Maths Concept King PDF 2024 Edition

Summary

Maths Concept King, a bilingual study guide, is meant for competitive exams, covering arithmetic and advance math concepts. This 2024 edition will benefit students preparing for exams like CET, SSC, CGL, CPO, CHSL, CDS, and others.

Full Transcript

Symbol Table of Symbols (izrhdksa dh rkfydk) Appendix   implication Symbol Refer...

Symbol Table of Symbols (izrhdksa dh rkfydk) Appendix   implication Symbol Reference  negation, equivalence, relation = equal to ,  quantifier  not equal to {} set  identity  empty set, void set, null set  approximately equal to ! Factorial  congruent to i Imaginary unit r approaches, ray  Union Si  proportional to  Subset of < less than  Superset not less than  Intersection  greater than  Subset or equal to ap not greater than  Mean (average)  less than or equal to Conversion of Units  greater than or equal to Conversion of Length > much greater than 10 centimetres = 1 decimetre (dm) io ra  infinity 10 decimetres = 1 metre (m) at or  sigma (Summation) 10 metres = 1 decametre (dam) ic % percentage 10 decametres = 1 hectometre (hm) bl 10 hectometres = 1 kilometre (km) P + plus, positive Pu Conversion of Area – minus, negative  plus or minus 100 square millimetres = 1 square centimetre on an 100 square centimetres = 1 square decimetre a  b 100 square decimetres = 1 square metre pi  multiplication a  b 100 square metres = 1 square decametre am 100 square decametres = 1 square hectometre a  b g  division 100 square hectometres = 1 square kilometre Ch a / b 1 hectare = 10000 square metres Ga  therefore Conversion of Volume  since 1000 cubic millimetres = 1 cubic centimetre — line segment 1000 cubic centimetres = 1 cubic decimetre  acute angle 1000 cubic decimetres = 1 cubic metre  perpendicular 1000 cubic metres = 1 cubic decametre  parallel 1000 cubic decametres = 1 cubic hectometre  triangle 1000 cubic hectometres = 1 cubic kilometre rectangle Conversion of Capacity 10 millilitres = 1 centilitre square 10 centilitres = 1 decilitre logba logarithm (to base b) 10 decilitres = 1 litre log10a common logarithm 10 litres = 1 decalitre loge a or ln a natural logarithm 10 decalitres = 1 hectolitre  conjunction (and) 10 hectolitres = 1 kilolitre  disjunction (or) 1 Symbol Conversion of Weight Equivalents of Units 10 milligrams = 1 centigram Units of Lengths 10 centigrams = 1 decigram 12 inches = 1 feet (ft) = 0.3048 metres 10 decigrams = 1 gram (g) 3 feet = 1 yard (d) 10 grams = 1 decagram 1 yard = 0.9144 metres 10 decagrams = 1 hectogram 22 yards = 1 chain 10 hectograms = 1 kilogram (kg) 1 kilometre = 0.621 mile or 103 metres 100 kilograms = 1 quintal 1 mile = 1.6093 kilometres or 1760 yards 10 quintals or 1000 kg = 1 metric tonne 1 inch = 2.54 centimetres Conversion of Time 1 hectare = 2.471 acres 60 seconds = 1 minute 1 mile = 5280 feet 60 minutes = 1 hour Units of Area r 24 hours = 1 day 1 square feet = 144 square inches 7 days = 1 week = 0.0929 square metres Si 15 days = 1 fortnight 1 square metre = 1.196 square yards 28, 29, 30 or 31 days = 1 month 1 square yard = 0.836 square metres 12 months = 1 year 1 square kilometre = 0.3861 square miles 365 days = 1 year = 1000 hectares 366 days 10 years 25 years = = = 1 leap year decade silver jubilee ap 1 square mile 1 acre = = = 2.59 square kilometres 640 acres 4840 square yards n 50 years = golden jubilee = 4046.86 square metres t 60 years = diamond jubilee 1 hectare io = 10000 square meters ra at 75 years = radium jubilee or platinum jubilee ic 100 years = century bl P 1000 years = 10 centuries or Pu 1 millennium on an pi am g Ch Ga 2 Geometry Geometry (Line & Angle) (js k vkSj dks.k) Line and Angle (js[kk vkSj dks.k) L  Point () : Zero dimension figure or a circle with d d M zero radius. AB CD and EF is transversal line fcanq % 'kwU; vk;keh vkÑfr ;k 'kwU; f=kT;k okyk ,d o`ÙkA AB CD vkSj EF ,d fr;Zd js k gS  Types of point/fcUnq ds izdkj E (i) Collinear point/ljsa[k fcUnq 2 1 A B r 3 4 If 3 or more than 3 points lie on a line close to or Si far from each other, then they are said to be collinear. 6 5 C D 7 8 ;fn 3 ;k 3 ls vf/d fcanq ,d js[kk ij ,d nwljs ds fudV ;k nwj F fLFkr gks] rks os ljsa[k dgykrs gSA Corresponding angles @ laxr dks.k 1 = 5, 4 = 8 ap Ex. Point P, Q, R, S are collinear/P, Q, R, S ljsa[k fcanq gSA 2 = 6, 3 = 7 P Q R S Alternate Angles @ ,dkarj dks.k 3 = 5, 4 = 6 (ii) Non-collinear point/vljsa[k fcanq 4 + 5 = 180° n t 3 + 6 = 180° In 3 or more points are not situated on a straight io ra  Concurrent line/leorhZ js[kk at line, these all point are called non-collinears point. Three or more than three lines, which pass from ic ;fn 3 ;k vf/d fcUnq ,d lh/h js[kk ij fLFkr ugha gSa] rks ;s lHkh a single point is called concurrent lines. bl P fcanq vljsa[k fcanq dgykrs gSaA rhu ;k rhu ls vf/d js[kk,a] tks ,d fcanq ls gksdj xqtjrh gSa] leorhZ Pu Ex. js[kk,a dgykrh gSaA on  Line: (One dimension figure) line is a set of points an C having only length with no ends.   E F pi js k % (,d vk;keh vkÑfr) js k fcanqvksa dk ,d lewg gS ftlesa am A B dsoy yackbZ gksrh gS ftldk dksbZ var ugha gksrk gSA g  Line segment: A line with a fixed length. Ch G H D js k aM % ,d fuf'pr yackbZ okyh js kA Ga P Q  Linear pair angle/jSf[kd ;qXe dks.k  Ray: A line with uni-direction length. A B A linear pair is a pair of adjacent angle whose non-common sides are opposite rays. fdj.k % ,d fn'kk yackbZ okyh js kA ,d js[kh; ;qXe vklUu dks.kkas dk ;qXe gksrk gS] ftldh xSj mHk;fu"B  Parallel lines: two or more line that never intersects L  M Hkqtk,a foijhr js[kk gksrh gSaA lekukarj js k,¡ % nks ;k vf/d js k,¡ tks ,d nwljs dks dHkh ugha c° dkVrh gSaA L M  Transversal Line : A line which intersects y° x° (touches) two or more lines at distinct point is called transversal lines of the given lines. x + y = 180° fr;Zd js k % og js k tks nks ;k nks ls vf/d js kvksa dks vyx&vyx fcanq ij dkVrh (Li'kZ) gS] nh xbZ js k dh fr;Zd js k dgykrh gSA  Linear pair angle are supplementry.  Angle: inclination between two lines is called angle. 3 Geometry dks.k% nks js[kkvksa ds chp ds >qdko dks dks.k dgrs gSaA Types of Angles (dks.kksa ds çdkj) ABC =  A A  Acute Angle @ U;wu dks.k 0° <  < 90° B C B C A  Adjacent angles/vklUu dks.k  Right Angle @ ledks.k 90° AB  BC =90° Two angles are said to be adjacent if B C  Obtuse Angle @ vf/d dks.k A D Common A 1 90° 15 c2 = a2 + b2 r OR 7+15 > 12 OR 12 + 15 > 7 A III. Obtuse Angle Triangle @ vf/d dks.k f=kHkqt Si c b A c b B a C 1. Sum of any two sides is always greater than 3rd C a B side. ap fdUgha Hkh nks Hkqtkvksa dk ;ksx ges'kk rhljh Hkqtk ls cM+k gksrk gSA a+b > c C = largest @ C = lcls cM+k dks.k side c = largest @ Hkqtk c ¾ lcls cM+k c2 > a2 + b2 n t b+c > a io  sides of triangle : 11.7, 16.9, 23.4. which type of  c+a > b ra it is? at 2. Difference of any two sides is always less than f=kHkqt dh Hkqtk,¡ % 11.7, 16.9, 23.4. ;g fdl çdkj dk  gS\ ic 3rd side. Take ratio of sides 11.7 : 16.9 : 23.4 bl fdUgha nks Hkqtkvksa dk varj lnSo rhljh Hkqtk ls de gksrk gSA P 9 : 13 : 18 Pu  b > c–a 182 > 92 + 132  is obtuse angle triangle. b > a–c Pythagoras Triplets (ikbFkkxksjl f=kXkq.k@f=kd) on an   |c–a| < b < c+a A  pi  If 10, 17, x are sides of a , x integer c b am Then 7 < x < 27  x {8, 9, 10,.... 26} B a C g Ch 2 2 2 xmin = 8, xmax = 26 b =c +a (3,4,5), (5,12,13), (7,24,25), Ga xtotal = 19 values possible @ 19 eku laHko (8,15,17), (9,40,41), (11,60,61),  19 's possible @ 19 f=kHkqt laHko gSA (12,35,37), (16,63,65), (13,84,85), Possible values of x = 2×small side –1 (20,21,29), (28,45,53), (33,56,65),  2×10–1 = 19 (39,80,89), (36,77,85), (65, 72, 97), x ds laHkkfor eku ¾ 2×NksVh Hkqtk –1  2×10–1 = 19 (20, 99, 101) Relation between 3 sides of Triangle multiplication and division on these triplets will (f=kHkqt dh 3 Hkqtkvksa ds chp laca/) also result in triplets. I. Acute Angle Triangle @ U;wu dks.k f=kHkqt bu f=kd ij xq.kk vkSj Hkkx dk ifj.kke Hkh f=kd gksxkA (5,12, 13)  2 (10, 24, 26) A (3,4,5) (6,8,10), (9,12,15), (12,16,20), (15,20,25) b c Ex: 1 ? 3.5 3 C a B 12 3 7 Geometry 7 24 25  Vertically Opposite Angle @ ('kh"kkZfHkeq[k dks.k) ÷2 ÷2 ÷2 D A 3.5 12 12.5  3.5 3 , 12 3 , 12.5 3 Ex: 2 180– 180– 14 ? B C 3  2 = 13 2 2  Some other properties @ dqN vU; xq.k 21 7 ×2 7 ×3 7 × 13 = 7 13 Ex: 3 42 3 6  7  7  3  6 7  21 ++ = 3×360° – 180° = 900° ? r  A Si 18 7 6 7 3 3rd side = 6 7 × 21  9 = 6 7 × 12 = 12 21 B C 1 2 Ex: 4 1 + 2 = 180° + A ap 9.6 ? 9.6 : 18 ×1.2  If angles of a  are in A.P., middle angle is always 8 : 15 1.2 20.4 : 17  60°/ (;fn  ds dks.k lekarj Js.kh esa gS]a rks eè; dks.k ges'kk 60° 18  Exterior angle is equal to sum of opposite interior gksrk gS) n t angles. (a–d), a, (a+d) io  a–d+a+a+d = 180° ra ckgjh dks.k foijhr vkarfjd dks.kksa ds ;ksx ds cjkcj gSA at 3a = 180° A+B+C = 180° ic a = 60° A+B = 180° – C bl  A + C = 120° & B = 60° P A Pu A B C exterior angle at vertex C    60°– 60° 60°+ on an B C  D C pi sum of all exterior angles = 360° y° z° am lHkh ckgjh dks.kksa dk ;ksx = 360° x° A g B Ch Angle Bisector (dks.k f}Hkktd) B (internal @ vkarfjd) = 360° – (x+y+z) Ga  A E B (external @ ckgjh) = x°+y°+z° D  A C 36° B B 21° BE exterior angle bisector of ABC C x 19 BE ABC dk cká dks.k lef}Hkktd ° 2 + 2 = 180° D + = 90° = EBD  Angle between internal angle bisector and x° = 36° + 21° + 19° = 76° external angle bisector of an angle is 90°.  D C fdlh dks.k ds vkarfjd dks.k lef}Hkktd vkSj cká dks.k lef}Hkktd x°x2 b° x1 ds chp dk dks.k 90° gksrk gSA y2 BD is interior angle bisector of ABC a° y1 y° BD, ABC dk vkarfjd dks.k lef}Hkktd gS A B a+b = x+y 8 Geometry x1 + y1 = a° A x2 + y2 = b° x1 + x2 +y1+y2 = a+b h1 o x+y = a+b h2 h3  Altitude / Height / Perpendicular B C 'kh"kZ&yac @ ÅapkbZ @ yacor O = circumcentre @ ifjdsUæ The perpendicular drawn from the vertex of the Cevian (dsfo;u) triangle to the opposite side.  Cevian Any line which joins vertex to opposite f=kHkqt ds 'kh"kZ ls foijhr fn'kk esa hapk x;k yacA side. A dsfo;u dksbZ Hkh js k tks 'kh"kZ dks foijhr Hkqtk ls tksMr+ h gS A A Position of cevian r h h Si B C C D B D B C D E  A line that splits an angle into two equal angles. ap ,d js k tks ,d dks.k dks nks cjkcj dks.kksa esa foHkkftr djrh gSA AD, AE are cevians @ AD, AE dsfo;u gSa  ABC is scalene @ ABC fo"keckgq  gS A A n t io ra at B D E F C B C D AC > AB ic AD is the angle bisector of BAC, BD and DC need   B > C bl P not be equal  AD will be near to largest among B and C i.e Pu AD] BAC dk dks.k lef}Hkktd gS vkSj BD, DC dk cjkcj gksuk angle B and far from small angle C. vko';d ugha gS  AD, B vkSj C dks.k esa ls lcls cM+s B ds fudV gksxk vkSj on an Median (ekfè;dk) NksVs dks.k C ls nwj gksxkA pi  Line drawn from a vertex to opposite side which AE Angle bisector of A am divides the opposite side into equal parts. AE A dk dks.k f}Hkktd g fdlh 'kh"kZ ls foijhr fn'kk esa haph xbZ js k tks foijhr Hkqtk dks AF median i.e. BF = FC Ch leku Hkkxksa esa foHkkftr djrh gSA AF ekfè;dk ;kuh BF = FC Ga A  AD Altitude @ AD ÅapkbZ AE Angle bisector of A AE A dk dks.k f}Hkktd B C A D AD is the median of side BC. @ AD Hkqtk BC dh ekfè;dk gS BD = DC Perpendicular bisector (yac f}Hkktd) B D E C  A Perpendicular bisector is a line that bisects a line segment in two equal parts and makes an B – C DAE = angle of 90° at the point of intersection. 2 yac lef}Hkktd ,d js k gS tks ,d js k aM dks nks cjkcj Hkkxksa esa A DAE = – 90° + B foHkkftr djrh gS vkSj çfrPNsnu fcanq ij 90° dk dks.k cukrh gSA 2 9 Geometry A A B C  A = – – – +B 2 2 2 2 A B C B C  + + =90° 2 2 2 O B C B –C = – = A 2 2 2 BOC = 90° – 2  A+B+C = 180° A = 2(90°–BOC) A  In any quadrilateral bisector of A & B meet at P. fdlh prqHkqZt esa A o B ds lef}Hkktd P ij feyrs gSA C D r I P Si 2 C/ Q B/ 2 S B/2 C/2 R B C A B +C 180° – A B A = 180° – (B + C)  = C+ D ap 2 2 APB = 2  B  C  BIC = 180° –    A B  2  APB = 180° –     2 2 n t  180°  A  A C D = 180° –   = 90° + io APB =  ra  2  2 2 2 at A + B + C + D = 360° ic A  BIC = 90° + A B C D 360 2 bl    = =180° 2 2 2 2 2 P  Pu A  A C D B  180° –  2  2  =    2 2 on an Bisector of C and D meet at R pi I A + B am  DRC = 2 g B C P + R = 180° Ch S + Q = 180° Ga  PQRS will be a cyclic quadrilateral. PQRS ,d pØh; prqHkZqt gksxkA O  A E A BIC = 90° + 2 2  A D BOC = 90° – 2 AIO will be a straight line and bisect angle A. AIO ,d lh/h js k vkSj dks.k A f}Hkkftr gksxkA B C F BIC + BOC = 180° BICO will be a cyclic quadrilateral. A BEC = BICO ,d pØh; prqHkqZt gksxk 2 10 Geometry Area side properties (f=kHkqt dk {ks=kiQy) Area of triangle (f=kHkqt dk {ks=kiQy) h sinC =  h = bsinC 1 b  Area of  = × base × height 2 c b CsinB = bsinC  = 1 sinC sinB  dk {ks=kiQy = × vkèkkj × Å¡pkbZ 2 1 1 1 = acsinB = absinC = bcsinA A 2 2 2 r Side-Angle ratio of some triangles c b a+b+c s= (dqN f=kHkqtksa dk Hkqtk&dks.k vuqikr) Si 2 B a C  B Area of  = s s  a  s  b  s  c  45° 2 ap  In any ABC, AD  BC 1 A 45° C A n O t 1 io ra at 45° 45° 90° B C    ic D AB + OC2 = OB2 + AC2 2 bl sides  1: 1: 2 P Pu O is any point on altitude @ O ÅapkbZ ij dksbZ fcanq gS Sine Rule (T;k fu;e) B on an A 60°  pi a c am c b h g 30° Ch C b A Ga B C D a a:b:c = sin30° : sin60° : sin90° a b c = = = K (constant) 1 3 sinA sinB sinC : :1 2 2 a:b:c = KsinA : KsinB : KsinC a:b:c=1: 3 :2 a:b:c = sinA : sinB : sinC 1 B Area of ABC = × base × height 2 75° 1 Area of  = ×a×h a c 2 1 = ×a×csinB 15° 2 A C b h sinB =  h = CsinB c a:b:c= 3 –1 : 3 +1 : 2 2 11 Geometry C Length of Angle bisector (dks.k f}Hkktd dh yackbZ)  CD is angle bisector of BCA b 120° a CD, BCA dk dks.k lef}Hkktd gS C 30° 30° A c B a:b:c=1:1: 3 a b x Cosine Rule (dksT;k fu;e) B A  A m D n C x2 = ab – mn c b Exterior Angle bisector theorem r (ckã dks.k lef}Hkktd çes;) Si B a C A b2 + c 2 – a 2  cosA =  a2 = b2+c2 –2bc.cosA  AB DB 2bc  = ap AC DC c 2 + a 2 – b2 B cosB =  b2 = a2+c2 –2accosB C D 2ca  A a 2 + b2 – c 2 n cosC =  c2 = a2+b2 –2abcosC t io 2ab ra at Stewarts Theorem (LVhoVZ çes;)  C ic  180- B C bl D P Pu a b 1 x ArADB  AD  BD  sin  BD C=m+n 2 = = ArADC 1 DC on  AD  DC  sin 180    an B m n A 2 pi C  ftl ratio esa cevian base dks divide djsxh] Area Hkh a2n+b2m=x2c+mnc am mlh ratio esa divide gksxkA In isosceles triangle a = b If AD is median BD = DC g a2n+a2m = x2c + mnc Ch  Ar ADB = Ar ADC a2(m+n) = c(x2+mn) Ga  C D a2 = x2+mn x2=a2–mn Interior Angle bisector theorem (vkarfjd dks.k lef}Hkktd çes;) A AB BD  = AC DC A B   Ar ABC = Ar ABD AB  CD If AB  CD, same parallel line ds chp same base ij B C cus  dk Area cjkcj gksrk gSA D 12 Geometry Similarity of triangles (f=kHkqt dh le:irk) (~)  Similarity of triangles : Two triangles are similar  If two angle is same in a triangle then third angle if they have the same ratio of corresponding sides will be similar. and equal pair of corresponding angles. ;fn ,d f=kHkqt esa nks dks.k leku gSa rks rhljk dks.k Hkh leku gksxkA f=kHkqtksa dh le:irk % nks f=kHkqt le:i gksrs gSa ;fn mudh laxr A = D corresponding Hkqtkvksa dk vuqikr leku gks vkSj laxr dks.kksa dk ;qXe leku gksA B = E Angles C = F  Similarity of triangles : size may be different but shape should be same. A r f=kHkqtksa dh le:irk % vkdkj fHkUu gks ldrs gSa ysfdu vkÑfr D Si leku gksuh pkfg,A 50° 50° ~ 70° 60° 70° 60° E F ~ B C ap sides opposite to corresponding angles is called corresponding sides. laxr dks.kksa dh lEeq Hkqtk,¡ laxr Hkqtk,¡ dgykrh gSaA n t 4 4 ~ 2 2 io ABC  DEF ra at BC AC AB 2    (Property) ic 4 EF DF DE bl  Conditions of Similarity (le:irk dh 'krsZ)%&  In similar triangle ratio of each corresponding P length is equal. Pu 1. A-A (Angle-Angle) (dks.k&dks.k) le:i f=kHkqt esa çR;sd laxr yackbZ dk vuqikr cjkcj gksrk gSA ABC ~ PQR on an BC AC AB h1 Angle bisector1 median1    A P EF DF DE h2 = Angle bisector2 = median2 pi am r1 R1 perimeter of ABC = r = R = perimeter of DEF g B CQ R 2 2 Ch 2. S-S-S(Side-Side-Side) (Hkqtk&Hkqtk&Hkqtk) Ga 1 ×BC×h1 2 2 2 AB = PQ, BC = QR, AC = PR Area of ABC 2  BC   AC   AB  = = = = Area of DEF 1 ×EF×h2  EF   DF   DE  A P 2 = Ratio of square of corresponding length. B C q R laxr yackbZ ds oxZ dk vuqikrA Thales Theorem (FksYl çes;) 3. S-A-S(Side-Angle-Side) (Hkqtk&dks.k&Hkqtk)  If a line (DE) is drawn parallel to one side (BC) of B = Q AB = PQ, QR = BC triangle then it will divide other two sides in the A P same ratio. Hence AD : DB = AE : EC ;fn f=kHkqt dh ,d Hkqtk (BC) ds lekarj ,d js k (DE) haph tk, rks og vU; nks Hkqtkvksa dks leku vuqikr esa foHkkftr djsxhA vr% B C q R AD : DB = AE : EC 13 Geometry DE  BC ;fn D, AB dk eè; fcanq gS vkSj DE BC gS rks E, AC dk eè; fcanq gksxkA A Similar figures (le:i vkÑfr;k¡)   D E 90- 90-  90- B C   90-  ADE  ABC AD AE DE A = = r AB AC BC If AD : DB = 8:5 E  Si D area ADE 82 64 then  2  area ABC 13 169  ArADE 64 64 ap = = B C Ar DECB 169–64 105 A = common Convergence of thales theorem ABC = ADE =  (given) FksYl çes; dk vfHklj.k  3rd angle will also be equal @ rhljk dks.k Hkh cjkcj gksxk n t If D & E two points on AB and AC such that io  ABC  ADE ra AD AE at = then DE  BC  If we make a right angle triangle in an right angle DB EC triangle then big and small right triangle  are ic Mid point theorem (eè; fcanq çes;) always similar. bl P  The line segment in a triangle joining the mid ;fn ge ,d ledks.k f=kHkqt esa ,d ledks.k f=kHkqt cukrs gSa rks cM+k Pu points of two sides of triangle will be parallel to its vkSj NksVk ledks.k f=kHkqt ges'kk le:i gksrs gSaA third side and is also half of the length of third on an side. A pi f=kHkqt dh nks Hkqtkvksa ds eè; fcanqvksa dks feykus okyk js k aM mldh rhljh Hkqtk ds lekarj gksxk vkSj rhljh Hkqtk dh yackbZ dk vk/k Hkh gksxkA 90- am A D g 1 Ch ABC  EDC Ga 2 E 90-  D C B E 1  A B C  D, E mid points, AD = DB & AE = EC DE  BC BC ADE ABC, DE = 2 Ar ADE : Ar ABC = 1 : 4  B C Ar ADE : Ar DECB = 1 : 3 D  Convergence of mid point theorem C = common eè; fcanq çes; dk vfHklj.k A = ADC =  (given) If D is mid point of AB and DE BC then E will be  3rd angle will be equal ABC = DAC mid point of AC.  ABC DAC 14 Geometry  A B AO A1 A 4     OC A3 A2 O A1×A2 = A3×A4 A1 A4 =   A3 A2 D C A1, A 2, A 3 and A 4 are the areas of respective AB  CD triangles. AOB  COD A1, A2, A3 and A4 Øe'k% f=kHkqtkas ds {ks=kiQy gSA Proof:-  D C r y x 14 O 10 Si h1 h2 A B x and y is the heights of triangles. h1 10  h2 14 h1 : h2  5 : 7 ap Area of  = 1 2 × Base × height n 1 t Area of triangle A1 = × AO × x...(1) B io 2 ra at  1 Area of triangle A2 = × OC × y...(2) ic 2 D bl x Q P 1 Pu y Area of triangle A3 = × CO × x...(3) 2 Z A C P on 1 an Area of triangle A4 = × AO × y...(4) 2 pi AB  PQ  CD Multiply eq (1) and eq (2) am xy Z = x y 1  1  A1 × A2 =   AO  x    CO  y  g 2  2 Ch  z CP z AP By commutative property Ga  & y  AC x CA 1  1  z z CP + AP z z AC A1 × A2 =   CO  x    AO  y       =1 2  2  x y AC x y AC A1 × A2 = A3 × A4 Hence proved 1 1 1 Alternatively:- + = (Result) x y z D C In any quadrilateral (fdlh prqHkZqt esa) A3 – b 80° c 1 C A1  A2  D O A3 A4 a d A1 A2 O A4 A B [sin (180° – ) = sin] A B 15 Geometry 1 (In a trapezium the triangle formed on non-parallel A1 =  a  b sin...(1) sides have equal area) 2 (,d leyac prqHkwZt eas] vlekarj Hkqtkvkas ij cus  dk {ks=kiQy 1 cjkcj gksrk gSA) A2 = × c × d sin...(2) 2 K×K=a×b 1 K= A3 = × b × c sin...(3) ab 2 Medial Triangle (eè; dk f=kHkqt) 1 A4 = × a × d sin...(4)  A 2 [Multiply eq. (1) and (2) or (3) and (4)] P Q 1 1 × abcd sin2 = × abcd sin2 r 2 2 A1 × A2 = A3 × A4 Hence proved B C Si R In a trapezium (,d leyEc prqHkqZt esa) P, Q, R are mid points @ P, Q, R eè; fcanq gSa  D C a 1 Perimeter of  PQR = × perimeter of ABC 2 ap k k O 1 b Area of  PQR = × Area of ABC 4 n t A B io ra Ar  ADB = Ar  ACB at ic Common Area = AOB bl AOB ~ COD P Pu  Ar  AOD = Ar BOC on an pi am g Ch Ga 16 Geometry Congruency of triangle (f=kHkqt dh lok±xlerk) Congruency of triangle (f=kHkqt dh lok±xlerk) (iv) RHS (Right angle-hypotenuse-side)  Two triangles are called congruent if all three RHS (ledks.k&d.kZ Hkqtk) corresponding sides are equal and all the three A D corresponding angles are equal.  nks f=kHkqt lok±xle dgykrs gSa ;fn rhuksa laxr Hkqtk,¡ cjkcj gksa vkSj rhuksa laxr dks.k cjkcj gksaA B C E F  Congruency of triangle size and shape is same ADB  ADC r ABC  DEF AD  angle bisector of A @ AD dks.k dk  f}Hkktd Si f=kHkqt dh lok±xlerk vkdkj o vkÑfr leku gksrh gSA AD Median (ekfè;dk) ABC  DEF AD  bisector of BC A D AD All 4 centres lie on AD. ap A  90- - B C E F 90 n t Condition of congruency (lok±xlerk dh 'krZ) I io H G ra (i) SSS (side-side-side) Corresponding sides are at O equal. B C ic D SSS (Hkqtk&Hkqtk&Hkqtk) laxr Hkqtk,a cjkcj gksA bl  P P A D Pu  on an B C E F pi A B (ii) SAS (side-angle-side) Two side and angle C am between them is equal. g SAS (Hkqtk-dks.k-Hkqtk) Ch nks Hkqtk,a vkSj muds chp dk dks.k PCA  PCB cjkcj gksrk gSA PA = PB Ga P is any point A D Mass point geometry (æO;eku fcanq T;kfefr)   l1 l2 B C E F m1 m2 (iii) ASA (Angle-side-angle) Two angle and side between them is equal. Center of mass(nzO;eku dsUnz) ASA (dks.k&Hkqtk&dks.k) nks dks.k vkSj muds chp dh Hkqtk m1l1 = m2l2 cjkcj gksrh gSA m1 l 2 = m2 l1 A D  5m 7.2     B C E F 48 kg x kg Find x = ? 17 Geometry 48 7.2 100 A  x= kg = 33.3 kg x 5 3 7.8 m F E l1 l2 O 45 kg 72 kg B C D Find l1 = ? m 45 : 72 AF BD CE × × =1 5 : 8 FB DC EA l 8 : 5 OD OE OF   1 r ×0.6 AD BE CF 4.8 m Si AO BO CO   2  13  7.8 0.6 OD OE OF Ceva's Theorem (lsok dh çes;)  In ABC, AD, BE and CF are the cevians i.e. any ap line from vertex to opposite side. f=kHkqt ABC eas, AD, BE vkSj CF dsfo;u gSa ;kuh 'kh"kZ ls foijhr Hkqtk ij dksbZ js kA n t io ra at ic bl P Pu on an pi am g Ch Ga 18 Geometry Centre of Triangle (f=kHkqt ds dsUæ) Centres of Triangle P, AOB ds dks.k f}Hkktd ij dksbZ fcanq gS  PR = PQ  ID = IE = IF = r, ADI  AFI Incentre Orthocentre (H) A (I)  BIC = 90° + Centroid 2 Circumcentre (C) (G) B AIC = 90° + 2 r Incentre (I) (vUr%dsUæ) C AIB = 90° + Si  Incentre is the intersection point of all three 2 internal angle bisectors of ABC. abc  In ABC = Semi-perimeter (s) vUr%dsaæ ABC ds lHkh rhu vkarfjd dks.k lef}Hkktdksa dk 2 çfrPNsnu fcUnq gSA  Area ABC =  = r × s ap Δ r= A s Area Inradius = Semiperimeter n t D io ABC = BIC + AIC + AIB (Area) ra at c r F r a  b  c 1 1 1 ic I b = ar + br + cr = r   =r×s 2 2 2  2  bl r Incircle P  If altitudes h1, h2, h3 are given then Pu B E ;fn Å¡pkbZ h1, h2, h3 nh xbZ gks rks C a on an 1 1 1 1 = + + (Result) r h1 h 2 h 3 pi Centre of incircle is called incentre and its radius is called inradius (r)  A am var%o`Ùk ds dsaæ dks var%dsaæ vkSj bldh f=kT;k dks var%f=kT;k (r) dgk g Ch tkrk gS c b F E Ga  Incentre always lies inside the triangle. I var%dsaæ ges'kk f=kHkqt ds vanj fLFkr gksrk gSA B C  Incentre is equidistant from all three sides of D triangle. a var%dsUæ f=kHkqt ds rhuksa vksj ls lenwjLFk gSA AI b  c  ID a A BI c  a  IE b R CI a  b  IF c P Proof:- AI AC b In ACD,  ...(i) B ID CD CD O Q AB BD P is any point on angle bisector of AOB In ABC,  AC CD 19 Geometry c BD P+B – H 

Use Quizgecko on...
Browser
Browser