Math Notes 7.3 Simplifying and Solving Exponential Functions 2024 PDF
Document Details
Uploaded by StrikingMiami
Memorial University of Newfoundland
2024
Tags
Summary
These notes cover simplifying and solving exponential functions. Examples and practice problems are included, focusing on different exponent rules and properties.
Full Transcript
Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook Section 7.3: Simplifying and Solving Exponential Expressions Simplifying Exponential Expressions (Using Law of Exponents) Review: Exponent Properties A. Negative Exponents a)...
Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook Section 7.3: Simplifying and Solving Exponential Expressions Simplifying Exponential Expressions (Using Law of Exponents) Review: Exponent Properties A. Negative Exponents a) b) c) Y ( = (1) 62. B. Zero Exponent a) b) 5 I C. Multiplication Rule a) 226 1 Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook D. Quotient Rule (5x 1) - - (3x - y a) 2 + 3 22x E. Power Rule = a) + 3 215x F. Rational Exponents and a) * 16 2 Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook Simplify Exponential Expressions write as a single base Example 1 Write the following expression with a single base. (a) [15x 21]5 - ↳ & L [(22)3x(23)3x +] - 7 5 25x - [26x 29x 21] - &. (b) 2x + 2 (53)x +1 2x 7 (52(3 g3x & 5 - -. - &. y (52)x +2 52x + + 3 gb 4x 33x -7 33x - - 2.. = 5 52x + y = + 2 5 (c) + 2x (23)x +2 (25)2x 14x + a.. = 2 */2 22x (13) x/2. 2 X b s 23x 2/0x + - L · + · 224 23x/2 =. 3 Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook Your Turn (c) ** F (2) (32(x +. (22)x 5 + 2 +Y (24* · (23)*. 22x E ((23)2)x +1 + y 22x I x 3+. + 3 = 12x + Y F 22x · 23. 2 +2 +y 22x 22x + y - · = E - - 3& E = 2 > + b 24x = 2 + E - 4 Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook Solving Exponential Equations Common Base Rule if and only if Example: +5 (3)x 3 = 3X + 15 3 3x + 15 = 4 3x = - 1) x - = 11/3 Common Exponent Rule < if and only if Example: (4 +) - 7 x = - 7 7 x - = y x = y Example 1 Solve for x (using like bases) (a) (b) T I 23x = 24 zx +2 = 9 3x = b x+2 3 = 32 x = 2 x +2 = 2 x = 0 5 Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook (c) d) ↑* + (22)2x (23)2x 3 9 (27)x - - = = X- = 9 (344x = 27 +x 2bx - 2 = X- = 38x = 27 4x 6x 9 E = - - 2x = - 9 38x (33) = x = I 2 38x 33 = x = 3 16X = 3x - 3 e) 13X = - 3 + x 3 (23(3x + (22)5x - = /3 = ((24)4)2x + 9x + 3 10 X-2 L = L - 32X - 16 L 10X -2 - 23x + 19 = 2 L 10X 2 23x + 19 - - = 21 = 33X = x 6 Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook (f) (3xte x (3 3) - = 3x - b y - 2x + 3 = 3 zX - 3x - 6 1x +5 - 3 = 3 1x + 5 = - 3x - b 4x = - 1) x = - I T (g) 2 [q)3x - x 49(7) = 2 ( +3)3x - (7)(7 = ) = Y 72-1x = 7 5 2 /X - = - 4 - S 6x 6 - 3x = - y 10 = 9X = x 7 Lesson 7.3 Simplifying and Solving Exponential Functions_2024.notebook h) Solve where ((32) tancy I co - COSX +0 = 3 / = CO - x + IL 32 E z 25, x - / 3 = 3 25inx = - Sinx = I 2 > Op = N R3 : F + = T 11 Q4 : 2 F - = To / i) Solve where (24)sinx = + sin x costx = 2 2 sink cosx 2 + 2451nx - = 4Sinx - 205x 1+ sinx six + 20 I = = cost = 1- si 4sinx - (1-sinx) = I + sinx 45inx-1 + / S sinx-1- Sin =0 =0 4sinx 2 & - + sinx = 2 PR = M↳ R1 : G Re : I = 5 8 T