Linearized G102 Watershed Flood NOS Week PDF
Document Details
Uploaded by HopefulMeteor
Tags
Summary
This document outlines weekly learning materials for a course, likely in earth science or environmental studies. The topics covered include readings, activities, and videos pertaining to processes like weathering, erosion, and deposition. It also involves exploring the concept of watersheds and flooding.
Full Transcript
1. R eading s M ustdo: V ideosin m odulesand som e sortof interaction ( w it h A I ortake not es) T hisreading on the Concord L absw e w illbe doing , uncert aint...
1. R eading s M ustdo: V ideosin m odulesand som e sortof interaction ( w it h A I ortake not es) T hisreading on the Concord L absw e w illbe doing , uncert aint y and risk S hould do: ions 153-. S ect (Erosion/weathering) , 1 1.5 Surface water from An Introduction to Geology N ice t o do: Sections 1. , 1.2, 1.5, and1.6 inAn Introduction toGeology FloodingandR ecurrence Intervals St ream G aug es A ct ivit ies: L ab: F lood R isks& Im pact sM odule from Concord Consort ium e: https:learn. W ebsit / concord.org/geo-flood Thisweek, you’ll dive intoanonline labontheConcord Consortium website: Flood Risks& Impacts. WithEarth’ sclimate changing,extreme weather events arebecoming morefrequent around theglobe.In someareas, this meansmoreintense rainanda higherriskof flooding—one of themostdangerous natural hazards humansface. In this module,you’ll workwith theFloodExplorermodelandstudy real-worldcasesto examinethefactors thataffectflood riskandimpact.You’ll explore scientific factorslike precipitation, topography , permeability , andthewatertable, aswellassocial factors, including population density andinfrastructure. Throughthese investigations, you’ll gain insight into how flooding varies onbothlocalandregional scales. Finally , you’ll look at theeffectof rising global temperatures onfuture floodrisks. By the endof thismodule,you’ll beable toanswertheguiding question: How will flood risks andimpacts changeover the next 10 years? D iscussion: Yourow n Illusion of E x planat ory D ept h E x perim ent In ourweeklydiscussion, you’ll doyourown Illusion of Explanatory DepthExperiment. How willyourfriends andfamilydo? In L ive Zoom Class In ourlive Zoom class, I w illint roduce m y self and y ou’llhave a few act ivit iest o g etto know y our classm ates. W e w illw orkon a m apping act ivit y thatinvit esy ou t o ex plore and ident ify t he w atershed y ou live in, asw ellasw hich nat ive tribestradit ionally lived and used t he land y ou now live on. O urindividualt askw illbe t o screenshota m ap show ing t he t ribesthatt radit ionally used t he land asw ellasident ify ing y ourw atershed ( and producing a screenshot ). V ideos Transcript : W eat hering , E rosion, and D eposit ion [P art1 ]- YouTube ht tps: / / w w w. y out ube. com / w at ch? v= ew j 6 2 9 B4 O e8 ht t ps: / / docs. g oog le. com / docum ent / d/ 1 W cO Zt Q rm G H k2 1 t u5 A y U T IR A K g bA 4 O 8 CiH BeCy TO S t 1 A / edit ? usp= sharing Transcript : ( 0 0 : 0 0 ) in t hisvideo w e' re g oing t ot alkaboutw eat hering erosion and deposit ion let ' sbeg in w it h som e sim ple definit ionsof t hese t hree term sso w eat hering in t hissense ist he breaking dow n and chang ing of rocksasa resultof ex posure t ot he environm entso if I have a larg e slab of g ranit e in nat ure and overhundredsand t housandsof y earst he w avesof t he ocean are crashing ont ot hatrockinevit ably t he rockisg oing t o breakdow n int o sm allerpiecesitm ig htg et rounded outit ' sessentially g oing t o chang e asa resultof ex posure t o it s ( 0 0 : 3 3 ) environm entand t hat' sjustone ex am ple of w hatw eat hering can be t here are lot sof differentt y pesand w e' re g onna lookatt hose in t hisvideo aft errocksare w eat hered t hey are oft en eroded and t hatprocesserosion ist he transport ation of the sedim ent st hathave been broken dow n by w eat hering so if y ou im ag ine little bitsof g ranite being pounded off of t hatslab because it ' sbeing hitby w ave aft erw ave and t hen being carried aw ay in t he ocean currentt oa differentlocat ion w ellthe actof carry ing t hose lit tle chunksof ( 0 1 : 0 8 ) g ranit et hose w eat hered sedim ent sfrom pointA t o pointB t hatiserosion erosion isall aboutm ovem entand t ransport ation the finalpartof t he processiscalled deposit ion so deposit ion ist he dropping off of t he sedim ent st hathave been w eat hered and eroded so t o cont inue m y ex am ple if t hose lit t le tiny bitsof g ranit e broken off and w eat hered by t he w aves and t hen eroded ort ransport ed by t he ocean current sevent ually g etdeposit ed on a coast line m any hundredsof m ilesaw ay t hatisdeposit ion t he dropping off and ( 0 1 : 4 3 ) so t o kind of sum m ariz e t hisand som e of t he ot herkey ideasw e' re g oing t o use t his surface processflow chartw hich isavailable on t he w ebsit e and w e' llbeg in by filling in t he t hree box eson t he t op t o kind of sum m ariz e t hese t hree m ain processesst arting w it h w eat hering w hich w e know isbreaking a partof rockand t hen erosion w hich ist he transport at ion of t he sedim ent sand finally deposit ion ort he dropping off of t hose sedim ent sso anot herw ay t ot hink aboutt hist hisisj ustkind of a quickanalog y t hat ( 0 2 : 1 4 ) and ithelpsm e rem em bert he differencesbet w een t hem ist hatw eat hering islike kind of like nat ure' sham m errig htit sm ot hernat ure' sw ay of t aking big bit sof rockand sm ashing t hem int o sm allerbit sorchang ing t hem int o som et hing new and t hen erosion in t hisex am ple w ould be som et hing like a dum p t ruckora pickup t ruckcarry ing allt he little bitsand piecesbroken apartby w eat hering from one locat ion t o anot herand t hen deposit ion ist hatdum p t ruckkind of opening it st ailg at e and dum ping every t hing outint o a big pile on t he ( 0 2 : 4 5 ) g round - t hat ' sdeposit ion so t hat ' sjustkind of a helpfullit tle w ay t o rem em bert he difference isbet w een t hese t hree part sof t hislarg erw eat hering erosion deposit ion processnow fort he restof t hisvideo w e' re really g oing t o focuson w eat hering specifically and w e' re g oing t o st artby looking att he t w o m ain t y pesof w eat hering and t he firstex am ple w e' re g onna lookatis called phy sicalw eat hering now I j ustw antt o pointoutt hatphy sicalw eat hering isalso oft en know n asm echanicalw eat hering okay so phy sical ( 0 3 : 1 7 ) and m echanicalare t he sam e t hing and t hisw ould be t he breakdow n of rocksint o sedim ent sand t he key ist hatit ' sw it houtchang ing t heircom posit ion so t hisislit erally chang ing siz e and shape of Iraq so t he w avescrashing ag ainsta boulderand breaking itint o sm all pebblest hatm ig htbe rounded outt hat ' sphy sicalorm echanicalw eat hering butit ' sst illg rant ed it ' snotchang ing t he rockorw hatit ' sm ade of butt hatdoesalso happen in nat ure and w e have a differentnam e fort hatt hat' scalled chem icalw eat hering and so t hisisw hen (0 3 :4 8 ) t he rocksare chang ed chem ically because of som e react ion w it h usually som et hing like w hen airorw at erin nat ure so t he alt ering of rocksasa resultof ex posure t o different subst ancesso let ' sadd t hisinform at ion t o ourflow chartso w e' re breaking dow n w eat hering int ot w o sm allert y pest he firstisphy sicalorm echanicalw eat hering w hich isbreaking cracking and g rinding t hing slike t hatand w e' llsee ex am plesof t hose short ly and t hen chem ical w eat hering w hich involve som e sortof react ion thatchang escom posit ion so (0 4 :2 4 ) t hat ' sa really key difference bet w een t he two t y pesof w hatso let ' sdive a lit tle deeper int o ourphy sicalorm echanicalw eat hering and lookatsom e differentex am plesforour purposesw e' re g onna breakt hisint o fourspecific t y pesfrostact ion ex foliat ion abrasion and rootw edg ing so w e w illst artw it h frostact ion w hich by t he w ay isalso know n asice w edg ing t here are a lotof differentnam esforitand asy ou m ig htim ag ine t hisinvolvesice and so w hat happensist ake an area t hatm ay be it ' sa lit tle bit ( 0 5 : 0 0 ) above freez ing t em perat ure during t he day and y ou g etsom e rain orm ay be som e m elt ing snow and y ou have som e w at ert hatseepsint ot he cracksw it hin a rockrig htand t hen t he S un set sand inevit ably the t em perat ure dropsand t hatw at erfreez esint o solid ice now y ou m ay know already w hen w at erfreez esitex pandsslig ht ly and itg et sa lit t le bitbig g erand so as itex pandsit ' sg oing t o be pushing out w ardson t he rockt hatithasseeped int o and t hatforce believe itornotisact ually strong enoug h t o very slow ly and g radually ( 0 5 : 3 6 ) breakapartrocksand t hisprocessisknow n asfrostact ion orice sw eat ing and so w e see ex am plesof t hisin allsort sof areasw here t he t em perat ure isa lit tle bitabove freez ing during t he day and t hen below freez ing atnig htand in facta g ood ex am ple of t hisisw hatw e calla pot hole w hich y ou see allovert he st reet spart icularly in t he nort heast ern U nit ed S tat esin t he spring t im e w hen y ou have t hese big fluct uat ionsin t em perat ure t he w at eract ually g etsint o cracksin t he road and t hen freez esand ex pands ( 0 6 : 0 8 ) and t hen y ou drive overitt he nex tday and itj ustbreaksapartand y ou end up w it h t hese big nast y holesin t he g round t hat' sa g ood ex am ple of frostact ion orice sw eat ing second w ould be ex foliat ion and t hisisin a w ay kind of sim ilart hisinvolvest em perat ure chang esas w ellso t hisoccursin areasw here y ou have really dram at ic tem perat ure chang esw here itg et s very hotduring t he day and t hen very cold atnig htt he the rockit self w illact ually ex pand slig ht ly in t he heatand t hen cont ractin t he cold ( 0 6 : 3 9 ) and if t hishappensday aft erday nig htaft ernig htitw eakenst he out erlay ersof t he rock unt ilt hey event ually beg in t o crackand peelapartlike t hisorlike t hisrig hthere it ' salm ostlike t he rockisshedding it sout erlay ersand phy sically orm echanically breaking apartlarg ely asa resultof t hese t em perat ure chang esa t hird ex am ple w hich ist he m ostcom m on and w e see it allovert he w orld iscalled abrasion so abrasion isbasically w heneverR ockg rindsag ainstot her rockand itcom esin m any form slike here in t he desertw e ( 0 7 : 1 3 ) see a lotof w ind abrasion w here g ust sof w ind w illblow g rainsof sand t hatcrash int o ot herrockand very very slow ly overt housandsand t housandsof y earsw illact ually eataw ay at t he rockand so w ind w ind abrasion isact ually responsible fora lotof t he interest ing kind of rock form at ionst hatw e see in t he A m erican S out hw estw e also can have w at erorst ream abrasion aslit tle pebblesand sedim ent sare bounced along t he bot tom of a st ream ast he w at erflow s and t hat ' sg oing t o eataw ay att he rockt hatt hey ' re bouncing overw e ( 0 7 : 4 4 ) also see t hison coast linesasI m ent ioned before w it h w avescrashing int o rockand g rinding itdow n by carry ing lit t le bitsof sand and sedim entand eat ing aw ay att he rockand t hen finally w it h g laciersg lacialabrasion isvery com m on g laciersg lide dow nhillpulled by g ravit y and t hey scrape along t he rockand carve itaw ay overm any hundredsof y earsfinally t he last t y pe of phy sicalorm echanicalw eat hering w e' re g onna lookatiscalled rootw edg ing and it 's pret t y self- ex planat ory thisisw hen plantroot sact ually g row w it hin the ( 0 8 : 1 8 ) cracksof rockand ast he plant sg row larg erand larg ert hey breakapartt he rockast hey g row int o itso w e see ex am plesof t hisallovert he w orld and it ' sam az ing how pow erfult ree root sand plantroot scan act ually be so m uch so t hatt hey w illphy sically breakapartrocksas t he plant sg row so t hose are fourm ain ex am plesof phy sicalw eat hering and w e w antt o add t hem t o ourflow charthere so underourphy sicalw eat hering area w e' re g onna add frostact ion w hich isfreez ing and t haw ing of ice isg oing t o crackapartrocks ( 0 8 : 5 1 ) w e have ex foliat ion w hich ist he alt ernat ing hotand cold old isg oing t o crackrocksw e have abrasion w hich isg rinding of one rockag ainstanot herorsand ag ainstrockand t hen finally rootw edg ing w hich w ould be ourplantroot sg row ing int ot he rocksand so t hose are four m ain t y pesof phy sicalw eat hering now let ' sshiftg earsand lookatt he second t y pe of w eat hering chem icalw eat hering so rem em bert hisist he alt ering ort he chang ing of rockasa resultof ex posure t o differentsubst ancesand w e' re g oing (0 9 :2 2 ) t o lookatt w o m ain ex am plesof t hisox idat ion and carbonat ion w e' llbeg in w it h ox idat ion w hich isa t erm y ou m ay have heard before it ' st he form at ion of rustand t hisisg oing t o occur w henevert he elem entiron isex posed t o ox y g en and t hatcan happen in t he airorin t he w at er and so w hatw e find are t hatt here are a lotof rocksaround t he w orld t hatcont ain larg e am ount s of iron and ast hatiron react sw itht he ox y g en in airorw at erit ' sg oing to phy sically rustand t he resultist hatw e see rockst hat ( 0 9 : 5 4 ) looklike t hey ' ve been rust ed t hey have t hisorang e e colort ot hem and t hatisact ually a form of chem icalw eat hering t hisrockisbreaking dow n t he rustisvery crum bly t hisiron ox ide t hatform sand itbreaksapartt he rockovert im e it ' san act ualchem icalreact ion w it h ox y g en in t he airort he w at erand t hen finally w e have carbonat ion carbonat ion isreally int erest ing t hisis responsible fort he form at ion of t hese fascinat ing beaut ifullim est one cavest hatw e see around t he w orld and it ' sbasically w hen w at erflow st hroug h t he ( 1 0 : 2 8 ) g round itreact sw it ht he differentm at erialsin t he soilt o creat e a very m ild acid t his carbonic acid and carbonic acid isst rong enoug h t hatif itencount erscert ain m ineralsorrocks like calcit e orlim est one itw illeataw ay ordissolve t hatlim est one and so w hatw e end up g et t ing are t hese underg round cavernsw here t here once w asa w hole larg e ex panse of lim est one but t hathasallbeen kind of eat en aw ay slow ly by t he dissolving of t hiscarbonic acid so w e see som e of t hese am az ing am az ing landscapesaround t he ( 1 1 : 0 3 ) w orld form ed asa resultof t hist y pe of chem icalw eat hering anot hert hing t hathappens w it ht hiscarbonat ion ist hatsom et im est he g round w illact ually g ive w ay because allt he rock beneat h ithasbeen eat en aw ay and t hat ' sw hen w e g etsom et hing like t hisw hich iscalled a sinkhole w hich isw hen t he rockisg one beneat h and t he g round collapsesabove and so t hose are t wo t y pesof chem icalw eat hering and ag ain w e' llsum m ariz e t hem on ourflow chartso t he firstt y pe w asox idat ion iron and ox y g en g ivesy ou iron ox ide orrustand (1 1 :3 5 ) t hen carbonat ion w hich isw hen w e have t hisacidic rain and acidic w at erdissolving lim est one and g iving uscavesokay now t here are t w o m ain t y pesof w eat hering w it h som e ex am plesof each w e have t hem nicely sum m ariz ed on ourflow chartand t he lastquest ion w e w antt o askhere isso w hat ' sg oing t o affectw eat hering like w hatdict atest he t y pe of w eat hering w e have in a reg ion how fastitw illhappen et c and so w e have t hree m ain t hing st hatw e' re g onna lookatand t he firstisclim at et he second w ould be hardnesshow hard ist he rock ( 1 2 : 1 0 ) orhow resist antisitbeing w eat hered and t hen t he t hird w ould be t he surface area of t he rockhow m uch of t he rockisex posed t ot he elem ent sallrig htso let ' sst artw it h clim at e and t o underst and t hisw e lookatt hischartt hisisa very com m only used chartin g eolog y and so w hatt hisshow sist he effectof t he t em perat ure and m oist ure on w hatt y pe of w eat hering w ill t ake place so forex am ple in an area t hatism ore hotso t hispartof ourg raph rig hthere w hich is a hig hert em perat ure okay butnota lotof m oist ure because ( 1 2 : 4 7 ) rem em berif w e g o up on t he chartt hat ' sa w et terarea so t hisisan area rig hthere t hat 's hotand dry hotand dry w e don' treally see a lotof w eat hering w e m ig htg etsom e w ind abrasion like in t he desertbutnot hing t oo severe if w e t hen sw it ch up t o an area t hatishig heron t he chartt hatishot terand w et t ert hat' sw here w e' re g onna st artt o see m ore of t hischem ical w eat hering t hiscarbonat ion occursa lotand a lotfast erin areast hatare hotand w etw e see a lotof lim est one cavesand sinkholesin a place like F lorida for ( 1 3 : 1 9 ) ex am ple w here it ' svery w arm and on t he ot herhand if w e g o t ot he leftside w here it 's colderlow ert em perat urest hisisw here w e' re g onna st artt o see frostact ion happening because thisisw here w e have a lotof chang e in t em perat ure it ' scoldercold enoug h t o g etice and enoug h w at ert o have t he ice form ing and m elt ing and form ing and m elt ing day aft erday any t hing up in t hist op area up here t hese are clim at e condit ionst hatw e don' treally see on eart h so t hey ' re notreally relevantt o w hatw e' re t alking ( 1 3 : 5 1 ) aboutany w ay t hist hisg raphic g ivesy ou a really g ood sense of t he im pactt hatclim at e hason t he t y pe and t he severit y of w eathering t hathappensin a part iculararea in addit ion t o clim at e w e also have t o lookathardnessso of course w e know t hatallrocksare differentall m ineralsare differentsom e are very hard som e are very softand t hat' sg oing t o have an im pact on how quickly t hey ' re g oing t o w eatherso if w e lookata diag ram like t hisw hich show sa cross- sect ion of a w at erfallw hatw e' llnot ice ist hatsom e of t he ( 1 4 : 2 2 ) rocklay erslike rig htin here rig htin here rig hthere have been w orn aw ay m ore t han ot herrocklay erslike t hisone isnotw orn aw ay asm uch t hese onesdow n here t hisa lit tle bit rig hthere isnotreally w orn aw ay and t hatt ellsm e t hatt hese are differentt y pesof rockand so I can conclude t hatt hislay erof rockrig hthere w hich believe islike a shale isa soft erR ockso w hen allof t hisw at ersplashesup on itit ' sg onna st artto w earaw ay fast ert hen a harderR ock like say a sandst one so t he hardnessof (1 4 :5 7 ) t he R ockhasa big im pacton how quickly it ' sg oing t o be w eat hered and so finally t he lastt hing w e w antt o lookatissurface area so surface area referst o how m uch of t he rockis act ually ex posed so if I have t w o rockslike y ou see here t hey ' re g oing t o be ex posed t ot he elem ent sata differentclip rig htso t he only partof t hisrockforex am ple t hat ' sg oing to be ex posed ist he out side of t he rockso t he surface ist hatI' m hig hlig ht ing rig hthere t hat' st he only partt hatcan g ethitby rain and ice and snow and ox y g en ( 1 5 : 2 9 ) et ct hat ' sthe only partt hatcan be w eat hered t he cent erof t hisrockisnotex posed it s prot ect ed and t herefore it ' snotg oing t o be w eat hered w hereasin t he rig hthand side I have t he out sidesof t hese rocksbutI also have t hese inside areasrig htbecause t he rockisbroken dow n w e have ex posed addit ionalsurfacest hatcan be hitby rain snow and ice and ox y g en and ot her chem icalreact ionsand so because t hishasm ore surface area t he purple it ' sg oing t o break dow n ata fast errat e okay so w e can sum m ariz e (1 6 :0 6 ) t hese t hree t hing sin ourlarg e box att he bot tom of t he flow chartw e can sum m ariz e t he fact orst hatare g oing t o affectw eat hering okay so w eat hering ism ostaffect ed by t hese t hing s t he clim at et he hardnessof t he rockand t he am ountof ex posed surface area t hat ' sw hat ' sreally g oing t o dict ate how quickly a rockisg oing t o breakapartso in t hisvideo w e t ooka lookatt he differentt y pesof w eat hering along w it h som e basic definit ionsof w eat hering erosion and deposit ion and t hen finally atw hateffect sw eat hering short ly I' m ( 1 6 : 3 8 ) g oing t o release anot hervideo t hat ' sg oing t o g o int o det ailsaboutt he processesof erosion t ransport ation and deposit ion are dropping off of sedim ent sso keep y ourey e outfor those t hanksforw at ching R iverE rosion and D eposit ion - YouTube ht tps: / / w w w. y out ube. com / w at ch? v= 3 Y dE keg vJ CQ https: / / docs. g oog le. com / docum ent / d/ 1 5 vr_CD D R O g P c- l5 s9 N hT H Q g ZbO fH t h5 ux 6 ct nM R t g x E / ed it ? usp= sharing Transcript : ( 0 0 : 0 0 ) in t hisvideo w e' re g onna cont inue ourlookatw eat hering in t hisvideo w e' re g onna cont inue ourlookatw eat hering erosion and deposit ion pay ing part icularat t ent ion t o riversand how t hey erode and depositsedim entacrosst he eart h asalw ay sw e have a quickhandoutt o g o along w it hthisvideo w hich y ou can g o and g rab att he w ebsit e so let ' sbeg in by review ing t hese key t erm sso w eat hering ist he breaking dow n and chang ing of rocksasa resultof ex posure t ot he environm entso w hen rockand nat ure isex posed t ot he airand ( 0 0 : 3 7 ) w ind in w at erand ice t hose forcesw illevent ually breakrocksdow n from larg erpieces int o sm allerpiecesknow n assedim ent sin som e casest hose rocksm ig htact ually chang e com posit ion asa resultof t hese w eat hering int eract ionst hen w e have erosion erosion is t ransport at ion so once m y sedim ent shave been broken dow n by w eat hering erosion isg onna m ove t hem from pointA t o pointB so t hinkaboutt o g ive y ou an ex am ple from t oday ' slesson sedim ent sbeing t ransport ed by t he m ovem entof w at erw it hin a rivert hat ' serosion finally at ( 0 1 : 1 4 ) som e pointdeposit ion isg onna occurand t hisist he dropping off of sedim ent st hathave already been w eat hered and eroded so once t hey ' ve been broken dow n once t hey ' ve been m oved t hen t hey g etdum ped som ew here and t hatprocessisknow n asdeposit ion so ag ain t oday w e' re g onna focuson one part icularag entof erosion and t hat ' sriversorflow ing w at eron t he surface of t he eart ht hese have a hug e im pacton shaping ourplanetand so w e' re g onna lookatallt he det ailsaboutw hatt hey do t ot he surface and how t hey affectt he rock (0 1 :4 4 ) t hatt hey flow overso w e' llbeg in w it h a sim ple quest ion w hich isw hatisa riverso if w e had t o act ually define t hist erm it ' spret ty sim ple it' ssim ply w at erflow ing dow nhillt hroug h a channelorsom e sortof defined pat hw ay by t he w ay y ou' llsee I used t he w ord st ream in creeks and Brookw e can use t hese essent ially int erchang eably oft ent im escreeksand brookand st ream ' are used forsm allerriversw hereast he t erm riversused fora larg ervolum e of w at erbut forallpurposest hose can be sy nony m sso let 's ( 0 2 : 2 0 ) lookatt he anat om y of a riverororw hatsom e of t he part sof riversare and w e' llbeg in w it ht hislittle diag ram rig hthere of lit tle sect ion of a st ream ora riverand t he firstt hing and t his isg oing t o becom e very im port antisisw hen w e see t hese curvesorbendsin riversand w e have a nam e fort hatt hose are called m eandersand t hat ' svery im port antbecause ata m eanderw e see a lotof erosion and deposit ion happening in specific w ay sw hich w e w illlookat along t he edg esof t heirst ream ort he riverw e callt hose t he banksso t he ( 0 2 : 5 3 ) st ream banksare t he riverbanksand t hen along t he bot tom w e callt hatt he bed so t he st ream bed ort he riverbed so w hen w e have a sm allerst ream t hatflow sint o and m erg esw it ha larg erst ream w e callt hata t ribut ary and allt og etherw it h allt he t ribut ariesand a m ain riverw e have a riversy st em oft ent im esa riversy st em ispartof w hat ' scalled a w at ershed and so a w at ershed isan ent ire reg ion of land itm ay be hundredsand hundredsof m ilesbutit ' san entire reg ion of land w here allof t he t ribut ariest he st ream sand (0 3 :2 8 ) t he riversand allt he g roundw at erin t hatreg ion m erg ed t og et herand flow int o one cent ralw at erbody w het herit ' sa riverlake ort he ocean so t hatw hole area of land iscalled a w at ershed ora drainag e basin so let ' st alkaboutt he speed atw hich a riverflow sorvelocit y of a riverso t he velocit y of a rivert endst o depend on t hree m ain t hing st he firstbeing t he am ountof w at erw it hin t he st ream and t hat ' scalled discharg e so t y pically speaking t he m ore discharg e t he m ore volum e of w at erw it hin a st ream ( 0 4 : 0 6 ) orrivert he fast ert hatst ream orriverisg oing t o flow nex tisslope so ist hisa st eep st ream bed ora fairly flatone so log ic t ellsust hata st eeperslope isg oing t o m ake t he river flow and a fast ervelocit y and t hat ' sbecause g ravit y isg oing t o pullt hatw at erhellfast erfinally t he shape of t he st ream channelact ually play sa pret ty m aj orim pactso if y ou t hinkaboutt wo st ream sso t othinkabouta narrow kind of v- shaped st ream channelw hich isy ou know pret ty st eep m ay be a lotof w at erbutbutt he channelit self ispret ty ( 0 4 : 4 6 ) narrow and v- shaped oralm osteven like a u- shape w ellt hatw at er' sg oing t o be able t o flow fast ert hen a st ream t hat ' sg onna have a very w ide and flatbot tom t o bed and t he reason t hatisisbecause t he m ore area w here t he w at erisflow ing overt he rocky st ream bed t he slow erit ' sg oing t o g o because of allof t hatsurface area so t hatw at erhast o flow overallof t hose rocksand in and alloutof allt hose nooksand cranniesasopposed t o if w e have a V shape t hatw at erisg oing t o have lessfrict ion w it ht he g round t hen it ' sg oing t o be ( 0 5 : 2 0 ) able t o g o fast erso t y pically a rounderdeepera m ore curved orv- shaped channelt he fast ert he st ream w illflow versusa w ide flatchannelso if w e lookata riverchannelw hich oft en doeshave t hiskind of V shape w it hin the riverit self t he fast estvelocit y isg oing t o be w here w e see t hisX rig hthere so notalong t he bedsw here t he w at eriskind of g rinding ag ainstt he g round butup aw ay from t he bedsg enerally in t he m iddle of t he st ream t hisdoeschang e if w e' re g oing around a m eanderin a st ream a st raig htflow ing st ream w illt end t o ( 0 5 : 5 6 ) see itw here t hisX isso fast estin t he cent erup aw ay from t he st ream bed so now let 's t alkaboutt he ag e of a riverand y esriversdo have ag esy ou can t ellby looking ata river w het herit ' sa y oung new ly form ed riverora m ore ancientriverand so w e' llst artw it h looking at t he charact eristicsof a y oung riversy st em and so t hese are g oing t o be g enerally speaking kind of m ore int ense so t hey ' re g oing t o be st eepert hey ' re g onna have deeperm ore narrow channelsw it h a fast erflow of w at ert hey ' re g onna have few ercurvesor ( 0 6 : 2 8 ) m eandersand asa resultof allt hatt hey ' re g oing t o g o fasterand t hatm eansm ore sedim entisg oing t o be eroded and lessw illbe deposit ed so allt he rocksand t he sand and t he siltand clay are g oing t o be rig htaw ay notbeing dropped off and t hat ' sdue t o allof t hese charact erist icst og et herso if y ou see a riverlike t he one in t hispict ure rig hthere y ou can conclude t hatt hisisa fairly new ly form ed R ivert hishasnotbeen around fort housandsand t housandsof y earson t he ot herhand an olderR iverisg oing t o be ex act ly the ( 0 6 : 5 9 ) opposit e it' sg onna have a g radualslope so m ore flatasfarast he bed g oesshallow w ide channelsw hich allresultin a slow erflow velocit y w illoft en see t hese big w ide curving m eandersand t he resultist hatw e had a lotof deposit ion so sedim entisconst ant ly being dropped off and y ou can act ually see t hatin t hisex am ple rig hthere w it h allof t hese sandbars w it hin t he t he riverflow t hat ' salldeposit ed sedim entbecause t he w at erisconst ant ly slow ing dow n and dropping off w hat everit ' scarry ing so now w e' ve t alked a lit t le ( 0 7 : 3 6 ) bitaboutvelocit y it' sim port antt o pointsom et hing outt houg h itispret t y log icaland t hat ist he fast erriverisflow ing t he big g ert he sedim ent st hatitcan erode ort ransportw hich m akes sense if I have a very fastflow ing riverit ' sg oing t o be capable of t ransport ing long larg ersiz ed sedim ent sso sand and siltand clay butalso in som e casesitcan even bounce along pebbles and in t he fast estriverspossibly even cobble siz ed rockst hisisvery log icalit ' sallsum m ariz ed in t hischartrig hthere so if w e lookatt hisw hatw e see along (0 8 :1 0 ) t he bot tom here ist he velocit y of t he st ream so asI g o from leftt o rig htt he st ream is g oing fast erand t hen on t he vert icalax isI see siz e of sedim entbeing t ransport ed so w hatI' ll not ice here ist hatlet ' ssay I have a velocit y of a st ream t hatisaboutone cent im et erpersecond so if I com e up and I hitt he curve here and I g o overt he sedim entt hatst ream isg oing t o be able t ot ransportisg oing t o be classified assand rig htso it ' sg oing t o be som ew here bet w een pointz ero z ero six and pointt w o cent im et ersin ( 0 8 : 4 5 ) siz e so t hat ' sfairly sm allsedim entt hat ' sw hata riverg oing t hatfastisable t ot ransport butif I speed up t o let ' ssay 5 0 cent im et erpersecond riverso a m uch fast erflow ing rivert hat 's g oing t o be able t o carry pebblesand t hatislog icalrig htbecause t he fast ert he riverisflow ing t he big g ert he sedim ent sitcan carry only t he fast estriverson eart h are able t o carry big sedim ent sso if I looky ou know m ay be ata hundred ora lit tle m ore t han a hundred cent im eters persecond t hatkind of riverisable t o act ually t ransport ( 0 9 : 2 4 ) rockst hatare six seven eig htcent im etersin diam et erso t hose w ould be classified as cobblesso t hischartshow sust hatt he fast ert he st ream velocit y the larg ert he sedim ent sitcan carry so if w e lookatt hose sedim ent st hisisw hatt hey w ould looklike ast hey ' re being eroded w it hin a riverso obviously t he sm allersedim ent sare g oing t o be suspended so t he siltand t he clay t hat ' sg oing t o be carried along up in t he body of t he w at eritself and t hat ' sg oing t o be subj ectt othe current sand t he velocit y of t he flow ( 0 9 : 5 7 ) sand m ig htbe hopping orbouncing along t he bot tom and t hen t he big g ersedim ent st hat g ravelt he pebblesand possibly cobblesare g onna slide and rolland bounce along t he st ream bed so t hisisw hatitlookslike and y ou can see m assive am ount sof sedim entare eroded by riversespecially fastflow ing y oung erriversso w hen st ream sflow fastt hey ' re g oing t otend t o erode sedim ent st o pickitup and carry itaw ay and w hen t hey flow slow ly t hey ' re g onna deposit itt hey ' re g oing t o drop itoff so t he log icalquest ion becom esokay w ellw hy ( 1 0 : 3 5 ) do st ream sspeed up w hy doesst ream slow dow n because if y ou can ident ify thatt hen y ou can predictw here m ore erosion w illhappen and w e' re m ore deposit ion w illhappen so if w e lookatourm eanderag ain w hatw e' re g onna know ist haton t he inside partof curvesw at eris g oing t o be forced t o slow dow n and t he reason t hatisisbecause w hen w at erist raveling around a sharp curve like t hison t he inside partitcan' tg o asfastit ' sa sharpert urn and phy sics t ellsust hatt hatw at erg onna be forced t o slow dow n asopposed ( 1 1 : 1 0 ) on t he out side of a curve it ' sg ott hisbig sw eeping area t o g o and it ' slesssharp and t herefore itcan g o fast erI oft en thinkof t hist he sam e w ay I t hinkof a racecarg oing around a curve on a racet racky ou have a choice w hen y ou approach t he curve do y ou slow dow n and hug t he inside of t he curve y ou have t o slow dow n orelse y ou' llflip ordo y ou keep y ourspeed and g o on t he out side of t he curve w here y ou can keep y ourspeed up a lit t le bithig herw ellit 's t he sam e in t he riveron t he inside of a curve t he w at erslow sand on t he out side ( 1 1 : 4 1 ) of t he curve t he w at erspeedsup and so of course t here' sa consequence of t hatand t hatist haton t he inside w here itslow sdow n t he depositsedim entt hatt hey ' re carry ing and y ou can act ually see t hisin t he pict ure by looking att hisw hole area rig hthere allof t hissand and sedim entt hatw asdeposit ed t here because t he riverslow ed dow n and w hen t he riverslow s dow n itdropsoff w hat everit ' scarry ing w hereason t he out side w here itspeedsup it sg oing t o erode addit ionalsedim entand y ou can t ellbecause allt he sedim enthasbeen ( 1 2 : 1 1 ) w orn aw ay and y ou can see t hatw it ht hisst eep riverbankso y ou can t elljustby looking ata m eanderw here t he erosion and w here t he deposit ion hast aken place sim ilarly w e have anot herdiag ram here show ing m eanderson t hisex am ple one of t he t hing st o pointoutist hat depending on t he direct ion of t he m eandert he shape of t he channelisact ually g oing t o vary so if I lookatt hislet ' slookatP ointa here and pointB here so a ist he out side of a curve so t hat's erosion and B ist he inside of t he curve so t hat ' sdeposit ion ( 1 2 : 4 5 ) so w here t here z ero j ' en the rockand t he sedim ent sbeing w orn aw ay so w e' re g onna have a st eep m ore j ag g ed kind of slope so t hatm eanst hatt hatw ould looksom et hing like t his so t hisw ould be pointa here and t hen w here B ist hat ' sw here t he stuff isbeing dropped off so w e w ould have a m ore w ide flatdeposit ion driven area of t he riverso a and B m at ch up like t hat and w e should be able t o do t hatif I lookdow n here atC and D so C ison t he inside of t his m eanderso C isg oing t o have t he flatslope and D ison t he out side w here it 's ( 1 3 : 2 0 ) g oing fast estw here w e see erosion so t hat ' sg oing t o be t he st eeperslope so let ' slook atsom e real- w orld ex am pleshere so here' sa m eanderand a riverand j ustby looking t hisrig ht off t he batw e can t ellw here t here' sdeposit ion and w here t here' serosion so w e should be able t o labelitw it ht hese t erm srig htso inside of a curve isslow out side of a curve isfastso t hose w ordsg o t here inside of a curve w here itslow sdow n w e' re g oing t o g etdeposit ion and y ou can act ually see t he sedim entdeposit ed and t he out side isg oing t o be erosion ( 1 3 : 5 4 ) so y ou can see pret ty clearly w hat ' sg oing on let ' slookatanot herex am ple t hisis anot herg reatex am ple so I' m g oing t o bring m y t erm sin so inside isslow out side isfastokay inside isdeposit ion out side iserosion and ag ain y ou can act ually see itif y ou lookatt he diag ram here t hisst eep slope rig hthere it ' sallst eep slope t hat ' sbecause allof t hatsedim entis being carried aw ay asopposed t ot hisw hole reg ion rig hthere w here allt hissand and sedim ent ist hat ' sy ourdeposit ion because t he w at erhasslow ed dow n so w e ( 1 4 : 3 1 ) see t hisallovert he place and itbecom esvery very clearw hen w e see st uff like t his sedim entrig hthere t hisist he inside of a curve and t hat ' st here because t he w at erhasslow ed and deposit ed w hatitw ascarry ing and y ou can see t hism ostriverson eart h itbecom esvery obviousw hat ' shappening here t hisisa g reatex am ple because y ou can act ually see w it hin t he w at ert hatallof t hissedim enty ou see how t hisw at eriscloudy t he sedim entison t he inside of t he curve because t hat ' sw here t he deposit ion ist aking place so if (1 5 :0 4 ) t haterosion and deposit ion cont inueslong enoug h t hen t hose m eandersm ig htg etso w ide t hatitact ually alt erst he shape of t he riverand itm ay even cutoff a port ion of t he rivert o form som et hing called an ox bow lake so overhere t hisisourox bow lake okay so t hatused t o be partof t he riverbutdue t o ex t ensive erosion and deposit ion t hatpartof t he riveract ually g ot cutoff and t hatshape of t he channelhaschang ed leaving t hatlake behind w it ht hist ellt ale kind of horse t o shape so if y ou lookatt hist hisis ( 1 5 : 3 7 ) how t hathappenst he erosion and deposit ion cont inue t he m eandersg etw iderand w iderunt ilthe riveract ually m eet sit self in a locat ion and t hen deposit ion takesoverand cut soff t hatm eandercreat ing an ox bow lake so here' san ex am ple of an ox bow lake t here are act ually severalin t hispict ure and here' ssom e m ore y ou can see t hem overhere' san ox bow lake here' san ox bow lake here isan ox bow lake so t hose w ere allact ually partof t he m eandersat som e pointin overt im e t hey ' ve been cutoff so let ' sfinally shiftourat tention t o ( 1 6 : 1 2 ) focusspecifically on t he deposit ion t hatoccursw it hin a riverso st ream sslow dow n not only w hen t hey ' re on t he inside of a curve butalso w hen t hey ent era larg erbody of w at erlike forex am ple if a riverorst ream flow sint o a lake a larg erR iverororeven in som e casest he ocean t hatw at er' sg onna slow dow n and w e know from ourpreviousconversat ion here t hat w hen w at erslow sdow n itcan' tcarry asm uch so itdeposit sitso w heneverw at erslow sdow n deposit ion occursso here w e have a cross- sect ion of a riverflow ing dow n (1 6 :4 5 ) t he side of a hillslope rig htfastfastfastfastfastbutt hen ithit st he lake and itslow s dow n and because itslow sdow n rig htt here can' tcarry t he sedim entany m ore so rig htin here w e' re g onna see lot sof deposit ion I like t ot hinkaboutt hist he sam e w ay asI t hinkabouta w at erslide so if y ou' ve everbeen on a w at erslide y ou know t hatasy ou' re g oing dow n t he slide y ou' re g oing fast erfast erfast erand t hen allof a sudden y ou hitt he poolatt he end and y our body st opsessent ially and t hat ' sbecause y ou' ve ent ered t hislarg erbody ( 1 7 : 1 6 ) of w at erand t he velocit y slow sdow n and t he sam e t hing happensin a riverand w hen t hatoccurst he sedim entt hatt he riveriscarry ing isdropped off and so t he sedim entt hatis deposit ed creat est hiskind of w eird accum ulat ion of sand and siltand clay and t hat accum ulat ion iscalled t he D elt a in som e casest hatD elt a can becom e a new landm assso here' san ex am ple of a delt a so allof t hiskind of g ray ish m uddy sedim enthasbeen deposit ed ast hislit t le stream ent erst hislarg erbody of w at erallof t hese D elt a' s ( 1 7 : 4 9 ) can act ually t hey ' re m assive y ou can see t hem from space on t he A m az on R iverD elt a it ' shug e am ount sof sedim entt hathave been deposit ed overt im e so t he sedim ent st hatare deposit ed w ithin a D elt a are g enerally sort ed outby siz e w it ht he larg estonesdropped off first and t hen sm allerand sm allersedim ent sasy ou g etfurt herand furt heroutint ot he lake ort he ocean so here' sa diag ram t hatkind of show st hatbecause w hen t he st ream ent erst he body of w at eritslow soff itslow sdow n it ' sg onna drop t he big g erst uff firstand t hen as ( 1 8 : 2 8 ) itslow sm ore sm allerst uff and t hen asitslow sm ore sm allerst uff and t hen event ually sm allerand sm allerunt ilithasdeposit ed every t hing t hatit ' scarry ing so t hatsedim entt hat sort ing iscalled horiz ont alsort ing because t he siz e of the sedim ent sissort ed outfrom big t o sm allfrom side t o side okay som et im est houg h w e' llhave sedim ent st hatdeposit ed very quickly and t hatm ig htresultnotin horiz ont alsort ing butin vert icalsort ing so rapid deposit ion y ou know forex am ple if I have a rockslide on a cliff w here a ( 1 9 : 0 6 ) bunch of sedim entisdum ped int o a lake allatonce t hen m y big g estsedim entisg oing t o accum ulat e on t he bot t om and t he sm allerst uff isg onna set tle a lit tle bitslow erand end up being on t op and so w e end up w it ht hisvert icalsort ing and w e have a nam e forvert icalsort ing it ' scalled g raded bedding so t hat ' sw hen w e have t op t o bot t om sm allt o larg e and t hisisn' tw hat t hatact ually lookslike y ou can see on t he bot t om ourlarg ersiz e sedim ent sand asy ou g o up t hey ' re sm allerand t hatw ould g ive usg reet ed bedding so horiz ont al ( 1 9 : 3 8 ) sort ing occursw hen t he sedim enthappensg radually w hereasvert icalsort ing happens w hen itoccursquickly t hat ' skey now finalt hing isbecause of t hisabrasion so t hisisa w ord w e' ve used in ot hervideosabrasion isa t y pe of w eat hering w hen R ockkind of g rindsag ainst rocksnow in riverssand isconst ant ly bouncing ag ainstpebble and rockand it ' sw earing itdow n and so t he rockst hathave been w eat hered and eroded and deposit ed by st ream sand rivers t end t o be g enerally rounded and sm oot hed outsom et hing like w e see in (2 0 :1 5 ) t hispict ure rig hthere so if I w ere t oj usthand y ou one of t hese rockseven t houg h y ou don' tnecessarily know w here itcam e from y ou could int erprety ou could conclude t hatit ' sspent t im e in running w at erand t hat ' show itg ott he sm oot h rounded shape t haty ou see and so t hat 's ourlookatriversfort oday j ustt o kind of sum up som e of t he key ideasm eanderscurvesand riverst ellusaboutt he ag e of t he riverand w e can ident ify w here erosion and deposit ion occurs w e see sort ing w het herit ' shoriz ont alor ( 2 0 : 4 7 ) vert icaland w e see rounding in t hese sedim ent sand so t hose are som e of ourkey ideasforR ivererosion and deposit ion riversare an incredibly pow erfulforce t hathasbeen shaping t he eart h forbillionsof y earsand riversallhave a st ory t ot ellby looking att hem and ex am ining t heircharact erist icsand t he charact eristicsof t he sedim ent sw ithin t hem w e can act ually learn a lotaboutt heirag e and how t hey have im pact ed the eart h in t he pastand how t hey ' re chang ing t he surface in t he fut ure t hey ' re an am az ing force t hat ( 2 1 : 2 0 ) really leavesitsim printon ourplanett hanksforw at ching R ivers- YouTube ht tps: / / w w w. y out ube. com / w at ch? v= 6 w E N 6 8 3 X X iM Transcript : ( 0 0 : 0 0 ) [m usic]9 7 % of allt he w ateron E art h’s surface isin t he ocean. T he rem aining roug hly 3 % isfresh and found on land. O f t hatfreshw at er, 6 9 % ist rapped in g laciersand ice caps, and 3 0 % can be found in poresand cracks, soaked int ot he g round ( know n asg roundw at er). ( 0 0 : 2 6 ) T he rem aining 1 % of freshw at ersuppliesincludes w at erin the at m osphere orin plant s ort he biosphere, and w at erpooling orrunning across t he surface. T he w at erin lakesm akes up 0. 2 6 % of allfreshw at ersupplies; and rivers, st ream s, and creeksm ake up only 0. 0 0 6 % of freshw at eron t he planet. H ow doesw at erm ove around bet w een allt he differentreservoirsin w hich it ’sfound? H eatfrom t he sun evaporat esw at er( t urnsitint o w at ervapor) , m oving itup int ot he at m osphere. ( 0 0 : 5 8 ) T hisat m ospheric w at erw illg etm oved around t he planetby w inds. W hen t hatairlat er cools, w at ervaporw illcondense backint o liquid w at er and drop dow nw ard asrain, ot herw ise know n as precipit ation. S om e of t hatrain landsdirect ly in the oceans. S om e landsin g lacialor ice sheet areas. S om e dropsdirect ly intot he g round and soaksint o it. ( 0 1 : 2 4 ) W here g roundsare sat urated w it h w at erand can hold no m ore, any rain t hatfalls t here w illrun along t he surface int o rivers, st ream s, and lakes. E vent ually m ostof t his running w at erw illm ake it sw ay backt othe ocean. W hataboutocean w at ert hatsoaksint o t he sedim entand crackson t he seafloor? W hen t hiscrustevent ually sinksint othe m ant le at subduct ion z ones, t hatw at erissqueez ed out and because it ’slessdense, risesupw ards. ( 0 1 : 5 2 ) S ince t he addit ion of w at ert ot he ast henosphere drops it sm elt ing point , m ag m as form. T he m ag m as produced are rich in w at erand rise upw ards t o produce volcanoest hat release t he w at er backint ot he atm osphere asa g as. T hroug h cont inued evaporat ion and precipit at ion, running w at er, subduct ion, and volcanism , E art h’sw atercont inually cy clesin and outof t he variousreservoirs, processescollect ively know n ast he hy drolog ic orw at ercy cle. N ow let ’sfocuson t he 0. ( 0 2 : 2 4 ) 0 0 6 % of freshw at er found in rivers. D espit e being such a m inorcom ponentof w at er st orag e, running w at erist he m ostpow erfulerosionalag entatw orkon P lanetE art h. R unning w at erw eat hers, erodes, and deposit sm at erialacrossE art h’s surface and producesa m ult itude of unique and varied landform s. ( 0 2 : 4 9 ) E ven in desert s, w here w at er runson t he surface foronly a few w eeksa y ear, t hat running w at erisstillthe m ostpow erfulof t he forcesatw orksculpt ing thatlandscape. H ow doesw at erg etint o a river? A river’sdrainag e basin orw at ershed is t he area of land in w hich allt he rain t hatfalls w illult im at ely m akesit sw ay int ot hatriver. T he line bet w een t w o drainag e basinsorw at ersheds iscalled a divide. ( 0 3 : 1 2 ) T he cont inent aldivide in t he U nited S tat es, forex am ple, isa divide t hatrunsalong t he t op of t he R ocky M ount ains. W at er t hatfallson one side of t hisdivide w illt raveleastand sout h int ot he M ississippiR iverBasin; and w at ert hatrunson t he ot herside w illt ravelw est int o differentbasins, such ast he basin of t he Colorado R iver. ( 0 3 : 3 8 ) W e callt he w at ersatt he hig hestelevat ion of a drainag e basin t he headw at ers. A s w at erm oves dow nhillitw illbe j oined by m ore w at erfrom t he g round orfrom ot herst ream s. E ach of t he sm allst ream sand rivulet st hatj oin t og et herare called t ribut aries. T he low est pointof a river, w here itent ersa lake ort he ocean, iscalled t he m out h. ( 0 3 : 5 9 ) Tect onicsand isost at ic upliftpush t he land up – erosionalag ent ssuch asrunning w at er carve itdow n. A sw at erm ovesdow nhill, itw illcarve outrockfrom t he hig h count ry and carry it t o t he low count ry. It sw orkisdone w hen t he river hascarved t he land flat. Base levelist he low est levelt o w hich a riverw illerode – U lt im at e base levelform ostriversin t he w orld ist he ocean, unlessa riverisdraining int o an interiorbasin low ert han sea leveland w it h no out lett o t he ocean. A n ex am ple of t hiscan be found in D eat h Valley , California, w here t he low estpoint is ( 0 4 : 3 7 ) 2 8 2 feetbelow sea level. A lake m ig htbe a localorint erm ediary base level. In t hatlocal area, t he riverst hatfeed int ot hatlake w illerode dow n only t othe levelof lake. T hen t heir w ork isdone unt ilt he lake drainsdow nw ard and t he riversare backatw orkag ain. W hy is running w at ersuch a pow erfuleroderorsculpt orof t he land? F irstlet ’sreview a few t erm s. W eat hering ist he processof phy sicalorchem icalbreakdow n of rock. ( 0 5 : 0 8 ) E rosion ist he transportof w eat hered debrisor sedim entfrom one locat ion t o anot her. D eposit ion ist he dropping of t he sedim entint o piles. R iversphy sically w eat herorbreakdow n rock t hroug h t w o prim ary m et hods: hy draulic pressure and abrasion. A sw at erm ovesdow nhill, t he w eig ht and velocit y of t he w at erput spressure on t he rocksoverw hich itflow s. ( 0 5 : 3 4 ) W hen cracksex istin t hose rocks, t hispressure can g radually ex pand t he crack. A lso, t he sedim entcarried along t he base of a river, pushed dow nhillby t he force of t he w eig htof t he running w at er( also know n asbed load) w illm ove acrossrocksurfacesand scrape and abrade t hose surfaces. Chem icalw eat hering asdiscussed in t he W eat hering video t utorialis aided by w at er, so w hen riversputw at erin cont inualcont actw ith solid rock, t hey increase t he rat e atw hich t hatrockw illchem ically break dow n, prim ary m et hodsbeing t hatm inerals w ill dissolve, ox idiz e, ort urn int o clay s. ( 0 6 : 0 7 ) O nce rockshave broken dow n t hroug h any act ivit y, the riverit self, g ravity , g laciers, w ind, hum ans, w aves, et c. , the riverw illpickup t hose w eat hered piecesand t ransportt hem t o a new locat ion. D ischarg e ist he t erm w e use t o describe t he volum e of w at era river t ransport s pasta g iven pointevery second. It ’sm easured in cubic m et erspersecond ( cm 3 / s). ( 0 6 : 3 3 ) T he hig her t he discharg e, t he m ore sedim entload a river can carry. T he m ax im um sedim entload a river can carry iscalled it scapacit y. A sdischarg e increases, so t oo does capacit y. N ew sedim ent can be carried by a riveronly if ithasn’ty etreached it scapacit y. R iverst hatare atcapacit y w illrun acrosssedim entbutnothave room t o pickitup. ( 0 6 : 5 7 ) S im ilarly , w hen a river’sdischarg e decreases, like in t he day saft era st orm , it s capacit y w illshrink, and ithast o drop sedim entitcan no long ercarry. A ddit ionally , t he abilit y to pickup and carry a sedim entg rain of a part icularw eig htorsiz e dependson t he river’s velocit y. T he g reat er t he velocit y, t he g reat ert he pow erand hence t he larg ert he g rain siz e it can carry. ( 0 7 : 2 0 ) W e call t he m ax im um g rain siz e t hata rivercan carry , it scom pet ence. Com pet ence g oesup asvelocit y g oesup. S im ilarly , asvelocit y g oesdow n, com pet ence g oesdow n. R esult ? W hen velocit y drops, allt he larg estg rainsare dropped att he sam e place in a pile, creat ing a pile of w ell- sort ed g rainsw hich m eanssim ilarly siz ed. ( 0 7 : 4 6 ) P ilesof sedim entdropped by riversare called alluvium , and t hey are easily recog niz able by t heirex cellentsort ing and also by t he rounding produced by t he cont inual knocking aboutw it h ot herg rainsast hey w ere t ransport ed by t he riverand ast he river cont inuest o m ove overt hem once t hey w ere deposit ed. N ow t hatw e know underw hat condit ionsriverspick up sedim entand underw hatcondit ionst hey drop it , w here are w e m ost likely t o see bot h happening in a river? L et ’sst artby looking closerat velocit y. W here along a riverdoesvelocit y increase? O rdecrease? T he slope org radient ( 0 8 : 2 3 ) of a riverist he rat io of vert icalt o horiz ontaldist ance thata riverm ovesdow n a hill. H ow does g radientim pactt he velocit y ? W e w ould ex pectriverst o m ove fast erdow n st eeper slopes and slow eron g ent lerones. W here riversm ove from t he st eep m ount ainsont ot he flat plains, g radientflat t ensoutconsiderably , slow ing t he river. ( 0 8 : 4 9 ) T he slow er- m oving riverhasa low er com pet ence and hast o drop sedim entg rainst oo big t o carry. T he alluvialdeposit st hatform in t hese circum st ancesare referred t o asan alluvialfan. W hy flat terslopesatt he base of t he m ount ains? T hat ’sw here allt he sedim ent from erosion of t hose m ount ainspilesup. ( 0 9 : 1 0 ) T he rem aining w at ert hat runsdow n m ustnow m ake it sw ay acrosst hispile of sedim entand t huscan splitint o m any different rivulet sorbraidsasitw eavesitw ay t hroug h t he pile. W e callt he pat t ern of such a river a braided river. In cont rast , rivershig h in t he m ount ainst y pically have st raig htchannelsw it h a V - shape cross- sect ion, asriverserode dow nw ard asdirect ly aspossible, and g ravit y carries t he slope m at erialon eit herside dow nhill. ( 0 9 : 4 0 ) W here riversg o from flat terslopest o steeper slopes, like w hen t hey spillover w at erfalls, t he velocit y speedsup and t he rivercan pick up larg erpart icles. H ow do w at erfalls form ? W hen y ou have a resist antlay erof rockt hat isdifficultforriverst o erode, t hey w illfind cracksand erode dow nw ard t hroug h t hose crackst o lessresist antrocksbelow. ( 1 0 : 0 4 ) A st he river erodest he lessresist antrockunderneat h, itw ill undercutt he top lay er. O vert im e t he cont inued undercut ting w illm ake t he t op lay erunst able, and t he overly ing cliff w illcrackand fall. A not herfact ort hatim pact svelocit y is friction – t he st ickinessof t he river bed t hatdrag son t he w at erw it hin. F rict ion and drag are affect ed by t he shape of t he channel asw ellas t he m at erialoverw hich t he riverruns. ( 1 0 : 2 8 ) S hallow channelsordeep narrow channelshave increased surface area so increased drag. A deep and broad channel, like a perfectsem icircle, hast he leastam ountof surface area t o volum e of w at erand t he leastdrag. L arg e boulderslike w hat ’sfound in t he m ount ains in shallow st ream sproduce hig h drag. S m oot h rocksurface orfine m udscause very lit tle drag. L essfrict ion ordrag , fast erriver. ( 1 0 : 5 6 ) W hataboutt he w idt h of the river? J ustlike w it h y ourfing eron t he end of a hose, w hen the channel of t he riverflow isconst ricted ornarrow s, velocit y speedsup. E rosion increases, and t he narrow scan be eroded quit e deep. W here channels w iden, velocit y drops, and deposit ionsoccurs. T he discharg e of a riveralso affect s speed – t he hig hert he discharg e, t he hig hert he velocit y. ( 1 1 : 3 1 ) S o w hatm akesdischarg e increase ordecrease? A salready m ent ioned, discharg e in a riverisa funct ion of how m uch w at errainsdow n in t he drainag e basin. E vent ually allt he t iny st ream sin t he basin w illj oin tot he m ain river. S o discharg e should be hig hestt he closerw e g ett ot he m out h of the river. D ischarg e w illalso chang e t hroug hout t he seasonsast he am ountof rain and snow m eltvaries. ( 1 1 : 5 3 ) If w e can erode t hroug h a drainag e divide and increase t he area of a drainag e basin, t hatshould also lead t o g reat erdischarg e. W hathappensatdam s? D am sacrossa river w ill st op t he flow of t he river. T hatst op in velocit y m eanssedim entisdropped att he m out h of t he riverasitent erst he lake. ( 1 2 : 1 3 ) W e callsedim entdropped att he m out h of a riverw here itent ersanot herbody of w at er, a delt a. T hatdelt a sedim entovert im e w illcause t he lake levelt o rise, so in sum m ert he lake m ig htneed t o be drained, and t he sedim entrem oved. M eanw hile, dow nriver, t he w at ert hat spillsovert he dam hasno sedim entw it hin and isdropping from g reatheig htw it h g reat velocit y. Itw illpickup and erode sedim entfrom t he areasim m ediat ely below t he dam. ( 1 2 : 3 7 ) H ow ism at erialt ransport ed by a river? In addit ion tot he bed load already discussed (t he sedim entpushed along t he bot tom of t he river due t ot he pressure of t he w at erm oving dow nhill) , riversalso carry part iclesin suspension, buoy ed up by t he energ y of t he w at er. T his suspended load m ake t he riverlookcloudy oropaque. ( 1 3 : 0 0 ) W e can rem ove suspended load by let ting a j arorbucketof riverw at ersitfor a few day sst ill. T he lackof energ y g ivest he part iclest im e to set tle outand depositin a lay eron t he bot t om of t he bucket. T he finest m udsm ig htt ake m ore t han a day t o fully set tle out. A lso carried by a riverare t he dissolved ionsproduced t hroug h chem icalw eat hering of t he rocks up river. ( 1 3 : 2 4 ) T hisdissolved load can be rem oved only if t he w at erisevaporat ed, allow ing t he ions t o find each ot herag ain and cry st alliz e. L et ’slookm ore closely atw hathappensw hen rivers flood. M eandering riversno long erhave any dow nw ard- eroding w orkt o do, ast hey m ove acrossflatplainsclose t o sea level. H ow ever, t hey are now eroding horiz ont ally , ast hey m eander acrosst he landscape, bending around obst ruct ions, avoiding resist antrocks, and carving outnew channelsduring floods. ( 1 3 : 5 4 ) M ostof t he y ear, t he riversit sin it schannel. Butw hen t he discharg e increasesand t he river’slevel risesduring heavy rains, t hey can overt op their banksand spilloutint ot he surrounding land. T hatm eansa fast - m oving riverchuck- fullof sedim entw illovert op it sbanks and im m ediat ely slow dow n asitspreadsacrosst he flatplain on eit herside of t he channel. ( 1 4 : 1 6 ) T hese plainsare know n ast he flood plains. T he drop in velocit y m eansdeposit ion – t he larg estg ravelsdeposit ing along t he banksof t he rivercreat ing st ruct ures called levees. T he finersandsand m udsdeposit behind t he leveesacrosst he flood plain. R iversuse t heir flood plainsevery t im e t hey flood, w hich isan annualprocess. ( 1 4 : 4 1 ) S om e floods are heavierorm ore int ense t han ot hers, and t he heaviert he flood, t he m ore sedim entisdeposit ed in t he flood plains. A lso, t he heaviert he flood, t he m ore w at erin the river, and t he fast er t he riverruns. T hatm akesitm ore erosive and m ore likely t o carve out a new channelorpat h. F orex am ple, in m eandering rivers, t he out side of t he m eandersor bendsex perience t he fast estm osterosive w at er, t he inside t he calm est. ( 1 5 : 0 4 ) T herefore, sedim entpilesup on t he inside of t hese bends, and erosion increaseson t he out side. O vert im e, t he bendsg etm ore and m ore ex t rem e unt ilduring a flood, t he pressure of t he w at ercan cuta new pat h rig htacrossa bend. T he cut - off bend now becom es a lake, know n asan ox bow lake, w hile t he riverhasst raig ht ened it self outa bit. ( 1 5 : 2 9 ) A ft ert he flood, the w at ert hatrem ainsin t he channelalso slow sdow n and deposit s any sedim entt hatitcan no long ercarry on t he bot t om of it sbed. T hatcausest he riverbed t o rise, w hich also m akest he riverlevelrise, so t he nat uralleveesw illalso rise during t he nex t flood, asw illt he flood plains. O vert im e, the ent ire reg ion g et sa t hickerand t hickerpile of sedim entast he m ount ainscont inue t o erode, and t he sedim entcont inuest o pile up att he coast. ( 1 6 : 0 0 ) W hathappensw hen w e build hom eson t he flood plainsand build leveest o keep t he w at eroutof t hose flood plainsduring floods? W hen t he rivert riest o overt op itslevees, itcan’t. T his put sex t ra pressure on ot herareasof t he river, and if itcan’tfind any w here t o overt op, t hen aft ert he flood, t he sedim entt hatitcarried w illbe deposit ed on t he bot tom of t he riverbed only. ( 1 6 : 2 3 ) Sot he riverit self w illcont inue t o rise, and t he leveeshave t o cont inually be builtup t o keep t he riverback, and t hatm akest he flood plain levelconsiderably low ert han t he river bed so w hen t he riverdoesevent ually break t hroug h overt op t he leveesorbreakt hroug h t he leveess, t he w at ert hatm akesitint ot he flood plainsw illhave t o be pum ped out , ast he area is now low ert han t he riverlevel. ( 1 6 : 4 5 ) T hisis t rue in the N ew O rleansarea on t he M ississippi R iver. T he area of hom esbuilt on t he flood plain are now sit t ing undert he levelof t he river, and pum psare w orking 2 4 - 7 in som e locat ionst o ensure t hatw at erdoesn’tm ig rat e underg round and t urn these areasint o lakes. A ft era flood breakst hroug h t he levees, itcan t ake w eeksor m ont hsbefore allt he w at erispum ped backout. ( 1 7 : 0 8 ) R iversflood w hen t here’sm ore w at erent ering the rivert han t he channelcan cont ain. T hishappens during heavy rainsoverlong periodsof t im e once t he g round hasbeen sat urat ed and can hold no m ore w at er. W hathappensw hen w e covernat uralforest ed land w it h ag ricult ure? T he runoff is fast erbecause t here are no t ree lim bsand root st o soakup t he w at er. ( 1 7 : 3 2 ) W hataboutw hen w e cover ag ricult uralland w it h urban land, especially concret e? T he rain runoff w illg o direct ly int o t he riverw it h none soaking int othe g round, so t he riverscan reach flood st ag e m uch fast er. T he riverchanneland floodplain are partof t he sam e sy st em , t og et herrepresent ing the pat ht hat t he riverw illt ake atvariousst ag esin it s seasonsand j ourney. ( 1 7 : 5 8 ) D et ailed m apping of t he flood plain around m eandering riversshow s t hatt hroug hout t he hist ory of t he river, it spat h hasm ig rat ed backand fort h across t he plainsassedim ent s cont inue t o deposit and build overt im e. Building com m unit ieson t he flood plainsof riversisa challeng ing featt hat requiresart ificialleveest o keep t he river in it spat h and const ant m aint enance t o ensure t he riverst ay sin itschannel. ( 1 8 : 2 4 ) Itrequires dredg ing t he bot tom of t he rivert o keep t he bed from rising and itrequires sig nificantflood plainst o be accessible elsew here t o release t he pressure of t he rising river. A llnat uralriverssy st em sflood every y earor t w o on averag e. T he int ensit y of flooding varies, and oft en floodsare described as1 0 0 - y earevent s, 5 0 - y earevent s, 1 0 - y earevent s, and so on. ( 1 8 : 5 1 ) T he g oalof these term sist o considert he building requirem entsand risksforvarious levels of flooding. T he hig hert he y earprovided, t he m ore int ense the flood w illbe. F or ex am ple, 1 0 0 - y earfloodsare so int ense t hey happen on averag e only once every 1 0 0 y ears. W hatt hatm eansfort hose w ho choose t o live in t he flood plainsof a riverist hatw e need t o be prepared t o handle the consequencesof any of t hese event s. ( 1 9 : 1 4 ) P ause now. [m usic][m usic] F loodsare increasing W AY fast ert han w e ex pect ed - YouTube ht tps: / / w w w. y out ube. com / w at ch? v= pD IpbX j Ctyg htt ps: / / docs. g oog le. com / docum ent / d/ 1 D O x y U 5 H P p8 rT K soK hpF N a6 z bW o7 ivP 5 A uBlX - 0 2 fn4 w / e dit ? usp= sharing Transcript : ( 0 0 : 0 0 ) - E xt rem e rain event sare increasing atan alarm ing rat e in t he U S and allovert he w orld, butt he problem isn' tt he am ountof rain t hatfallsin any one place, it ' show long itt akes t he rain t o fall. A nd fascinat ing new research shedslig hton ex act ly how t hat ' schang ing. O ver t he lastcent ury , g lobalprecipit ation hasonly increased by 0. 0 4 inchesperdecade. ( 0 0 : 2 4 ) Butlooking atindividualreg ionsin t he U S , w e can see t hatsom e placeshave ex perienced 3 0 % m ore rain overt he sam e period. H ow ever, m ore rain isn' tt he w hole story. T hat ' sw hy t he org aniz at ion F irstS t reetcreat ed a g roundbreaking riskm ap t hatshow sa big chang e in w hatN O A A calls1 0 0 y earfloods. T hese are event sso ex t rem e t hatt he oddsof t hem happening in any g iven y earare aboutone in 1 0 0. ( 0 0 : 5 1 ) - 1 0 0 y earprecipit at ion eventisoccurring m ore oft en aboutonce every seven t o eig ht y earsin t he m ostex t rem e cases. - A nd t hatm at tersbecause infrast ruct ure like sew ersy st em s are builtw it ht hism et ric in m ind. Butw hy t he chang e? It ' sbecause a w arm erat m osphere isa t hirst ierat m osphere, m eaning itcan hold m ore m oist ure - F oreach addit ionalincrease in t em perat ure. ( 0 1 : 1 4 ) By one deg ree Celsius. T he aircan hold 7 % m ore w at er- Vapor. A nd t hat 's fundam ent ally chang ing t he hy drolog ic cy cle. D ry tim esg etdrierand w ett im esg etw et t eratan ex ponent ialrat e, and notonly j uston a y early scale, butdow n t ot he hourand t he m inut e. S o F irstS t reetreanaly z ed rainfalldat a acrosst he U S dow n t othe m inut et heiranaly sisuncovered an im port antt rend and led t o a new flood riskm ap of t he U nited S t ates. ( 0 1 : 4 2 ) Itt urnsoutt hatsom e placescurrent ly seeing lessannualprecipit at ion and m ore droug ht should also ex pectm ore flooding. In t hisepisode w e' re g onna lookatt hism ap t o see w hat reg ionsare m ostatriskand how w e can adaptw it h allthisaddit ionalw at er. - T hisisnot som et hing t hatany one should g o t hroug h w hen itcom est o a disast er, especially a hurricane. ( 0 2 : 0 6 ) - W e can learn a lotfrom N ew YorkCit y w hen itcom est o ex trem e rain because t hey ' re g et t ing so m uch of it. J ustlastS ept em ber, the cit y saw nearly eig htinchesof rain in a sing le day. - A place like N ew YorkCit y used t o be very , very g reen, and itw ascovered in lakesand st ream s. A nd overt im e it ' sbeen filled in. ( 0 2 : 2 3 ) T he - S am e ist rue in nearly every cit y. W e' ve replaced nat uralperm eable surfacesw it h concret e and asphalt. N early 7 2 % of N ew YorkCit y isnow covered in im perm eable surfaces. S o inst ead of a nat uralw at ersy st em , runoff hast o be m anag ed by a sew ersy st em desig ned fora clim at et hatno long erex ist s. - T he orig inaldesig nerst hatbuiltoursew ersy st em did notknow t hatw e w ere g onna have 3 , 4 , 5 , 8 inchesof rain. ( 0 2 : 4 9 ) - O ne in a hundred y eareventin N ew YorkCit y act ually occursaboutonce every 3 5 y ears. - T hisisa new problem , so t hey can only m anag e aboutone t ot w o inchesof rain per hour. - O urinfrast ruct ure j ustcan' tkeep up w it h allt he rain t hatw e' re g et t ing. A nd the N O A A m aps, w hich are referred t o asA t las1 4 and A t las2 t hatw e use t o proj ectflood riskand fig ure outw here t o upg rade ourinfrast ruct ure forflooding , event saren' tkeeping up w it ht he rain eit her. ( 0 3 : 1 6 ) - T hey use t radit ionalhist oric m et hodsform easuring precipit ation risk. A nd fora long t im e, t hatw asperfect ly fine. T he problem isif y ou have an increasing precipit ation trend, then allof a sudden now t he averag e doesn' tact ually capt ure w hatt he currentevent sare. Itact ually peg st hem backt o a clim at et hatcould be asfaras2 0 or3 0 y earsag o. ( 0 3 : 3 5 ) - In ot herw ords, t he N O A A m apslookbackw ardsand notforw ards. S o F irstS t reet decided t ot ake a differentapproach t o N O A A ' sdat a. - O urreportw asreally focused on t he ex t rem e precipit ation event sasopposed t ot he averag e precipit ation levelsacrosst he count ry. A nd it ' snotnecessarily t hatw e' re seeing m ore of t hese event s, butw hen w e seen t hem , they ' re m ore severe, w e' re seeing m ore severit y in the int ensit y of t he rainfallevent sovershort er durat ions, w hich iscausing m ore - F looding. ( 0 4 : 0 1 ) A m itS hivprasad livesin H ollis, Q ueens. H isneig hborhood hasbeen im pact ed by flooding event sfora long t im e, butrecent ly it' sg ot ten w orse. L ooking around t he area hasvery few g reen spacest o absorb R ainw at erand A m itlearned t hatt hisarea used t o be an act ual lake. - S o t hisisact ually ourhouse w here y ou g uy sare rig htnow. ( 0 4 : 2 1 ) S o if if y ou look, it ' sact ually sitting in t he m iddle of a pond rig htnow, and t hisisw hatt he pond looked like backin 1 9 2 8. If y ou - L ookatan old m ap of N ew YorkCit y and see w here all t he creeksand t he lakesused t o be, and t hen y ou lookatt oday ' sflood m ap, y ou can act ually see t hatit ' spret ty m uch ident ical. ( 0 4 : 3 7 ) - F E M A ' s1 0 0 y earfloodplain m ap derived from N O A A ' sA t las1 4 direct ly im pactst he costof and accesst o flood insurance. Butsince t he m ap doesn' tinclude flooding from rainst orm s, m any com m unit iesare leftout. A nd asa result , overex posed - F lood insurance w as neversold t o any one in t hiscom m unit y because w e don' tlive in a flood z one ora F E M A hundred y earm ap. ( 0 5 : 0 0 ) But- F looding hasdevast at ed thiscom m unit y. In 2 0 2 1 , afterH urricane Ida m ade landfall asa cat eg ory four, itt raveled up t he E ast ern U S dum ping record breaking rainfallin it spat h in N ew YorkCit y alone. Itdropped overseven inches, peaking att hree inchesof rain perhour. A m it ' sneig hborhood w asnotprepared. ( 0 5 : 1 9 ) - Itst art ed off asa norm alday , had dinnerw it h m y folksand allt he w arning sst artt ogo off. R an dow nst airs, g rabbed m y poncho, w it h m e and m y dad t ookourshovelsand rake w ent outt o clean t he basinslike w e do every sing le t im e itrains. But- T he sew erbasinson A m it 's st reetw eren' tfunct ioning t hatday. ( 0 5 : 3 5 ) - Cit y w asdoing const ruct ion and t hey pret ty m uch had allt he basin coverscovered. N ot ice ast he rain w ascom ing in hig her. S o I ran up and g rabbed m y key s, m oved t he t ruckup t he blockbefore I g otbackdow n t he end of t he block, t he ent ire st reetw asflooded. - T he flooding killed 1 3 people in N ew York. ( 0 5 : 5 7 ) - 1 1 of t hose people died in flooded basem entapart m ent s, m ostof t hem here in Q ueens, 4 3 - y ear- old P ham at ee R am skrietand her2 2 - y ear- old son, K rishah, also know n as Tara, and N icholascould notsurvive lastnig ht ' srushing flood w at erscrashing t hroug h t he w all and pouring int ot heirbasem entapart m ent. - Tara and N icholasw ere t enant sin A m it ' sfam ily ' s basem ent. ( 0 6 : 2 0 ) Before Ida he lift ed t he doorst o hishom e, t hree t o fourfeett o prepare forflooding , but t he st orm broug htt oo m uch w at er. H e no long errent southisbasem entand now usest he space forcom m unit y event s. - U nfort unately , the w allcollapsed and t hat ' sthe reason w hy allt he dest ruct ion happened. S o I' ve done m y partw here itcom est o repair. (0 6 :4 1 ) Ij ustpray and askG od t hatitneverfloodsag ain. T hat ' sall. - Ida result ed in $ 7 5 billion in dam ag esacrosst he U. S. O ver3 3 , 5 0 0 building sin N ew YorkCit y w ere dest roy ed, and A m it 's rem odelalone costover$ 3 4 4 , 0 0 0. Butnotallareasw ere equally affect ed acrosst he H udson H oboken, N ew J ersey didn' tsuffert he sam e flooding , and t hisispart ly because of t heireffort s t o adaptt ot hisnew clim at e realit y. ( 0 7 : 1 0 ) - F looding hasalw ay sbeen a problem in t he cit y of H oboken. W e w ere orig inally a t idal m arsh, act ually. T he area w here w e w ere st anding , itw asm arshland. A llof t hese low - ly ing areast hatw ere m arsh t hatw ere filled in forindust rializ ation in t he early 1 9 hundredsare very subj ectt o flooding t oday. W e also have a com bined sew ersy st em w here ourst orm w at erand oursew ag e flow int ot he sam e pipes. ( 0 7 : 3 2 ) N ow w it h clim at e chang e, w e' re seeing m ore frequentst orm s, m ore severe st orm s. - To addresst he flooding issues, H oboken hasbeen building resiliencit y parksaround t he cit y. W e w enton a t ourof t he larg estparkt o underst and how t hese g reen spacesoperat e. - T hisisone of t he 1 9 rain g ardenst hatisin resiliencit y park. ( 0 7 : 4 9 ) A nd t hese rain g ardensw illm anag e w at erduring a rain event. You' llsee t hatitalm ost lookslike a pond. W at erisslow ly being delay ed from ent ering ourst orm w at ersy st em. It 's filt ered t hroug h t he rain g arden t hroug h allt he plant sand t he soil. T hen t hatw at erslow ly drains int ot he underg round t ankt hat ' sbelow t he parkand t hen g oesoutt o oursew ersy st em. ( 0 8 : 0 9 ) A nd t hat ' sallw at ert hatt hen isnoton ourst reet s. D uring a rain event , ourm illion g allon det ent ion t ankt hatisundert hislaw n can det ain st orm w at ert hatcom esfrom t he parksit e itself, asw ellasfrom allof N ort hern H oboken - A nd it ' sw orking. H oboken hasseen an 8 8 % decrease in flooding event ssince inst alling t hese m it ig at ion m easures. ( 0 8 : 2 9 ) A nd only t im e w illt ellif t hese m easureshold up ag ainstfut ure clim at e chang es. Butit 's st rong proof of concept. T he com parison of H oboken and H ollisalso follow sanot hert rend. R ecentst udiesfind t hatrace and w ealt h play a big role in w here nat uraldisast errecovery effort shappen, and t hisim pact ssafet y and econom ic out com esforresident s. ( 0 8 : 5 2 ) A st udy from 2 0 1 8 found t hatin areasw it h atleast$ 1 0 billion in dam ag esfrom a nat ural disast er, w hit e fam iliesact ually saw a w ealt h increase of about$ 1 2 6 , 0 0 0 postrecovery w hile blackfam iliessaw a w ealt h decrease of $ 2 7 , 0 0 0. T hism ap show st he ex t entof t hisw ealt h g ap in som e m aj orcit iesacrosst he U. S. ( 0 9 : 1 8 ) H oboken is6 4 % w hit e w hile A m it ' sn