --- --- --- --- --- --- Orifice Manometer (Left) (cm of Hg) Orifice Manometer (Right) (cm of Hg) h~a~ (cm of Hg) Discharge Manometer (Left) (cm of Hg) Discharge Manometer (Right) (cm of Hg) h~d~ (cm of Hg) t (s) T~a~ (K) T~d~ (K) p~a~ (N/m^2^) ρ~a~ (kg/m^3^) H~a~ (m) Q (m^3^/s) [*ṁ*]{.math.inline} (kg/s) p~d~ (N/m^2^) ρ~d~ (kg/m^3^) V~d~ (m/s) p~k~ (N/m^2^) p~T~ (N/m^2^) H~T~ (m) P~o~ (kW) P~i~ (kW) η~o~ (%) **Sample Calculations:** **\ ** **Graphs:** ![](media/image3.jpeg) **Result:** **Inferences:** **\ ** **Experiment No. 6(b) Date:** **STUDY OF DYNAMOMETERS** **Introduction:** **Types of Dynamometers:** 1. Absorption type dynamometers a. Mechanical dynamometer - Prony brake - Rope brake b. Hydraulic dynamometer c. Electric dynamometer - Electric generator / alternator - Swinging field DC - Eddy current 2. Transmission type dynamometers **1. Absorption type dynamometers:** **\ ** **2. Transmission type dynamometers:** **\ ** **Experiment No. 7(a) Date:** **PERFORMANCE TEST ON CENTRIFUGAL AIR BLOWER** **Aim:** To conduct a performance test on the centrifugal air blower and to obtain its operating characteristics. **Specifications:** Type: Centrifugal blower Speed: 2880 rpm Orifice diameter: 57 mm Discharge pipe diameter: 69 mm Motor power: 2.2 kW (3 hp) Coefficient of discharge: 0.6 Energy meter constant: 112 rev/kWhr **Theory:** A **centrifugal blower** is a mechanical equipment for moving air or other gases. It increases the speed of air stream using a rotating impeller. They use the kinetic energy of the impellers to increase the pressure of the air or gas stream which in turn moves them against the resistance, which is caused by ducts, dampers and other component. The extent of conversion of velocity head to pressure head is determined by the design of impeller vanes and casing (spiral or volute). Air enters the impeller axially and leaves radially. These blowers are used in transporting gas, in building [ventilation system](http://www.ventilationandfiltration.com/solutions-as-per-industry/automobiles-ventilation-solutions/)s and in central heating and cooling systems. **Formulae used:** 1. Specific weight of manometric fluid : [*Ƴ*~*m*~]{.math.inline}= [*ρ*~*m*~]{.math.inline} x g (N/[*m*^3^]{.math.inline}) [*ρ*~*m*~]{.math.inline}= mercury density (kg/[*m*^3^]{.math.inline}) g =acceleration due to gravity (m/s^2^) 2. Pressure of air in orifice, [*p*~*a*~]{.math.inline} = [\$\\frac{\\text{Sinθ\\.\\ \\ }Ƴ\_{m}\\text{\\.\\ \\ }h\_{a}\\ }{\\ 100}\$]{.math.inline} (N/m^2^) θ = inclination h~a~= orifice meter reading (cm) 3. Density of air in airbox[, *ρ*~*a*~]{.math.inline} = [\$\\frac{p\_{\\text{a\\ }} + p\_{\\text{atm\\ }}}{R \\times T\_{a}}\\ \$]{.math.inline}(kg/[*m*^3^]{.math.inline}) R= Characteristic gas constant (J/kg.K) [*T*~*a*~]{.math.inline} = air temperature (K) 4. Specific weight of air in airbox,[*Ƴ*~*a*~]{.math.inline}= [*ρ*~*a*~]{.math.inline} [×]{.math.inline} g (N/[*m*^3^]{.math.inline}) 5. Pressure Head across the orifice, [*H*~*a*~]{.math.inline}=[\$\\frac{p\_{a}}{\\rho\_{a}\\text{\\ x\\ g}}\$]{.math.inline} (m) 6. Discharge Rate, Q = C~d~[×]{.math.inline}a~o~[\$\\ \\times \\sqrt\[2\]{(2\\ g\\ H\_{a})}\$]{.math.inline} ([*m*^3^]{.math.inline}/s) [*C*~*d*~]{.math.inline} = coefficient of discharge a~o~ = orifice area (m^2^) 7. Mass flow rate, [*ṁ* = *ρ*~*a*~ × *Q*]{.math.inline} 8. Static Delivery Pressure, [*p*~*d*~]{.math.inline} = [\$\\frac{Sin\\theta\\ \\times \\ Ƴ\_{m}\\ \\times h\_{d}}{\\ 100}\$]{.math.inline} (N/m^2^) 9. Density of delivery air in pipe [*ρ*~*d*~]{.math.inline} = [\$\\frac{p\_{d} + \\ p\_{\\text{atm}}}{R \\times \\ T\_{d}}\$]{.math.inline} (kg/[*m*^3^]{.math.inline}) [*T*~*d*~]{.math.inline}= delivery air temperature 10. Velocity of delivery air in pipe, [*V*~*d*~]{.math.inline} = [\$\\frac{\\dot{m}\\ }{{a\_{p}\\ \\times \\ \\rho}\_{d}}\$]{.math.inline} (m/s) [*a*~*p*~]{.math.inline}= area of delivery pipe 11. Dynamic pressure, [*p*~*k*~]{.math.inline} = [\$\\frac{\\rho\_{d}\\ \\times V\_{d}\^{2}}{2}\$]{.math.inline} (N/m^2^) 12. Total pressure ,[*p*~*t*~]{.math.inline} = [*p*~*k*~+ *p*~*d*~]{.math.inline} (N/m^2^) 13. Total pressure head, H~T~ = [\$\\frac{P\_{T}}{\\rho\_{d} \\times g}\\ \$]{.math.inline}(m) 14. Output Power of Blower ,[*P*~*o*~]{.math.inline}= [\$\\frac{Ƴ\_{a} \\times \\ Q\\ \\times \\ H\_{T}}{1000}\$]{.math.inline} (kW) 15. Input Power to blower,[*P*~*i*~]{.math.inline} = [\$\\frac{3600\\ x\\ n}{K\\ \\times t}\$]{.math.inline} (kW) n = No. of revolutions of energy meter K = Energy meter constant (revs/kW-hr) t = time for n revolutions of energy meter (s) 16. Overall efficiency [*ƞ*~0~]{.math.inline} **=**[\$\\frac{P\_{0}}{P\_{i}}\\ \\times \\ 100\\ \\%\$]{.math.inline} **Procedure:** 1. Check the liquid level of both the manometers. 2. Close the discharge valve fully. Start the air blower by switching on the electric motor. 3. Open the discharge valve gradually to open position. 4. After the steady state condition is attained note down the following readings; i. Discharge pressure manometer reading, ii. Orifice manometer reading, iii. Temperature of air issuing from the orifice and iv. Time for 'n' revolutions of the energy meter disc. 5. Close the discharge valve partially to obtain the next discharge and repeat the observation for the new discharge. 6. Continue the experiment and take readings at different discharge values covering the entire range at almost equal intervals. 7. Switch off the electric motor after completing the experiment. **Observation Table:** SI. No. 1 2 3 4 5 6 ---------------------------------------- --- --- --- --- --- --- Orifice Manometer (Left) (cm of Hg) Orifice Manometer (Right) (cm of Hg) h~a~ (cm of Hg) Discharge Manometer (Left) (cm of Hg) Discharge Manometer (Right) (cm of Hg) h~d~ (cm of Hg) t (s) n T~a~ (°C) T~d~ (°C) **Graphs Required:** **\ ** **Results Table:** Sl. No. 1 2 3 4 5 6 ----------------------------- --- --- --- --- --- --- p~a~ (N/m^2^) ρ~a~ (kg/m^3^) ϒ~a~ (N/m^3^) H~a~ (m) Q~a~ (m^3^/s) [*ṁ*]{.math.inline} (kg/s) p~d~ (N/m^2^) ρ~d~ (kg/m^3^) V~d~ (m/s) p~k~ (N/m^2^) p~T~ (N/m^2^) H~T~ (m) P~o~ (kW) P~i~ (kW) η~o~ (%) **Sample Calculations:** **Graphs:** ![](media/image3.jpeg) **Result:** **Inferences:** **\ ** **Experiment No. 7(b) Date:** **STUDY OF STARTING SYSTEMS IN IC ENGINES** **Introduction:** **Types of Starting Systems and Components:** 1. Electric systems a. Starter motor b. Bendix drive c. Dyer drive 2. Mechanical cranking systems 3. Pneumatic systems 4. Hydraulic systems **1. Electric systems:** **\ ** **2. Mechanical cranking systems:** **3. Pneumatic systems:** **4. Hydraulic systems:** **\ ** **Experiment No. 8(a) Date:** **PERFORMANCE CHARACTERISTICS OF ELGI RECIPROCATING COMPRESSOR** **Aim:** To determine the performance characteristics of ELGI reciprocating compressor. **Specifications**: Type: Reciprocating positive displacement compressor No. of cylinders: 2 Model: TC 600 Speed: 900 RPM Motor power: 5.5 kW (7.5 hp) Pressure: 12 atm Reservoir capacity: 0.5 m^3^ Orifice diameter 22 mm Energy meter constant (K): 200 rev/kWh Low Pressure cylinder bore (D): 100 mm Low Pressure cylinder stroke (L): 85 mm High Pressure cylinder bore: 60 mm High Pressure cylinder stroke: 85 mm **Theory:** The compressor is a device which used to increase the pressure of air from low to high pressure using the external energy. The primary components of the reciprocating compressor system are the piston and cylinder arrangement, air filter, electrical motor, cooling fins, fan etc. In multistage compressor, air is compressed in several stages. The single cylinder is used to deliver up to 10 bar while 3 stages can deliver up to 100 bar. Positive displacement compressors are usually of the [reciprocating](https://www.merriam-webster.com/dictionary/reciprocating) piston type, in which the gas is drawn in during the suction stroke of the piston, compressed by decreasing the volume of the gas by moving the piston in the opposite direction, and, lastly, discharged when the gas pressure exceeds the pressure acting on the outlet valve. [Reciprocating compressors](https://www.britannica.com/technology/reciprocating-compressor) are useful for supplying small amounts of a gas at relatively high pressures. **Formulae used:** 1. Absolute delivery pressure, *p~d~ =p~2~+p~a~* (*N/m^2^*) Where *p~2~* = delivery gauge pressure (N/m^2^); *p~a~* = atmospheric pressure (N/m^2^) 2. Pressure ratio, [\$p\_{r} = \\frac{P\_{d}}{P\_{a}}\$]{.math.inline} 3. Density of ambient air, [\$\\rho\_{a} = \\frac{P\_{a}}{\\text{R\\ }T\_{a}}\\ \$]{.math.inline} (kg/m^3^) Where *R* = Characteristics gas constant (J/ kg K); *T~a~*= Atmospheric temperature (K) 4. Head across orifice, H = [\$\\frac{\\rho\_{m}\\ \\times \\ h\_{a}\\ \\times \\text{\\ Sinθ}}{100\\ \\times \\rho\_{a}}\$]{.math.inline} (m) Where *ρ~m~*= density of manometer fluid (kg/m^3^); *h~a~*= orifice manometer reading (cm) *θ* = inclination of manometer (degrees); *ρ~a~* = density of air (kg/m^3^) 5. Area of orifice, [\$a\_{0} = \\ \\frac{\\pi\\ }{4} \\times {d\_{0}}\^{2}\\ \$]{.math.inline}(m^2^) Where *d~o~*= diameter of orifice (m) 6. Free air delivered, *Q = C~d~*[ ×]{.math.inline} [\$a\_{0} \\times \\sqrt{2\\ g\\ H}\$]{.math.inline} (m^3^/s) Where *C~d~* = coefficient of discharge of orifice 7. Theoretical discharge, *Q~s~ =* [\$\\frac{\\pi D²L\\ N}{4\\ \\times \\ 60}\$]{.math.inline} (m³/s) 8. Volumetric efficiency, *η~vol~ =* [\$\\frac{Q}{Q\_{s}}\$]{.math.inline} *× 100* (%) 9. Power input to the compressor, *P~i~ =* [\$\\frac{3600\\ \\times \\ n\\ \\times \\ \\eta\_{m}}{K\\ \\times \\ t}\$]{.math.inline} (kW) 10. Power for isothermal compression, *P~iso~ =* [\$\\frac{p\_{a}\\ \\times \\ Q\\ \\times \\ \\ ln(p\_{r})\\ }{1000}\$]{.math.inline} (kW) 11. Power for adiabatic compressor, *P~ad\ =~ p~a~* [×]{.math.inline}*Q* [×]{.math.inline} [\$\\frac{\\left( {P\_{r}}\^{\\frac{\\gamma - 1}{\\text{Sγ}}} - 1 \\right)}{1000} \\times \\ \\frac{\\text{Sγ}}{\\gamma - 1}\$]{.math.inline} (kW) Where *γ* = ratio of specific heats of air; *S* = number of stages 12. Isothermal efficiency, [\$\\eta\_{\\text{iso}} = \\frac{\\ P\_{\\text{iso}}}{P\_{i}} \\times 100\$]{.math.inline} (%) 13. Adiabatic efficiency, [\$\\eta\_{\\text{ad}} = \\frac{\\ P\_{\\text{ad}}}{P\_{i}} \\times 100\$]{.math.inline} (%) **Procedure:** 1. Check the manometer liquid level. 2. Note the ambient pressure and temperature. 3. Open the discharge valve fully and start the air compressor by switching on the compressor motor. 4. Regulate the valve in the reservoir outlet so that the required pressure is maintained in the reservoir. 5. After the steady state condition is attained note down the following readings; i. Reservoir pressure, ii. Orifice manometer readings and iii. Time for 'n' revolutions of the energy meter disc. 6. Regulate the discharge vale and obtain the next required discharge pressure and repeat the test as before. 7. Conduct the test at least at six discharge pressures uniformly distributed from zero to the maximum pressure. 8. Switch off the compressor motor after completing the experiment. **Graphs required:** 1. Volumetric efficiency vs. pressure ratio 2. Isothermal efficiency vs. pressure ratio 3. Adiabatic efficiency vs. pressure ratio **\ ** **Observation and Results Table:** p~a~ = \_\_\_\_\_\_\_\_\_\_\_\_\_\_ ; T~a~ = \_\_\_\_\_\_\_\_\_\_\_\_\_; n = \_\_\_\_\_\_\_\_\_\_; [*η*~*m*~]{.math.inline} = \_\_\_\_\_\_ [ ] **S. No.** **1** **2** **3** **4** **5** **6** ----------------------------------------------- ------- ------- ------- ------- ------- ------- N (rpm) p~2~ (N/m^2^) p~d~ (N/m^2^) Orifice Manometer (Left) (cm) Orifice Manometer (Right) (cm) h~a~ (cm) t (s) p~r~ H (m of air) Q ([\$\\frac{m\^{3}}{s}\$]{.math.inline}) Q~s~ ([\$\\frac{m\^{3}}{s}\$]{.math.inline}) P~i~ (kW) P~iso~ (kW) P~ad~ (kW) η~vol~ (%) η~iso~ (%) η~ad~ (%) **Sample calculations:** **\ ** **\ ** **Graphs:** **Result:** **Inferences:** **Experiment No. 8(b) Date:** **STUDY OF FUELS AND FUEL PROPERTIES** **Introduction:** **Fuel Properties:** 1. **Density:** 2. **Viscosity:** **\ ** 3. **Flash and Fire point** 4. **Volatility** 5. **Cloud and Pour Point** **\ ** 6. **Calorific value** 7. **Cetane index** 8. **Auto ignition temperature** **\ ** **Experiment No. 9(a) Date:** **CONSTANT SPEED LOAD TEST ON COMET ENGINE** **Aim:** To conduct constant speed load test on a double cylinder diesel engine (Comet) and to plot the performance curves. **Engine specifications:** Type 4 Stroke engine ----------------------------------- ----------------- No. of cylinders 2 Brake power 10 BHP Speed 1500 rpm Bore 102 mm Stroke 110 mm Orifice meter diameter 20 mm Coefficient of discharge 0.6 Hydraulic dynamometer constant(K) 2000 kg/hp.min **Theory:** The performance of an engine is graphically represented by characteristic curves of various engine operating parameters. The characteristic curves are constructed from the data obtained during the actual test run of the engine. For the performance analysis of diesel engines two methods of testing being followed are (i) constant speed test and (ii) variable speed test. In constant speed test, the load is varied, but the speed is maintained constant in response to changes in the load. When the load on the engine increases its speed decreases and accordingly, the fuel supply has to adjusted to keep the engine speed constant. In a diesel engine the speed is normally kept constant by the adjustment of fuel rack by means of governor. **Procedure:** 1\. Estimate the maximum corresponding to the rated power and speed. 2\. Check the fuel supply, water circulation and lubricating oil in the oil sump. 3\. Start the engine and allow to run on idle speed for a few minutes. 4\. Load the engine in steps from zero to maximum load, while maintaining engine speed constant. 5\. Note down the following readings corresponding to each load: (i)load (ii) speed (iii) time for 20 ml fuel consumption and (iv) difference in heights of water in two limbs of manometer. 6\. After taking the readings, unload the engine, allow it to run for few minutes and then stop it. **Formulae used:** 1. Brake Power (BP) = [\$\\frac{W \\times N}{K}\$]{.math.inline} \* 0.746 (kW) K= dynamometer constant (kg/hp.min) 2. Indicated power (IP) = BP + FP (kW) where FP = friction power (kW), calculated by Willan's line method. 3. Fuel consumption rate ([*ṁ*~*f*~)]{.math.inline} **=** [\$\\frac{q \\times \\rho\_{\\text{diesel}} \\times \\ 3600}{t \\times 10\^{\\mathbf{6}}}\$]{.math.inline} kg/hr where, 4. Pressure head, H = [\$\\frac{H\_{w}}{\\rho\_{\\text{air}}} \\times 1000\$]{.math.inline} m of air where H~w~ = manometer reading (m of water) [*ρ*~air~]{.math.inline} = density of air (kg/[*m*^3^]{.math.inline}) 5. Actual mass flow rate of air [(*ṁ*~air~)~*a*~]{.math.inline} = [\${3600\\ x\\ C}\_{\\text{d\\ }}(\\sqrt{2\\text{gH}}{\\ )\\rho}\_{\\text{air}}\\text{\\ A}\$]{.math.inline} (kg/hr) where [*C*~*d*~]{.math.inline} = Coefficient of discharge for orifice A= Area of cross section of orifice ([*m*^2^]{.math.inline})[ ]{.math.inline} 6. Air fuel ratio = [\$\\frac{{({\\dot{m}}\_{\\text{air}})}\_{a}}{{\\dot{m}}\_{\\text{fuel}}}\$]{.math.inline} 7. Theoretical mass flow rate [(*ṁ*~air~)~th~]{.math.inline}=[\$\\ \\rho\_{\\text{air}}\\text{\\ x\\ }\\frac{\\pi D\^{2}}{4}L \\times n \\times \\frac{N}{60} \\times k \\times 3600\$]{.math.inline} ([*kg*/*hr*]{.math.inline}) Where k= Number of cylinders, D = Bore of cylinder (m) L = stroke (m) n = 1/2 for 4-stroke engine 8. Volumetric efficiency (η~vol~) = [\$\\frac{{({\\dot{m}}\_{\\text{air}})}\_{a}}{{({\\dot{m}}\_{\\text{air}})}\_{\\text{th}}} \\times 100\$]{.math.inline} 9. Brake thermal efficiency (η~bth~) = [\$\\frac{\\text{BP} \\times 3600}{{\\dot{m}}\_{f} \\times \\text{CV}}\$]{.math.inline} 10. Indicated thermal efficiency (η~ith~) = [\$\\frac{\\text{IP} \\times 3600}{{\\dot{m}}\_{f} \\times \\text{CV}}\$]{.math.inline} where CV = calorific value of diesel (kJ/kg) 11. Brake specific fuel consumption (BSFC) = [\$\\frac{{\\dot{m}}\_{f}\\text{\\ \\ }}{\\text{BP}\\ }\$]{.math.inline} [\$\\left( \\frac{\\text{kg}}{\\text{\\ kWhr}} \\right)\$]{.math.inline} 12. Indicated specific fuel consumption (ISFC) = [\$\\frac{{\\dot{m}}\_{f}\\ }{\\text{IP}}\$]{.math.inline} [\$\\left( \\frac{\\text{kg}}{\\text{\\ kWhr}} \\right)\$]{.math.inline} 13. Brake mean effective pressure (BMEP) = [\$\\frac{\\text{BP}}{\\left( \\frac{\\pi D\^{2}}{4}L \\times n \\times \\frac{N}{60} \\times k \\right)}\$]{.math.inline} (kPa) 14. Indicated mean effective pressure (IMEP) = [\$\\frac{\\text{IP}}{\\left( \\frac{\\pi D\^{2}}{4}L \\times n \\times \\frac{N}{60} \\times k \\right)}\$]{.math.inline} (kPa) 15. Mechanical efficiency (η~mech~) = [\$\\frac{\\text{BP}}{\\text{IP}} \\times 100\$]{.math.inline} % **Observation Table:** **N = [ ] rpm** Sl. No Load (kg) Manometer reading Time for 20 ml fuel consumption t (s) -------- ----------- ------------------- --------------------------------------- -------------------------------- -- h~1~ (cm) h~2~ (cm) H~w~ = (h~1~ -- h~2~) /100 (m) **1** **2** **3** **4** **5** **6** **7** **8** **Graphs Required:** 1\) Fuel consumption and A/F vs. Brake power 2\) η~bth~, η~ith~, η~mech~ and η~vol~ vs. Brake power 3\) BSFC and ISFC vs Brake power **Results Table:** Sl no. **1** **2** **3** **4** **5** **6** **7** **8** ---------------------------------------- ------- ------- ------- ------- ------- ------- ------- ------- Mass flow rate of fuel (kg/hr) Mass flow rate of air (kg/hr) BP (kW) IP (kW) Brake Thermal Efficiency (η~bth~ ) Indicated Thermal Efficiency (η~ith~ ) [*η*~vol~]{.math.inline}(%) [*η*~mech~]{.math.inline}(%) BSFC (kg/kW-hr) ISFC (kg/kW-hr) BMEP (kPa) IMEP (kPa) A/F Ratio **Sample Calculations:** **\ ** **\ ** **Graphs:** ![](media/image3.jpeg) ![](media/image3.jpeg) **Result:** **Inferences:** **\ ** **Experiment No. 9(b) Date:** **HEAT BALANCE TEST ON COMET ENGINE** **Aim:** To conduct heat balance test on double cylinder 4-stroke diesel engine and to prepare the heat balance sheet. **Engine specifications:** Type 4 Stroke engine ----------------------------------- ----------------- No. of cylinders 2 Brake power 10 BHP Speed 1500 rpm Bore 102 mm Stroke 110 mm Orifice meter diameter 20 mm Coefficient of discharge 0.6 Hydraulic dynamometer constant(K) 2000 kg/hp.min **Theory:** The overall performance of an engine is generally indicated by the heat balance sheet. Heat balance sheet is prepared by running the engine under steady state conditions and representing the amount of heat carried away by coolant, exhaust gas, brake power and unaccounted losses with respect to load/speed, under different operating conditions. The brake power developed by the engine is measured by means of dynamometer. The main components of the heat balance sheet are: - Heat equivalent to the brake power developed. - Heat carried away by the engine cooling water. - Heat carried away by the exhaust gas. - Unaccounted losses. **Procedure:** 1\. Estimate the maximum load to be applied. 2\. Check the fuel supply, water circulation in the water system and lubricating oil in the oil sump. 3\. Start the engine and allow it to operate at no load for a few minutes. 4\. Load the engine in steps from zero to maximum load. The engine speed is maintained constant by the governor. 5\. Note down the following readings: \(i) Load (ii) speed (iii) time for flow of a fixed quantity of a) fuel, b) engine cooling water and c) calorimeter cooling water, (iv) air inlet temperature, (v) engine cooling water inlet and outlet temperature, (vi) calorimeter cooling water inlet and outlet temperature, and (vii) exhaust gas temperature at a) engine outlet and b) calorimeter outlet. 6\. After taking the readings, unload the engine, allow it to run for few minutes and then stop it. **Formulae Used:** 1. **Total fuel consumption** where, 2. **Heat input** 3. **Brake Power** 4. where, T~w1~ = Inlet temperature of engine cooling water (^0^C) 5. **Heat carried by exhaust gas** 6. **Percentage of brake power :** [\$\\%\\mathbf{Q}\\text{BP}\\ = \\left( \\frac{\\mathbf{Q}\\text{BP}\\ }{Q\\text{ip\\ }} \\right)\*100\$]{.math.inline} 7. **Percentage of heat carried by cooling water :** [\$\\ \\ \\% Q\_{\\text{cw}} = \\left( \\frac{Q\_{\\text{cW}}}{Q\\text{ip\\ }} \\right)\*100\$]{.math.inline} 8. 9. **Observation Table: N = [ ] rpm** **Sl. No.** **1** **2** **3** **4** **5** **6** **7** **8** -------------------------------- ------- ------- ------- ------- ------- ------- ------- ------- **Load (kg)** T~in~ (^0^C) T~ex~ (^0^C) T~eo~ (^0^C) T~w1~ (^0^C) T~w2~ (^0^C) T~w3~ (^0^C) T~w4~ (^0^C) Fuel time, t (s) Engine coolant time, t~w1~ (s) Calorimeter time, t~w2~ (s) **Results Table:** +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **Sl. | **1** | **2** | **3** | **4** | **5** | **6** | **7** | **8** | | No.** | | | | | | | | | +=======+=======+=======+=======+=======+=======+=======+=======+=======+ | **Loa | | | | | | | | | | d | | | | | | | | | | (kg)* | | | | | | | | | | * | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **TFC | | | | | | | | | | (kg/h | | | | | | | | | | r)** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **m~c | | | | | | | | | | w~ | | | | | | | | | | (kg/s | | | | | | | | | | )** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **m~w | | | | | | | | | | ~ | | | | | | | | | | (kg/s | | | | | | | | | | )** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | [*m*~ | | | | | | | | | | ex~ | | | | | | | | | | x | | | | | | | | | | *c*~p | | | | | | | | | | ex~]{ | | | | | | | | | |.math | | | | | | | | | |.inli | | | | | | | | | | ne} | | | | | | | | | | **(kW | | | | | | | | | | /^o^C | | | | | | | | | | )** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | Q~ip~ | | | | | | | | | | **(kW | | | | | | | | | | )** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **Q~B | | | | | | | | | | P~ | | | | | | | | | | = | | | | | | | | | | BP** | | | | | | | | | | | | | | | | | | | | **(kW | | | | | | | | | | )** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | Q~cw~ | | | | | | | | | | **(kW | | | | | | | | | | )** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | Q~ex~ | | | | | | | | | | **(kW | | | | | | | | | | )** | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | \ | | | | | | | | | | [%**Q | | | | | | | | | | **BP] | | | | | | | | | | {.mat | | | | | | | | | | h | | | | | | | | | |.disp | | | | | | | | | | lay}\ | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **%** | | | | | | | | | | Q~cw~ | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | **%** | | | | | | | | | | Q~ex~ | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ | \% | | | | | | | | | | Q~ua~ | | | | | | | | | +-------+-------+-------+-------+-------+-------+-------+-------+-------+ **Graph Required:** Stacked plot of all percentage heat terms vs. BP **Sample Calculations:** **\ ** **Graph:** **Result:** **Inferences:** **Experiment No. 9(c) Date:** **STUDY OF IC ENGINE INTAKE AND EXHAUST SYSTEMS** **Requirements of Intake System:** **Intake Manifold:** **Air Filter:** **Intake Valve:** **\ ** **\ ** **Requirements of Exhaust System:** **Exhaust Valve:** **Silencer/Muffler:** **Emission After-treatment Systems:** **\ ** **\ ** **Manifold tuning:** **\ ** **Experiment No. 10(a) Date:** **VARIABLE SPEED PERFORMANCE CHARACTERISTICS OF AMBASSADOR ENGINE** **Aim:** **To conduct variable speed performance test on Ambassador Engine and determine performance characteristics for variable load constant throttle condition.** **Specification:** **BP : 13 hp @ 1500 rpm** **Number of cylinders : 4** **Bore : 73.025 mm** **Stroke length : 88.39 mm** **Firing order : 1,3,4,2** **Orifice diameter : 33 mm** **Dynamometer Constant : 2000 kg/hp.min** **Method of cooling : Water cooled** ![](media/image26.png) **Formulae used:** 1. **Brake Horse Power (BP) =** [\$\\frac{W\*\\ N}{k\\ }\$]{.math.inline}**\* 0.746**[(kW)]{.math.inline} **Where** [*W*]{.math.inline}**= Load reading from hydraulic dynamometer (kg)** [*N*]{.math.inline}**= Speed (revolution per minute)** [ k]{.math.inline}**= Dynamometer constant (kg/hp.min)** 2. **Mass of fuel consumed (**[\$\\dot{m\_{f}}\$]{.math.inline}**) =**[\$\\frac{x\_{\\text{cc}\\ }\*\\ \\ \\rho\_{\\text{fuel}}\*3600\\ }{10\^{6}\*t}(\\text{kg}/\\text{hr})\$]{.math.inline} **Where** [*t*]{.math.inline} **= time for consumption of x cc of the fuel (s)** [ ρ~fuel~]{.math.inline} **= density of fuel (kg/m^3^)** 3. **Actual mass flow rate of air(**[*ṁ*~*a*~]{.math.inline}**)=** [\$C\_{d}\*\\sqrt{2gh\_{a}}\*\\rho\_{\\text{air}}\*A\_{o}\*3600\\ \\ (\\text{kg}/\\text{hr})\$]{.math.inline} Where[ *C*~*d*~]{.math.inline}= coefficient of discharge for orifice meter [*h*~*a*~ ]{.math.inline}= equivalent height of air column (m) [*h*~*a*~]{.math.inline} = [\$\\left( \\frac{\\rho\_{w\*h\_{w}}}{\\rho\_{\\text{air}}} \\right)\$]{.math.inline} [ h~*w*~]{.math.inline} = height of water column in manometer (m) [ *ρ*~*w*~]{.math.inline}= density of water (kg/m^3^) A~o~ = cross-sectional area of orifice (m^2^) 4. Theoretical mass flow rate of air ([*ṁ*~*th*~]{.math.inline}) = [\$\\rho\_{\\text{air}}\*\\frac{L\*A\*N\*n\*K}{60}(\\ \\text{kg}/s)\$]{.math.inline} where L = Length of the stroke (m) A = Area of the piston (m^2^) N = Revolution per minute (rpm) n = Number of suction stroke per revolution = ½ for four stroke engines K = Number of cylinders 5. Volumetric efficiency ([*η*~vol~]{.math.inline}) = [\$\\frac{{\\dot{m}}\_{a}}{{\\dot{m}}\_{\\text{th}}}\$]{.math.inline} 6. Theoretical volume flow rate of air ([*v*~*s*~]{.math.inline}) = [\$\\frac{L\*A\*N\*n\*K}{60}\\ \\ (m\^{3}/s)\$]{.math.inline} 7. Air fuel ratio (A/F) = [\$\\frac{{\\dot{m}}\_{a}}{{\\dot{m}}\_{f}}\$]{.math.inline} 8. Frictional power (FP)\*\* (Morse /Motoring/Willan's line test at each speed) 9. Indicated Power (IP) = FP + BP (kW) 10. Brake mean effective pressure (BMEP) = [\$\\frac{\\text{BP}}{v\_{s}}\\ \\ (\\text{kPa})\$]{.math.inline} 11. Indicated mean effective pressure (IMEP) = [\$\\frac{\\text{IP}}{v\_{s}\\ }\\ (\\text{kPa})\$]{.math.inline} 12. Brake specific fuel consumption (BSFC) = [\$\\frac{{\\dot{m}}\_{f}}{\\text{BP}}\\ \\ (\\text{kg}/\\text{kWhr})\$]{.math.inline} 13. Indicated specific fuel consumption (ISFC) \*\*= [\$\\frac{{\\dot{m}}\_{f}}{\\text{IP}}\\ \\ (\\text{kg}/\\text{kWhr})\$]{.math.inline} 14. Brake thermal efficiency ([*η*~bth~]{.math.inline}) = [\$\\frac{BP\*3600}{{\\dot{m}}\_{f}\*CV}\$]{.math.inline} where CV = calorific value of fuel (kJ/kg) 15. Indicated thermal efficiency ([*η*~ith~]{.math.inline}) \*\* = [\$\\frac{IP\*3600}{{\\dot{m}}\_{f}\*CV}\$]{.math.inline} 16. Mechanical efficiency ([*η*~mech~)]{.math.inline}\*\* = [\$\\frac{\\text{BP}}{\\text{IP}}\$]{.math.inline} (Calculation of \*\*parameters are optional and depends on frictional power, if determined separately for different speeds) **Graphs required:** - [*ƞ*~ith~]{.math.inline}**,**[ *ƞ*~bth~ , *ƞ*~mech~, *ƞ*~vol~]{.math.inline} vs. speed (rpm) - **m~f~ , Air fuel ratio, BSFC** vs. speed (rpm) - BP, BMEP, IMEP vs. speed (rpm) **Procedure:** 1. Check fuel and lubrication level before starting the engine. 2. Calculate dynamometer reading in kg for 10 hp power output of the engine at a certain speed (say 1200 rpm) by above formula for brake power. 3. Apply the above load on the dynamometer and adjust the throttle valve opening to get the required operating speed. Once the engine operation stabilizes, fix the throttle opening. 4. Now for the fixed throttle opening, reduce the load, which will result in an increase in the speed. 5. Value of load at various speeds, manometer reading for flow rate of air and time required for x cc of fuel consumption are noted down for each operating condition. 6. With these values determine the performance parameters according to formulae given. **Observation table:** +-------------+-------------+-------------+-------------+-------------+ | **Sl.** | **Load, W** | **Speed, N | **Time for | **Manometer | | | | (rpm)** | \_\_\_\_ [ | reading** | | **No.** | **(kg)** | | ]{.underlin | [*h*~*w*~]{ | | | | | e} |.math | | | | | cc fuel |.inline} | | | | | consumption | **(**m) | | | | | , | | | | | | t (s)** | | +=============+=============+=============+=============+=============+ | **1** | | | | | +-------------+-------------+-------------+-------------+-------------+ | **2** | | | | | +-------------+-------------+-------------+-------------+-------------+ | **3** | | | | | +-------------+-------------+-------------+-------------+-------------+ | **4** | | | | | +-------------+-------------+-------------+-------------+-------------+ | **5** | | | | | +-------------+-------------+-------------+-------------+-------------+ | **6** | | | | | +-------------+-------------+-------------+-------------+-------------+ | **7** | | | | | +-------------+-------------+-------------+-------------+-------------+ | **8** | | | | | +-------------+-------------+-------------+-------------+-------------+ **Sample Calculations:** **\ ** **\ ** **Results Table:** Sl. No. Speed (rpm) BP (kW) FP (kW) IP (kW) mf $$(\frac{\text{kg}}{\text{hr}})$$ ṁa $$(\frac{\text{kg}}{s})$$ ηvol (%) BSFC $$(\frac{\text{kg}}{\text{kWhr}})$$ BMEP (kPa) ηbth (%) ISFC $$(\frac{\text{kg}}{\text{kWhr}})$$ IMEP (kPa) ηith (%) ηmech (%) 1 2 3 4 5 6 7 8 **Graphs:** **\ ** ![](media/image3.jpeg) **Result:** **Inferences:** **\ ** **Experiment No. 10(b) Date:** **HEAT BALANCE TEST AT VARIABLE SPEED ON AMBASSADOR ENGINE** **Aim:** **To conduct heat balance test on Ambassador Engine and prepare heat balance sheet for variable load constant throttle opening conditions.** **Formulae used:** 1. **Heat input due to combustion of fuel** [(*Q*~in~)]{.math.inline} **=** [*m*~*f*~]{.math.inline}**\* CV / 3600 (kW)** 2. **Heat equivalent of brake power** [(*Q*~BP~)]{.math.inline}**= BP (kW)** 3. **Heat Removed by Coolant** [(*Q*~*c*~)]{.math.inline}**=** [*m*~*w*~ \* *c*~pw~ \* (*T*~co~ − *T*~ci~)]{.math.inline} (kW) [*m*~*w*~]{.math.inline} **= mass flow rate of coolant water (kg/s) = 1/t~w1~** **t~w1~ = Time for 1 litre flow of engine cooling water (s)** [*c*~pw~]{.math.inline} **= Specific heat of water (kJ/kg.K)** [*T*~co~]{.math.inline}**= Coolant water temperature at outlet (^o^C)** [*T*~ci~]{.math.inline}**= Coolant water temperature at inlet (^o^C)** 4. **Specific heat capacity of exhaust gas(** [*C*~pex~)]{.math.inline} **=**[\$\\frac{m\_{\\text{wcal}}\*c\_{\\text{pw}}\*(T\_{\\text{wo}} - T\_{\\text{wi}})}{(T\_{\\text{ei}} - T\_{\\text{eo}})}\$]{.math.inline} [*m*~wcal~]{.math.inline} **= mass flow rate of water in calorimeter (kg/s) = 1/t~w2~** **t~w2~ = Time for 1 litre flow of calorimeter cooling water (s)** [*T*~wo~]{.math.inline}**= water temperature at outlet from calorimeter (^o^C)** [*T*~wi~]{.math.inline}**= water temperature at inlet to calorimeter (^o^C)** [*T*~eo~]{.math.inline}**= exhaust temperature at outlet from calorimeter (^o^C)** [*T*~ei~]{.math.inline}**= exhaust temperature at inlet to calorimeter = exhaust temperature at engine outlet (^o^C)** 5. **Heat removed by exhaust gas** [(*Q*~ex~)]{.math.inline}**=**[ *C*~pex~ \* (*T*~exi~ − *T*~exo~)]{.math.inline} **(kW)** [*T*~exi~]{.math.inline} **= exhaust gas temperature at inlet of manifold (engine outlet) (^o^C)** [*T*~exo~]{.math.inline} **= exhaust gas temperature at outlet of manifold (ambient) (^o^C)** 6. Unaccounted heat losses [(*Q*~un~)]{.math.inline} **=** [*Q*~in~ − (*Q*~BP~ + *Q*~*C*~ + *Q*~ex~)]{.math.inline} (kW) 1. Check fuel and lubrication level before starting the engine. 2. Calculate dynamometer reading in kg for 10 hp power output of the engine at a certain speed (say 1200 rpm) by above formula for brake power. 3. Apply the above load on the dynamometer and adjust the throttle valve opening to get the required operating speed. Once the engine operation stabilizes, fix the throttle opening. 4. Now for the fixed throttle opening, reduce the load, which will result in an increase in the speed. 5. Note down the values of load at various speeds, manometer reading for flow rate of air and time required for i) 1 litre flow of coolant water, ii) 1 litre flow of calorimeter water and iii) 10 cc of fuel consumption. 6. Record the water and exhaust gas temperatures at inlet and outlet of the calorimeter and those of the engine coolant water at inlet and outlet. Also note down the ambient temperature. 7. By heat balance calculate specific heat capacity of exhaust gas. 8. Determine the values of the heat released by combustion of the fuel, the heat carried away by the coolant and exhaust and heat equivalent of brake power. 9. With above calculate unaccounted heat losses. 10. Prepare a heat balance sheet with above information. **Graph required:** - **Stacked graph of BP, Exhaust gas heat loss, Coolant water heat loss and Unaccounted heat loss, all expressed as percentage of Q~in~ vs Engine speed** **Observation Table:** Ambient air temperature = [ ] ^o^C Sl. No. Speed (rpm) load (kg) Time (s) Temp of water in calorimeter (0C) Temp of exhaust gases in calorimeter (0C) Temp of coolant water (0C) 1 litre water from calorimeter 1 litre of engine coolant 10 cc of petrol in out in out in out 1 2 3 4 5 6 7 8 **Results Table:** Sl. No. Speed (rpm) Mass flow rate cpex (kJ/kg K) Qin (kW) BP = Qbp Qex Qc Qun water in calorimeter (kg/s) coolant water (kg/s) fuel (kg/hr) (kW) (%) (kW) (%) (kW) (%) (kW) (%) 1 2 3 4 5 6 7 8 **Sample Calculations:** **\ ** **Graph:** ![](media/image3.jpeg) **Result:** **Inferences:** **\ ** **Experiment No. 10(c) Date:** **STUDY OF TWO STROKE AND FOUR STROKE ENGINES** **Introduction:** **Working Principle of Four Stroke Engines:** **\ ** **Working Principle of Two Stroke Engine:** **\ ** **Comparison:** **Four stroke engine** **Two stroke engine** ------------------------ -----------------------