10th Grade Mathematics Textbook PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This textbook covers the fundamentals of number systems, including rational and irrational numbers, and introduces the laws of exponents. It also includes a variety of exercises and examples to help students understand and apply these concepts.
Full Transcript
vè;k; 1 la[;k i¼fr 1.1 Hkwfedk fiNyh d{kkvksa esa] vki la[;k js[kk osQ ckjs esa i 0 gSA vuqPNsn 1-2 esa] geus ;g ns[kk gS fd fdl izdkj la[;k js[kk ij n dks] tgk¡ n ,d /ukRed iw.kk±d gS] fu:fir fd;k tkrk gSA vc ge ;g fn[kk,¡xs...
vè;k; 1 la[;k i¼fr 1.1 Hkwfedk fiNyh d{kkvksa esa] vki la[;k js[kk osQ ckjs esa i 0 gSA vuqPNsn 1-2 esa] geus ;g ns[kk gS fd fdl izdkj la[;k js[kk ij n dks] tgk¡ n ,d /ukRed iw.kk±d gS] fu:fir fd;k tkrk gSA vc ge ;g fn[kk,¡xs fd fdl izdkj x dks] tgk¡ x ,d nh gqbZ /ukRed okLrfod la[;k gS] T;kferh; (geometrically) :i ls Kkr fd;k tkrk gSA mnkgj.k ds fy,] vkb, ge bls x = 3.5 ds fy, izkIr djsaA vFkkZr~ ge 3.5 dks vko`Qfr 1.11 T;kehrh; :i ls izkIr djsaxsA ,d nh gqbZ js[kk ij ,d fLFkj fcUnq A ls 3.5 ,dd dh nwjh ij fpÉ yxkus ij ,d ,slk fcUnq B izkIr gksrk gS] ftlls fd AB = 3.5 ,dd (nsf[k, vkÑfr 1.11)A B ls 1 ,dd dh nwjh ij fpÉ yxkb, vkSj bl u, fcUnq dks C eku yhft,A AC dk eè;&fcUnq Kkr 2024-25 20 xf.kr dhft, vkSj ml fcanq dks O eku yhft,A O dks osQUnz vkSj OC dks f=kT;k ekudj ,d v/Zo`Ùk cukb,A AC ij yac ,d ,slh js[kk [khafp, tks B ls gksdj tkrh gks vkSj v/Zo`Ùk dks D ij dkVrh gksA rc BD = 3.5 gSA vf/d O;kid :i esa] x dk eku Kkr djus osQ fy,] tgk¡ x ,d /ukRed okLrfod la[;k gS] ,d ,slk fcanq B ysrs gSa] ftlls fd AB = x ,dd gks vkSj tSlk fd vko`Qfr 1-16 esa fn[kk;k x;k gS] ,d ,slk fcanq C yhft, ftlls fd BC = 1 ,dd gksA rc] tSlk fd geus fLFkfr x = 3.5 osQ fy, fd;k vko`Qfr 1.12 gS] gesa BD = x izkIr gksxk (vko`Qfr 1.12)A ge bl ifj.kke dks ikbFkkxksjl izes; dh lgk;rk ls fl¼ dj ldrs gSaA x +1 è;ku nhft, fd vko`Qfr 1.12 esa] ∆ OBD ,d ledks.k f=kHkqt gSA o`Ùk dh f=kT;k 2 ,dd gSA x +1 vr%, OC = OD = OA = ,dd 2 x + 1 x − 1 vc] OB = x− = ⋅ 2 2 vr%] ikbFkkxksjl izes; ykxw djus ij] gesa ;g izkIr gksrk gS% 2 2 x + 1 x − 1 4x BD = OD – OB = 2 2 2 − = =x 2 2 4 blls ;g irk pyrk gS fd BD = x gSA bl jpuk ls ;g n'kkZus dh ,d fp=kh; vkSj T;kferh; fof/ izkIr gks tkrh gS fd lHkh okLrfod la[;kvksa x > 0 osQ fy,] x dk vfLrRo gSA ;fn ge la[;k js[kk ij x dh fLFkfr tkuuk pkgrs gSa] rks vkb, ge js[kk BC dks la[;k js[kk eku ysa] B dks 'kwU; eku ysa vkSj C dks 1 eku ysa] vkfn&vkfnA B dks osQUnz vkSj BD dks f=kT;k ekudj ,d pki [khafp, tks la[;k js[kk dks E ij dkVrk gS (nsf[k, vkÑfr 1-13)A rc E, x fu:fir djrk gSA 2024-25 la[;k i¼fr 21 vko`Qfr 1.13 vc ge oxZewy dh vo/kj.kk dks ?kuewyksa] prqFkZewyksa vkSj O;kid :i ls nosa ewyksa] tgk¡ n ,d /ukRed iw.kk±d gS] ij ykxw djuk pkgsaxsA vkidks ;kn gksxk fd fiNyh d{kkvksa esa vki oxZewyksa vkSj ?kuewyksa dk vè;;u dj pqosQ gSaA 3 8 D;k gS\ ge tkurs gSa fd ;g ,d /ukRed la[;k gS ftldk ?ku 8 gS] vkSj vkius ;g vo'; vuqeku yxk fy;k gksxk fd 3 8 = 2 gSA vkb, ge 5 243 dk eku Kkr djsaA D;k vki ,d ,slh la[;k b tkurs gSa ftlls fd b5 = 243 gks\ mÙkj gS 3] vr%] 5 243 = 3 gqvkA bu mnkgj.kksa ls D;k vki n a ifjHkkf"kr dj ldrs gSa] tgk¡ a > 0 ,d okLrfod la[;k gS vkSj n ,d /ukRed iw.kk±d gS\ eku yhft, a > 0 ,d okLrfod la[;k gS vkSj n ,d /ukRed iw.kk±d gSA rc n a = b, tcfd bn = a vkSj b > 0A è;ku nhft, fd 2 , 3 8 , n a vkfn esa iz;qDr izrhd ^^ ** dks dj.kh fpÉ (radical sign) dgk tkrk gSA vc ge ;gk¡ oxZewyksa ls lacaf/r oqQN loZlfedk,¡ (identities) ns jgs gSa tks fofHkUu fof/;ksa ls mi;ksxh gksrh gSaA fiNyh d{kkvksa esa vki buesa ls oqQN loZlfedkvksa ls ifjfpr gks pqosQ gSaA 'ks"k loZlfedk,¡ okLrfod la[;kvksa osQ ;ksx ij xq.ku osQ caVu fu;e ls vkSj loZlfedk (x + y) (x – y) = x2 – y2 ls] tgk¡ x vkSj y okLrfod la[;k,¡ gSa] izkIr gksrh gSAa eku yhft, a vkSj b /ukRed okLrfod la[;k,¡ gSaA rc] a a (i) ab = a b (ii) = b b (iii) ( a+ b )( ) a − b =a−b ( (iv) a + b ) (a − b ) = a 2 −b 2024-25 22 xf.kr (v) ( a+ b )( ) c + d = ac + ad + bc + bd ( ) 2 (vi) a + b = a + 2 ab + b vkb, ge bu loZlfedkvksa dh oqQN fo'ks"k fLFkfr;ksa ij fopkj djsaA mnkgj.k 15 : fuEufyf[kr O;atdksa dks ljy dhft,% (i) (5 + 7 ) ( 2 + 5 ) (ii) ( 5 + 5 ) ( 5 − 5 ) (iii) ( 3 + 7 ) (iv) ( 11 − 7 ) ( 11 + 7 ) 2 gy : (i) ( 5 + 7 ) ( 2 + 5 ) = 10 + 5 5 + 2 7 + 35 (ii) ( 5 + 5 ) ( 5 − 5 ) = 5 − ( 5 ) = 25 – 5 = 20 2 2 (iii) ( 3 + 7 ) = ( 3 ) + 2 3 7 + ( 7 ) = 3 + 2 21 + 7 = 10 + 2 2 2 2 21 (iv) ( 11 − 7 ) ( 11 + 7 ) = ( 11 ) − ( 7 ) = 11 − 7 = 4 2 2 fVIi.kh : è;ku nhft, fd Åij osQ mnkgj.k esa fn, x, 'kCn ¶ljy djuk¸ dk vFkZ ;g gS fd O;atd dks ifjes; la[;kvksa vkSj vifjes; la[;kvksa osQ ;ksx osQ :i esa fy[kuk pkfg,A 1 ge bl leL;k ij fopkj djrs gq, fd 2 la[;k js[kk ij dgk¡ fLFkr gS] bl vuqPNsn dks ;gha lekIr djrs gSaA ge tkurs gSa fd ;g ,d vifjes; gSA ;fn gj ,d ifjes; la[;k gks] rks bls ljyrk ls gy fd;k tk ldrk gSA vkb, ge ns[ksa fd D;k ge blds gj dk ifjes;dj.k (rationalise) dj ldrs gSa] vFkkZr~ D;k gj dks ,d ifjes; la[;k esa ifjo£rr dj ldrs gSaA blosQ fy, gesa oxZewyksa ls lacaf/r loZlfedkvksa dh vko';drk gksrh gSA vkb, ge ns[ksa fd bls oSQls fd;k tk ldrk gSA 1 mnkgj.k 16 : 2 osQ gj dk ifjes;dj.k dhft,A 1 gy : ge 2 dks ,d ,sls rqY; O;atd osQ :i esa fy[kuk pkgrs gSa] ftlesa gj ,d ifjes; la[;k 2024-25 la[;k i¼fr 23 1 2 gksA ge tkurs gSa fd 2. 2 ifjes; gSA ge ;g Hkh tkurs gSa fd dks ls xq.kk djus 2 2 2 ij gesa ,d rqY; O;atd izkIr gksrk gS] D;ksafd = 1 gSA vr% bu nks rF;ksa dks ,d lkFk ysus 2 ij] gesa ;g izkIr gksrk gS% 1 1 2 2 = × = 2 2 2 2 1 bl :i esa dks la[;k js[kk ij LFkku fu/kZj.k ljy gks tkrk gSA ;g 0 vkSj 2 osQ eè; fLFkr 2 gSA 1 mnkgj.k 17 : osQ gj dk ifjes;dj.k dhft,A 2+ 3 1 gy : blosQ fy, ge Åij nh xbZ loZlfedk (iv) dk iz;ksx djrs gSaA 2 + 3 dks 2 − 3 ls xq.kk djus vkSj Hkkx nsus ij] gesa ;g izkIr gksrk gS% 1 2− 3 2− 3 × = =2− 3 2+ 3 2− 3 4−3 5 mnkgj.k 18 : osQ gj dk ifjes;dj.k dhft,A 3− 5 gy : ;gk¡ ge Åij nh xbZ loZlfedk (iii) dk iz;ksx djrs gSaA 5 3+ 5 5 3+ 5 −5 ( ) vr%] 3− 5 = 5 3− 5 × 3+ 5 = 3−5 = 2 ( 3+ 5 ) 1 mnkgj.k 19 : osQ gj dk ifjes;dj.k dhft,A 7+3 2 1 1 7 −3 2 7 −3 2 7 −3 2 gy : = × = = 7 + 3 2 7 + 3 2 7 − 3 2 49 − 18 31 2024-25 24 xf.kr vr% tc ,d O;atd osQ gj esa oxZewy okyk ,d in gksrk gS (;k dksbZ la[;k dj.kh fpÉ ds vanj gks)] rc bls ,d ,sls rqY; O;atd esa] ftldk gj ,d ifjes; la[;k gS] :ikarfjr djus dh fØ;kfof/ dks gj dk ifjes;dj.k (rationalising the denominator) dgk tkrk gSA iz'ukoyh 1.4 1. crkb, uhps nh xbZ la[;kvksa esa dkSu&dkSu ifjes; gSa vkSj dkSu&dkSu vifjes; gSa% (i) 2− 5 ( (ii) 3 + ) 23 − 23 (iii) 2 7 7 7 1 (iv) (v) 2π 2 2. fuEufyf[kr O;atdksa esa ls izR;sd O;atd dks ljy dhft,% (i) (3 + 3 ) ( 2 + 2 ) ( (ii) 3 + 3 ) (3 − 3 ) ( ) (iv) ( 2) ( 5 + 2) 2 (iii) 5+ 2 5− 3. vkidks ;kn gksxk fd π dks ,d o`Ùk dh ifjf/ (eku yhft, c) vkSj mlosQ O;kl (eku c yhft, d) osQ vuqikr ls ifjHkkf"kr fd;k tkrk gS] vFkkZr~ π= gSA ;g bl rF; dk d var£ojks/ djrk gqvk izrhr gksrk gS fd π vifjes; gSA bl var£ojks/ dk fujkdj.k vki fdl izdkj djsaxs\ 4. la[;k js[kk ij 9.3 dks fu:fir dhft,A 5. fuEufyf[kr osQ gjksa dk ifjes;dj.k dhft,% 1 1 1 1 (i) (ii) (iii) (iv) 7 7− 6 5+ 2 7 −2 1.5 okLrfod la[;kvksa osQ fy, ?kkrkad&fu;e D;k vkidks ;kn gS fd fuEufyf[kr dk ljyhdj.k fdl izdkj djrs gSa\ (i) 172. 175 = (ii) (52)7 = 2310 (iii) = (iv) 73. 93 = 237 2024-25 la[;k i¼fr 25 D;k vkius fuEufyf[kr mÙkj izkIr fd, Fks\ (i) 172. 175 = 177 (ii) (52)7 = 514 2310 (iii) = 233 (iv) 73. 93 = 633 237 bu mÙkjksa dks izkIr djus osQ fy,] vkius fuEufyf[kr ?kkrkad&fu;eksa (laws of exponents) dk iz;ksx vo'; fd;k gksxk] [;gk¡ a, n vkSj m izko`Qr la[;k,¡ gSaA vkidks ;kn gksxk fd a dks vk/kj (base) vkSj m vkSj n dks ?kkrkad (exponents) dgk tkrk gS A] ftudk vè;;u vki fiNyh d{kkvksa esa dj pqosQ gSa% (i) am. an = am + n (ii) (am)n = amn am (iii) = am − n , m > n (iv) ambm = (ab)m an (a)0 D;k gS\ bldk eku 1 gSA vki ;g vè;;u igys gh dj pqosQ gSa fd (a)0 = 1 1 gksrk gSA vr%] (iii) dks ykxw djosQ] vki n = a − n izkIr dj ldrs gSaA vc ge bu fu;eksa a dks ½.kkRed ?kkrkadksa ij Hkh ykxw dj ldrs gSaA vr%] mnkgj.k osQ fy, % 1 (i) 172 ⋅ 17 –5 = 17 –3 = (ii) (52 ) –7 = 5–14 173 23–10 (iii) = 23–17 (iv) (7) –3 ⋅ (9) –3 = (63) –3 237 eku yhft, ge fuEufyf[kr vfHkdyu djuk pkgrs gSa % 2 1 4 1 (i) 2 3 ⋅ 23 (ii) 5 3 1 75 1 1 (iii) 1 (iv) 135 ⋅ 17 5 3 7 ge ;s vfHkdyu fdl izdkj djsaxs\ ;g ns[kk x;k gS fd os ?kkrkad&fu;e] ftudk vè;;u ge igys dj pqosQ gSa] ml fLFkfr esa Hkh ykxw gks ldrs gSa] tcfd vk/kj /ukRed okLrfod la[;k gks vkSj ?kkrkad ifjes; la[;k gks (vkxs vè;;u djus ij ge ;g ns[ksaxs 2024-25 26 xf.kr fd ;s fu;e ogk¡ Hkh ykxw gks ldrs gSa] tgk¡ ?kkrkad okLrfod la[;k gksA)A ijUrq] bu fu;eksa dk dFku nsus ls igys vkSj bu fu;eksa dks ykxw djus ls igys] ;g le> ysuk 3 vko';d gS fd] mnkgj.k osQ fy,] 4 2 D;k gSA vr%] bl laca/ esa gesa oqQN djuk gksxkA n a dks bl izdkj ifjHkkf"kr fd;k tkrk gS] tgk¡ a > 0 ,d okLrfod la[;k gS% eku yhft, a > 0 ,d okLrfod la[;k gS vkSj n ,d /ukRed iw.kk±d gSA rc n a = b gksrk gS, tcfd bn = a vkSj b > 0 gksA 1 ?kkrkadksa dh Hkk"kk esa] ge n a = a n osQ :i esa ifjHkkf"kr djrs gSaA mnkgj.k osQ fy,] 1 3 3 2 = 2 3 gSA vc ge 4 2 dks nks fof/;ksa ls ns[k ldrs gSaA 3 1 3 4 = 42 = 2 = 8 2 3 3 1 1 4 2 = ( 4 ) 2 = ( 64 ) 2 = 8 3 vr%] gesa ;g ifjHkk"kk izkIr gksrh gS% eku yhft, a > 0 ,d okLrfod la[;k gS rFkk m vkSj n ,sls iw.kk±d gSa fd 1 osQ vfrfjDr budk dksbZ vU; mHk;fu"B xq.ku[kaM ugha gS vkSj n > 0 gSA rc] m ( a) m an = n = n am vr% okafNr foLr`r ?kkrkad fu;e ;s gSa% eku yhft, a > 0 ,d okLrfod la[;k gS vkSj p vkSj q ifjes; la[;k,¡ gSaA rc] p q p+q p q pq (i) a.a =a (ii) (a ) = a p a (iii) = ap −q (iv) apbp = (ab)p aq vc vki igys iwNs x, iz'uksa dk mÙkj Kkr djus osQ fy, bu fu;eksa dk iz;ksx dj ldrs gSAa 2 1 4 1 mnkgj.k 20 : ljy dhft,% (i) 2 3 ⋅ 2 3 (ii) 5 3 1 75 1 1 (iii) 1 (iv) 135 ⋅ 17 5 73 2024-25 la[;k i¼fr 27 gy : 2 1 4 2 1 + 3 1 4 (i) 2 ⋅2 =2 3 3 3 3 =2 =2 =2 3 1 (ii) 35 = 35 1 1 1 3−5 −2 1 1 1 1 75 − (iii) 1 =7 5 3 =7 15 =7 15 (iv) 135 ⋅ 17 5 = (13 × 17) 5 = 2215 3 7 iz'ukoyh 1.5 1 1 1 1. Kkr dhft,% (i) 64 2 (ii) 32 5 (iii) 125 3 3 2 3 −1 2. Kkr dhft,% (i) 9 2 (ii) 32 5 (iii) 16 4 (iv) 125 3 1 7 1 2 1 1 1 112 3. ljy dhft,% (i) 2 ⋅2 3 5 (ii) 3 (iii) 1 (iv) 7 2 ⋅ 8 2 3 4 11 1.6 lkjka'k bl vè;k; esa] vkius fuEufyf[kr fcUnqvksa dk vè;;u fd;k gS% p 1. la[;k r dks ifjes; la[;k dgk tkrk gS] ;fn bls q osQ :i esa fy[kk tk ldrk gks] tgk¡ p vkSj q iw.kk±d gSa vkSj q ≠ 0 gSA p 2. la[;k s dks vifjes; la[;k dgk tkrk gS] ;fn bls osQ :i esa u fy[kk tk ldrk q gks] tgk¡ p vkSj q iw.kk±d gSa vkSj q ≠ 0 gSA 3. ,d ifjes; la[;k dk n'keyo izlkj ;k rks lkar gksrk gS ;k vuolkuh vkorhZ gksrk gSA lkFk gh] og la[;k] ftldk n'keyo izlkj lkar ;k vuolkuh vkorhZ gS] ifjes; gksrh gSA 4. ,d vifjes; la[;k dk n'keyo izlkj vuolkuh vukorhZ gksrk gSA lkFk gh] og la[;k ftldk n'keyo izlkj vuolkuh vukorhZ gS] vifjes; gksrh gSA 5. lHkh ifjes; vkSj vifjes; la[;kvksa dks ,d lkFk ysus ij okLrfod la[;kvksa dk laxzg izkIr gksrk gSA 2024-25 28 xf.kr 6. ;fn r ifjes; gS vkSj s vifjes; gS] rc r + s vkSj r – s vifjes; la[;k,¡ gksrh gSa rFkk r rs vkSj vifjes; la[;k,¡ gksrh gSa ;fn r≠0 gSA s 7. /ukRed okLrfod la[;kvksa a vkSj b osQ laca/ esa fuEufyf[kr loZlfedk,¡ ykxw gksrh gSa% a a (i) ab = a b (ii) = b b (iii) ( a + b )( ) a − b =a−b (iv) (a + b ) (a − b ) = a 2 −b ( ) 2 (v) a + b = a + 2 ab + b 1 a −b 8. osQ gj dk ifjes;dj.k djus osQ fy,] bls ge ls xq.kk djrs gSa] tgk¡ a + b a −b a vkSj b iw.kk±d gSaA 9. eku yhft, a>0 ,d okLrfod la[;k gS vkSj p vkSj q ifjes; la[;k,¡ gSaA rc] (i) ap. aq = ap + q (ii) (ap)q = apq ap (iii) = ap − q (iv) apbp = (ab)p aq 2024-25