Grade 9 Math Learner's Material PDF

Document Details

PunctualZeugma

Uploaded by PunctualZeugma

2014

Merden L. Bryant, Leonides E. Bulalayao, Melvin M. Callanta, Jerry D. Cruz, Richard F. De Vera, Gilda T. Garcia, Sonia E. Javier, Roselle A. Lazaro, Bernadeth J. Mesterio, and Rommel Hero A. Saladino

Tags

mathematics grade 9 quadratic equations learning material

Summary

This is a Grade 9 mathematics learner's material published in the Philippines in 2014. It covers various mathematical topics, including quadratic equations and inequalities, quadratic functions, variations, and exponents. The material is designed for use in a secondary school setting.

Full Transcript

9 Mathematics Learner’s Material This instructional material was collaboratively developed and reviewed by educators from public and private schools, colleges, and/or universit...

9 Mathematics Learner’s Material This instructional material was collaboratively developed and reviewed by educators from public and private schools, colleges, and/or universities. We encourage teachers and other education stakeholders to email their feedback, comments, and recommendations to the Department of Education at [email protected]. We value your feedback and recommendations. Department of Education Republic of the Philippines MATHEMATICS GRADE 9 Learner’s Material First Edition, 2014 ISBN: 978-971-9601-71-5 Republic Act 8293, section 176 states that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for exploitation of such work for profit. Such agency or office may, among other things, impose as a condition the payment of royalties. Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trade- marks, etc.) included in this book are owned by their respective copyright holders. DepEd is represented by the Filipinas Copyright Licensing Society (FILCOLS), Inc. in seeking permission to use these materials from their respective copyright owners. The publisher and authors do not represent nor claim ownership over them. Published by the Department of Education Secretary: Br. Armin A. Luistro FSC Undersecretary: Dina S. Ocampo, PhD Development Team of the Learner’s Material Authors: Merden L. Bryant, Leonides E. Bulalayao, Melvin M. Callanta, Jerry D. Cruz, Richard F. De Vera, Gilda T. Garcia, Sonia E. Javier, Roselle A. Lazaro, Bernadeth J. Mesterio, and Rommel Hero A. Saladino Consultants: Rosemarievic Villena-Diaz, PhD, Ian June L. Garces, PhD, Alex C. Gonzaga, PhD, and Soledad A. Ulep, PhD Editor: Debbie Marie B. Versoza, PhD Reviewers: Alma D. Angeles, Elino S. Garcia, Guiliver Eduard L. Van Zandt, Arlene A. Pascasio, PhD, and Debbie Marie B. Versoza, PhD Book Designer: Leonardo C. Rosete, Visual Communication Department, UP College of Fine Arts Management Team: Dir. Jocelyn DR. Andaya, Jose D. Tuguinayo Jr., Elizabeth G. Catao, Maribel S. Perez, and Nicanor M. San Gabriel Jr. Published in the Philippines by Vibal Group, Inc. Department of Education-Instructional Materials Council Secretariat (DepEd-IMCS) Office Address: 5th Floor Mabini Building, DepEd Complex Meralco Avenue, Pasig City, Philippines 1600 Telefax: (02) 634-1054 o 634-1072 E-mail Address: [email protected] ii Table of Contents UNIT I Module 1. Quadratic Equations and Inequalities.............................................................. 1 Module Map................................................................................................................................... 3 Pre-Assessment............................................................................................................................. 4 Learning Goals and Targets....................................................................................................... 10 Lesson I. Illustrations of Quadratic Equations.................................................................... 11 Lesson 2A. Solving Quadratic Equations by Extracting Square Roots...................... 18 Lesson 2B. Solving Quadratic Equations by Factoring.................................................... 27 Lesson 2C. Solving Quadratic Equations by Completing the Square........................ 35 Lesson 2D. Solving Quadratic Equations by Using the Quadratic Formula............. 47 Lesson 3. The Nature of the Roots of a Quadratic Equation.......................................... 56 Lesson 4. The Sum and the Product of Roots of Quadratic Equations...................... 66 Lesson 5. Equations Transformable into Quadratic Equations..................................... 77 Lesson 6. Solving Problems Involving Quadratic Equations......................................... 88 Lesson 7. Quadratic Inequalities............................................................................................. 96 Glossary of Terms.......................................................................................................................... 114 References and Websites Links Used in this Module....................................................... 115 Module 2. Quadratic Functions.......................................................................................... 119 Module Map................................................................................................................................... 121 Pre-Assessment............................................................................................................................. 122 Learning Goals and Targets....................................................................................................... 124 Lesson 1. Introduction to Quadratic Functions................................................................. 125 Lesson 2. Graphs of Quadratic Functions............................................................................ 140 Lesson 3. Finding the Equation of a Quadratic Function............................................... 156 Lesson 4. Applications of Quadratic Functions.................................................................. 174 Glossary of Terms.......................................................................................................................... 184 References and Website Links Used in this Module......................................................... 184 UNIT II Module 3. Variations............................................................................................................ 187 Module Map................................................................................................................................... 189 Pre-Assessment............................................................................................................................. 190 Learning Goals and Targets....................................................................................................... 192 Lesson 1. Direct Variation.......................................................................................................... 194 Lesson 2. Inverse Variation........................................................................................................ 206 Lesson 3. Joint Variation............................................................................................................. 215 Lesson 4. Combined Variation................................................................................................. 220 Glossary of Terms.......................................................................................................................... 223 References and Websites Links Used in this Module....................................................... 224 iii Module 4. Zero Exponents, Negative Integral Exponents, Rational Exponents, and Radicals.................................................................... 225 Module Map................................................................................................................................... 227 Pre-Assessment............................................................................................................................. 228 Learning Goals and Targets....................................................................................................... 230 Lesson 1. Zero, Negative and Rational Exponents............................................................ 231 Lesson 2. Radicals......................................................................................................................... 251 Lesson 3. Solving Radical Equations...................................................................................... 278 Glossary of Terms.......................................................................................................................... 295 References and Website Links Used in this Module......................................................... 295 UNIT III Module 5. Quadrilaterals..................................................................................................... 297 Module Map................................................................................................................................... 299 Pre-Assessment............................................................................................................................. 300 Learning Goals and Targets....................................................................................................... 304 Glossary of Terms.......................................................................................................................... 345 References and Websites Links Used in this Module....................................................... 345 Module 6. Similarity............................................................................................................ 347 Module Map................................................................................................................................... 349 Pre-Assessment............................................................................................................................. 350 Glossary of Terms.......................................................................................................................... 422 References and Websites Links Used in this Module....................................................... 423 UNIT IV Module 7. Triangle Trigonometry....................................................................................... 425 Module Map................................................................................................................................... 426 Pre-Assessment............................................................................................................................. 427 Learning Goals............................................................................................................................... 429 Lesson 1. The Six Trigonometric Ratios: Sine, Cosine, Tangent, Secant, Cosecant, and Cotangent....................................................................................... 430 Lesson 2. Trigonometric Ratios of Special Angles............................................................. 447 Lesson 3. Angles of Elevation and Angles of Depression............................................... 457 Lesson 4. Word Problems Involving Right Triangles........................................................ 467 Lesson 5. Oblique Triangles...................................................................................................... 477 Lesson 5.1. The Law of Sines and Its Applications............................................................ 480 Lesson 5.2. The Law of Cosines and Its Applications....................................................... 497 Glossary of Terms.......................................................................................................................... 506 References and Websites Links Used in this Module....................................................... 507 iv MODULE 1 Quadratic Equations and Inequalities I. INTRODUCTION AND FOCUS QUESTIONS Was there any point in your life when you asked yourself about the different real-life quantities such as costs of goods or services, incomes, profits, yields and losses, amount of particular things, speed, area, and many others? Have you ever realized that these quantities can be mathematically represented to come up with practical decisions? Find out the answers to these questions and determine the vast applications of quadratic equations and quadratic inequalities through this module. 1 II. LESSONS AND COVERAGE In this module, you will examine the above questions when you take the following lessons: Lesson 1 – ILLUSTRATIONS OF QUADRATIC EQUATIONS Lesson 2 – SOLVING QUADRATIC EQUATIONS EXTRACTING SQUARE ROOTS FACTORING COMPLETING THE SQUARE QUADRATIC FORMULA Lesson 3 – NATURE OF ROOTS OF QUADRATIC EQUATIONS Lesson 4 – SUM AND PRODUCT OF ROOTS OF QUADRATIC EQUATIONS Lesson 5 – EQUATIONS TRANSFORMABLE INTO QUADRATIC EQUATIONS (INCLUDING RATIONAL ALGEBRAIC EQUATIONS) Lesson 6 – APPLICATIONS OF QUADRATIC EQUATIONS AND RATIONAL ALGEBRAIC EQUATIONS Lesson 7 – QUADRATIC INEQUALITIES Objectives In these lessons, you will learn to: Lesson 1 illustrate quadratic equations; solve quadratic equations by: (a) extracting square roots; (b) factoring; (c) Lesson 2 completing the square; (d) using the quadratic formula; Lesson 3 characterize the roots of a quadratic equation using the discriminant; describe the relationship between the coefficients and the roots of a quadratic Lesson 4 equation; solve equations transformable into quadratic equations (including rational Lesson 5 algebraic equations); Lesson 6 solve problems involving quadratic equations and rational algebraic equations; illustrate quadratic inequalities; Lesson 7 solve quadratic inequalities; and solve problems involving quadratic inequalities. 2 Module Map Here is a simple map of the lessons that will be covered in this module: Quadratic Equations, Quadratic Inequalities, and Rational Algebraic Equations Illustrations of Quadratic Equations Extracting Square Roots Factoring Solving Quadratic Equations Completing the Square Nature of Roots of Quadratic Formula Quadratic Equations Sum and Product of Roots of Quadratic Equations Equations Transformable Rational Algebraic Equations into Quadratic Equations Applications of Quadratic Equations and Illustrations of Quadratic Rational Algebraic Equations Inequalities Solving Quadratic Quadratic Inequalities Inequalities Application of Quadratic Inequalities 3 III. PRE-ASSESSMENT Part I Directions: Find out how much you already know about this module. Choose the letter that you think best answers the question. Please answer all items. Take note of the items that you were not able to answer correctly and find the right answer as you go through this module. 1. It is a polynomial equation of degree two that can be written in the form ax2 + bx + c = 0, where a, b, and c are real numbers and a ≠ 0. A. Linear Equation C. Quadratic Equation B. Linear Inequality D. Quadratic Inequality 2. Which of the following is a quadratic equation? A. 2r2 + 4r – 1 C. s2 + 5s – 4 = 0 B. 3t – 7 = 2 D. 2x2 – 7x ≥ 3 3. In the quadratic equation 3x2 + 7x – 4 = 0, which is the quadratic term? A. x2 C. 3x2 B. 7x D. –4 4. Which of the following rational algebraic equations is transformable into a quadratic equation? w +1 w + 2 2q – 1 1 3q + = A. – =7 C. 2 4 3 2 4 2 3 3 4 7 B. + =5 D. + = p p +1 m–2 m+2 m 5. How many real roots does the quadratic equation x2 + 5x + 7 = 0 have? A. 0 C. 2 B. 1 D. 3 6. The roots of a quadratic equation are -5 and 3. Which of the following quadratic equations has these roots? A. x2 – 8x + 15 = 0 C. x2 – 2x – 15 = 0 B. x2 + 8x + 15 = 0 D. x2 + 2x – 15 = 0 7. Which of the following mathematical statements is a quadratic inequality? A. 2r2 – 3r – 5 = 0 C. 3t2 + 7t – 2 ≥ 0 B. 7h + 12 < 0 D. s2 + 8s + 15 = 0 4 8. Which of the following shows the graph of y ≥ x2 + 7x + 6? A. C. B. D. 9. Which of the following values of x make the equation x2 +7x – 18 = 0 true? I. -9 II. 2 III. 9 A. I and II C. I and III B. II and III D. I, II, and III 10. Which of the following quadratic equations has no real roots? A. 2x2 + 4x = 3 C. 3s2 – 2s = –5 B. t2 – 8t – 4 = 0 D. –2r2 + r + 7 = 0 11. What is the nature of the roots of the quadratic equation if the value of its discriminant is zero? A. The roots are not real. C. The roots are rational and not equal. B. The roots are irrational and not equal. D. The roots are rational and equal. 5 12. One of the roots of 2x2 – 13x + 20 = 0 is 4. What is the other root? 2 2 A. – C. 5 5 5 5 B. – D. 2 2 13. What are the roots of the quadratic equation x2 + x – 56 = 0? A. 2 and -1 C. -8 and 7 B. 8 and -7 D. 3 and -2 14. What is the sum of the roots of the quadratic equation x2 + 6x – 14 = 0? A. -7 C. -3 B. -6 D. 14 15. Which of the following quadratic equations can be solved easily by extracting square roots? A. x2 + 7x + 12 = 0 C. 4t2 – 9 = 0 B. 2w2 + 7w – 3 = 0 D. 3v2 + 2v – 8 = 0 16. Which of the following coordinates of points belong to the solution set of the inequality y < 2x2 + 5x – 1? A. (-3, 2) C. (1, 6) B. (-2, 9) D. (3, 1) 17. A 3 cm by 3 cm square piece of cardboard was cut from a bigger square cardboard. The area of the remaining cardboard was 40 cm2. If s represents the length of the bigger cardboard, which of the following expressions give the area of the remaining piece? A. s – 9 C. s2 – 9 B. s2 + 9 D. s2 + 40 18. The length of a wall is 12 m more than its width. If the area of the wall is less than 50 m2, which of the following could be its length? A. 3 m C. 15 m B. 4 m D. 16 m 19. The length of a garden is 5 m longer than its width and the area is 14 m2. How long is the garden? A. 9 m C. 5 m B. 7 m D. 2 m 6 20. A car travels 20 kph faster than a truck. The car covers 480 km in two hours less than the time it takes the truck to travel the same distance. How fast does the car travel? A. 44 kph C. 80 kph B. 60 kph D. 140 kph 21. A 12 cm by 16 cm picture is mounted with border of uniform width on a rectangular frame. If the total area of the border is 288 cm2, what is the length of the side of the frame? A. 8 cm C. 20 cm B. 16 cm D. 24 cm 22. SamSon Electronics Company would like to come up with an LED TV such that its screen is 560 square inches larger than the present ones. Suppose the length of the screen of the larger TV is 6 inches longer than its width and the area of the smaller TV is 520 square inches. What is the length of the screen of the larger LED TV? A. 26 in C. 33 in B. 30 in D. 36 in 23. The figure on the right shows the graph of y < 2x2 – 4x – 1. Which of the following is true about the solution set of the inequality? I. The coordinates of all points on the shaded region belong to the solution set of the inequality. II. The coordinates of all points along the parabola as shown by the broken line belong to the solution set of the inequality. III. The coordinates of all points along the parabola as shown by the broken line do not belong to the solution set of the inequality. A. I and II C. II and III B. I and III D. I, II, and III 24. It takes Mary 3 hours more to do a job than it takes Jane. If they work together, they can finish the same job in 2 hours. How long would it take Mary to finish the job alone? A. 3 hours C. 6 hours B. 5 hours D. 8 hours 7 25. An open box is to be formed out of a rectangular piece of cardboard whose length is 12 cm longer than its width. To form the box, a square of side 5 cm will be removed from each corner of the cardboard. Then the edges of the remaining cardboard will be turned up. If the box is to hold at most 1900 cm3, what mathematical statement would represent the given situation? A. x2 – 12x ≤ 360 C. x2 – 8x ≤ 400 B. x2 – 12x ≤ 380 D. x2 + 8x ≤ 400 26. The length of a garden is 2 m more than twice its width and its area is 24 m2. Which of the following equations represents the given situation? A. x2 + x = 12 C. x2 + x = 24 B. x2 + 2x = 12 D. x2 + 2x = 24 27. From 2004 through 2012, the average weekly income of an employee in a certain company is estimated by the quadratic expression 0.16n2 + 5.44n + 2240, where n is the number of years after 2004. In what year was the average weekly income of an employee equal to Php2,271.20? A. 2007 C. 2009 B. 2008 D. 2010 28. In the figure below, the area of the shaded region is 144 cm2. What is the length of the longer side of the figure? s 6 cm s 4 cm A. 8 cm C. 14 cm B. 12 cm D. 18 cm 8 Part II Directions: Read and understand the situation below then answer or perform what are asked. Mrs. Villareal was asked by her principal to transfer her Grade 9 class to a new classroom that was recently built. The room however still does not have fixtures such as teacher’s table, bulletin boards, divan, bookshelves, and cabinets. To help her acquire these fixtures, she informed the parents of her students about these classroom needs. The parents decided to donate construction materials such as wood, plywood, nails, paints, and many others. After all the materials have been received, she asked her students to make the designs of the different classroom needs. Each group of students was assigned to do the design of a particular fixture. The designs that the students will prepare shall be used by the carpenter in constructing the tables, chairs, bulletin boards, divan, bookshelves, and cabinets. 1. Suppose you are one of the students of Mrs. Villareal, how will you prepare the design of one of the fixtures? 2. Make a design of the fixture assigned to your group. 3. Illustrate every part or portion of the fixture including its measurement. 4. Using the design of the fixture made, determine all the mathematics concepts or principles involved. 5. Formulate problems involving these mathematics concepts or principles. 6. Write the expressions, equations, or inequalities that describe the situations or problems. 7. Solve the equations, the inequalities, and the problems formulated. Rubric for Design 4 3 2 1 The design is The design is The design is not accurately made, The design is made accurately made and accurately made but presentable, and but not appropriate. appropriate. appropriate. appropriate. Rubric for Equations Formulated and Solved 4 3 2 1 Equations and Equations and Equations and Equations and inequalities are inequalities are inequalities are inequalities are properly formulated properly formulated properly formulated properly formulated but not all are solved but are not solved and solved correctly. but are not solved. correctly. correctly. 9 Rubric on Problems Formulated and Solved Score Descriptors Poses a more complex problem with 2 or more correct possible solutions and 6 communicates ideas unmistakably, shows in-depth comprehension of the pertinent concepts and/or processes and provides explanations wherever appropriate. Poses a more complex problem and finishes all significant parts of the solution and 5 communicates ideas unmistakably, shows in-depth comprehension of the pertinent concepts and/or processes. Poses a complex problem and finishes all significant parts of the solution and 4 communicates ideas unmistakably, shows in-depth comprehension of the pertinent concepts and/or processes. Poses a complex problem and finishes most significant parts of the solution and 3 communicates ideas unmistakably, shows comprehension of major concepts although neglects or misinterprets less significant ideas or details. Poses a problem and finishes some significant parts of the solution and communicates 2 ideas unmistakably but shows gaps on theoretical comprehension. Poses a problem but demonstrates minor comprehension, not being able to develop an 1 approach. Source: D.O. #73, s. 2012 IV. LEARNING GOALS AND TARGETS After going through this module, you should be able to demonstrate understanding of key concepts of quadratic equations, quadratic inequalities, and rational algebraic equations, formulate real-life problems involving these concepts, and solve these using a variety of strategies. Furthermore, you should be able to investigate mathematical relationships in various situations involving quadratic equations and quadratic inequalities. 10 1 Illustrations of Quadratic Equations What to KNOW Start Lesson 1 of this module by assessing your knowledge of the different mathematics concepts previously studied and your skills in performing mathematical operations. These knowledge and skills will help you understand quadratic equations. As you go through this lesson, think of this important question: “How are quadratic equations used in solving real- life problems and in making decisions?” To find the answer, perform each activity. If you find any difficulty in answering the exercises, seek the assistance of your teacher or peers or refer to the modules you have gone over earlier. You may check your work with your teacher. ➤ Activity 1: Do You Remember These Products? Find each indicated product then answer the questions that follow. 1. 3(x2 + 7) 6. (x + 4)(x + 4) 2. 2s(s – 4) 7. (2r – 5)(2r – 5) 3. (w + 7)(w + 3) 8. (3 – 4m)2 4. (x + 9)(x – 2) 9. (2h + 7)(2h – 7) 5. (2t – 1)(t + 5) 10. (8 – 3x)(8 + 3x) Questions: a. How did you find each product? b. In finding each product, what mathematics concepts or principles did you apply? Explain how you applied these mathematics concepts or principles. c. How would you describe the products obtained? Are the products polynomials? If YES, what common characteristics do these polynomials have? Were you able to find and describe the products of some polynomials? Were you able to recall and apply the different mathematics concepts or principles in finding each product? Why do you think there is a need to perform such mathematical tasks? You will find this out as you go through this lesson. 11 ➤ Activity 2: Another Kind of Equation! Below are different equations. Use these equations to answer the questions that follow. x2 – 5x + 3 = 0 9r2 – 25 = 0 c = 12n – 5 9 – 4x = 15 1 2 3 2s + 3t = –7 x + 3x = 8 6p – q = 10 h+6=0 2 4 8k – 3 = 12 4m2 + 4m + 1 = 0 t2 – 7t + 6 = 0 r2 = 144 1. Which of the given equations are linear? 2. How do you describe linear equations? 3. Which of the given equations are not linear? Why? How are these equations different from those which are linear? What common characteristics do these equations have? In the activity you have just done, were you able to identify equations which are linear and which are not? Were you able to describe those equations which are not linear? These equations have common characteristics and you will learn more of these in the succeeding activities. ➤ Activity 3: A Real Step to Quadratic Equations Use the situation below to answer the questions that follow. Mrs. Jacinto asked a carpenter to construct a rectangular bulletin board for her classroom. She told the carpenter that the board’s area must be 18 square feet. 1. Draw a diagram to illustrate the bulletin board. 2. What are the possible dimensions of the bulletin board? Give at least 2 pairs of possible dimensions. 3. How did you determine the possible dimensions of the bulletin board? 4. Suppose the length of the board is 7 ft. longer than its width. What equation would repre- sent the given situation? 5. How would you describe the equation formulated? 6. Do you think you can use the equation formulated to find the length and the width of the bulletin board? Justify your answer. 12 How did you find the preceding activities? Are you ready to learn about quadratic equations? I’m sure you are!!! From the activities done, you were able to describe equations other than linear equations, and these are quadratic equations. You were able to find out how a particular quadratic equation is illustrated in real life. But how are quadratic equations used in solving real-life problems and in making decisions? You will find these out in the activities in the next section. Before doing these activities, read and understand first some important notes on quadratic equations and the examples presented. A quadratic equation in one variable is a mathematical sentence Why do you think a of degree 2 that can be written in the following standard form. must not be equal to zero in the equation ax2 + bx + c = 0, where a, b, and c are real numbers and a ≠ 0 ax2 + bx + c = 0? In the equation, ax2 is the quadratic term, bx is the linear term, and c is the constant term. Example 1: 2x2 + 5x – 3 = 0 is a quadratic equation in standard form with a = 2, b = 5, and c = -3. Example 2: 3x(x – 2) = 10 is a quadratic equation. However, it is not written in standard form. To write the equation in standard form, expand the product and make one side of the equation zero as shown below. 3x(x – 2) = 10 → 3x2 – 6x = 10 3x2 – 6x – 10 = 10 – 10 3x2 – 6x – 10 = 0 The equation becomes 3x2 – 6x – 10 = 0, which is in standard form. In the equation 3x2 – 6x – 10 = 0, a = 3, b = -6, and c = -10. Example 3: The equation (2x + 5)(x – 1) = -6 is also a quadratic equation but it is not written in standard form. Just like in Example 2, the equation (2x + 5)(x – 1) = -6 can be written in standard form by expanding the product and making one side of the equation zero as shown below. (2x + 5)(x – 1) = –6 → 2x2 – 2x + 5x – 5 = –6 2x2 + 3x – 5 = –6 2x2 + 3x – 5 + 6 = –6 + 6 2x2 + 3x + 1 = 0 The equation becomes 2x2 + 3x + 1 = 0, which is in standard form. In the equation 2x2 + 3x + 1 = 0, a = 2, b = 3, and c = 1. 13 When b = 0 in the equation ax2 + bx + c = 0, it results to a quadratic equation of the form ax2 + c = 0. Examples: Equations such as x2 + 5 = 0, -2x2 + 7 = 0, and 16x2 – 9 = 0 are quadratic equa- tions of the form ax2 + c = 0. In each equation, the value of b = 0. Learn more about Quadratic Equations through the WEB. You may open the following links. http://library.thinkquest.org/20991/alg2/quad.html http://math.tutorvista.com/algebra/quadraticequation. html http://www.algebra.com/algebra/homework/quadratic/lessons/quadform/ What to PROCESS Your goal in this section is to apply the key concepts of quadratic equations. Use the mathematical ideas and the examples presented in the preceding section to answer the activities provided. ➤ Activity 4: Quadratic or Not Quadratic? Identify which of the following equations are quadratic and which are not. If the equation is not quadratic, explain. 1. 3m + 8 = 15 6. 25 – r2 = 4r 2. x2 – 5x + 10 = 0 7. 3x(x – 2) = –7 1 3. 12 – 4x = 0 8. (h – 6) = 0 2 4. 2t2 – 7t = 12 9. (x + 2)2 = 0 5. 6 – 2x + 3x2 = 0 10. (w – 8)(w + 5) = 14 Were you able to identify which equations are quadratic? Some of the equations given are not quadratic equations. Were you able to explain why? I’m sure you did. In the next activ- ity, you will identify the situations that illustrate quadratic equations and represent these by mathematical statements. ➤ Activity 5: Does It Illustrate Me? Tell whether or not each of the following situations illustrates quadratic equations. Justify your answer by representing each situation by a mathematical sentence. 1. The length of a swimming pool is 8 m longer than its width and the area is 105 m2. 14 2. Edna paid at least Php1,200 for a pair of pants and a blouse. The cost of the pair of pants is Php600 more than the cost of the blouse. 3. A motorcycle driver travels 15 kph faster than a bicycle rider. The motorcycle driver covers 60 km in two hours less than the time it takes the bicycle rider to travel the same distance. 4. A realty developer sells residential lots for Php4,000 per square meter plus a processing fee of Php25,000. One of the lots the realty developer is selling costs Php625,000. 5. A garden 7 m by 12 m will be expanded by planting a border of flowers. The border will be of the same width around the entire garden and has an area of 92 m2. Did you find the activity challenging? Were you able to represent each situation by a mathematical statement? For sure you were able to identify the situations that can be represented by quadratic equations. In the next activity, you will write quadratic equations in standard form. ➤ Activity 6: Set Me to Your Standard! Write each quadratic equation in standard form, ax2 + bx + c = 0 then identify the values of a, b, and c. Answer the questions that follow. 1. 3x – 2x2 = 7 6. (x + 7)(x – 7) = –3x 2. 5 – 2x2 = 6x 7. (x – 4)2 + 8 = 0 3. (x + 3)(x + 4) = 0 8. (x + 2)2 = 3(x + 2) 4. (2x + 7)(x – 1) = 0 9. (2x – 1)2 = (x + 1)2 5. 2x(x – 3) = 15 10. 2x(x + 4) = (x – 3)(x – 3) Questions: a. How did you write each quadratic equation in standard form? b. What mathematics concepts or principles did you apply to write each quadratic equation in standard form? Discuss how you applied these mathematics concepts or principles. c. Which quadratic equations did you find difficult to write in standard form? Why? d. Compare your work with those of your classmates. Did you arrive at the same answers? If NOT, explain. How was the activity you have just done? Was it easy for you to write quadratic equations in standard form? It was easy for sure! In this section, the discussion was about quadratic equations, their forms and how they are illustrated in real life. Go back to the previous section and compare your initial ideas with the discussion. How much of your initial ideas are found in the discussion? Which ideas are different and need revision? 15 Now that you know the important ideas about this topic, let’s go deeper by moving on to the next section. What to REFLECT and UNDERSTAND Your goal in this section is to take a closer look at some aspects of the topic. You are going to think deeper and test further your understanding of quadratic equations. After doing the following activities, you should be able to answer this important question: How are quadratic equations used in solving real-life problems and in making decisions? ➤ Activity 7: Dig Deeper! Answer the following questions. 1. How are quadratic equations different from linear equations? 2. How do you write quadratic equations in standard form? Give at least 3 examples. 3. The following are the values of a, b, and c that Edna and Luisa got when they expressed 5 – 3x = 2x2 in standard form. Edna: a = 2; b = 3; c = -5 Luisa: a = -2; b = -3; c = 5 Who do you think got the correct values of a, b, and c? Justify your answer. 4. Do you agree that the equation 4 – 3x = 2x2 can be written in standard form in two different ways? Justify your answer. 5. The members of the school’s Mathematics Club shared equal amounts for a new Digital Light Processing (DLP) projector amounting to Php25,000. If there had been 25 members more in the club, each would have contributed Php50 less. a. How are you going to represent the number of Mathematics Club members? b. What expression represents the amount each member will share? c. If there were 25 members more in the club, what expression would represent the amount each would share? d. What mathematical sentence would represent the given situation? Write this in standard form then describe. 16 In this section, the discussion was about your understanding of quadratic equations and how they are illustrated in real life. What new realizations do you have about quadratic equations? How would you connect this to real life? How would you use this in making decisions? Now that you have a deeper understanding of the topic, you are ready to do the tasks in the next section. What to TRANSFER Your goal in this section is to apply your learning to real-life situations. You will be given a practical task which will demonstrate your understanding of quadratic equations. ➤ Activity 8: Where in the Real World? 1. Give 5 examples of quadratic equations written in standard form. Identify the values of a, b, and c in each equation. 2. Name some objects or cite situations in real life where quadratic equations are illustrated. Formulate quadratic equations out of these objects or situations then describe each. In this section, your task was to give examples of quadratic equations written in standard form and name some objects or cite real-life situations where quadratic equations are illustrated. How did you find the performance task? How did the task help you realize the importance of the topic in real life? Summary/Synthesis/Generalization: This lesson was about quadratic equations and how they are illustrated in real life. The les- son provided you with opportunities to describe quadratic equations using practical situations and their mathematical representations. Moreover, you were given the chance to formulate qua- dratic equations as illustrated in some real-life situations. Your understanding of this lesson and other previously learned mathematics concepts and principles will facilitate your learning of the next lesson, Solving Quadratic Equations. 17 2A Solving Quadratic Equations by Extracting Square Roots What to KNOW Start Lesson 2A of this module by assessing your knowledge of the different mathematics concepts previously studied and your skills in performing mathematical operations. These knowledge and skills will help you in solving quadratic equations by extracting square roots. As you go through this lesson, think of this important question: “How does finding solutions of quadratic equations facilitate in solving real-life problems and in making decisions?” To find the answer, perform each activity. If you find any difficulty in answering the exercises, seek the assistance of your teacher or peers or refer to the modules you have gone over earlier. You may check your answers with your teacher. ➤ Activity 1: Find My Roots! Find the following square roots. Answer the questions that follow. 1. 16 = 6. – 289 = 2. − 25 = 7. 0.16 = 3. 49 = 8. ± 36 = 16 4. – 64 = 9. = 25 169 5. 121 = 10. ± = 256 Questions: a. How did you find each square root? b. How many square roots does a number have? Explain your answer. c. Does a negative number have a square root? Why? d. Describe the following numbers: 8 , – 40 , 60 , and – 90. Are the numbers rational or irrational? Explain your answer. How do you describe rational numbers? How about numbers that are irrational? Were you able to find the square roots of some numbers? Did the activity provide you with an opportunity to strengthen your understanding of rational and irrational numbers? In the next activity, you will be solving linear equations. Just like finding square roots of numbers, solving linear equations is also a skill which you need to develop further in order for you to understand the new lesson. 18 ➤ Activity 2: What Would Make a Statement True? Solve each of the following equations in as many ways as you can. Answer the questions that follow. 1. x + 7 = 12 6. –5x = 35 2. t – 4 = 10 7. 3h – 2 = 16 3. r + 5 = –3 8. –7x = –28 4. x – 10 = –2 9. 3(x + 7) = 24 5. 2s = 16 10. 2(3k – 1) = 28 Questions: a. How did you solve each equation? b. What mathematics concepts or principles did you apply to come up with the solution of each equation? Explain how you applied these. c. Compare the solutions you got with those of your classmates. Did you arrive at the same answers? If not, why? d. Which equations did you find difficult to solve? Why? How did you find the activity? Were you able to recall and apply the different mathematics concepts or principles in solving linear equations? I’m sure you were. In the next activity, you will be representing a situation using a mathematical sentence. Such mathematical sentence will be used to satisfy the conditions of the given situation. ➤ Activity 3: Air Out! Use the situation below to answer the questions that follow. Mr. Cayetano plans to install a new exhaust fan on his room’s square-shaped wall. He asked a carpenter to make a square opening on the wall where the exhaust fan will be installed. The square opening must have an area of 0.25 m2. 1. Draw a diagram to illustrate the given situation. 2. How are you going to represent the length of a side of the square-shaped wall? How about its area? 3. Suppose the area of the remaining part of the wall after the carpenter has made the square opening is 6 m2. What equation would describe the area of the remaining part of the wall? 4. How will you find the length of a side of the wall? 19 The activity you have just done shows how a real-life situation can be represented by a mathematical sentence. Were you able to represent the given situation by an equation? Do you now have an idea on how to use the equation in finding the length of a side of the wall? To further give you ideas in solving the equation or other similar equations, perform the next activity. ➤ Activity 4: Learn to Solve Quadratic Equations!!! Use the quadratic equations below to answer the questions that follow. x2 = 36 t2 – 64 = 0 2s2 – 98 = 0 1. Describe and compare the given equations. What statements can you make? 2. Solve each equation in as many ways as you can. Determine the values of each variable to make each equation true. 3. How did you know that the values of the variable really satisfy the equation? 4. Aside from the procedures that you followed in solving each equation, do you think there are other ways of solving it? Describe these ways if there are any. Were you able to determine the values of the variable that make each equation true? Were you able to find other ways of solving each equation? Let us extend your understanding of quadratic equations and learn more about their solutions by performing the next activity. ➤ Activity 5: Anything Real or Nothing Real? Find the solutions of each of the following quadratic equations, then answer the questions that follow. x2 = 9 r2 = 0 w2 = –9 1. How did you determine the solutions of each equation? 2. How many solutions does each equation have? Explain your answer. 3. What can you say about each quadratic equation based on the solutions obtained? 20 How did you find the preceding activities? Are you ready to learn about solving quadratic equations by extracting square roots? I’m sure you are! From the activities done, you were able to find the square roots of numbers, solve linear equations, represent a real-life situation by a mathematical sentence, and use different ways of solving a quadratic equation. But how does finding solutions of quadratic equations facilitate solving real-life problems and in making decisions? You will find these out in the activities in the next section. Before doing these activities, read and understand first some important notes on solving quadratic equations by extracting square roots and the examples presented. Quadratic equations that can be written in the form x2 = k can be solved by applying the following properties: 1. If k > 0, then x2 = k has two real solutions or roots: x = ± k. 2. If k = 0, then x2 = k has one real solution or root: x = 0. 3. If k < 0, then x2 = k has no real solutions or roots. The method of solving the quadratic equation x2 = k is called extracting square roots. Example 1: Find the solutions of the equation x2 – 16 = 0 by extracting square roots. Write the equation in the form x2 = k. x2 – 16 = 0 → x2 – 16 + 16 = 0 + 16 x2 = 16 Since 16 is greater than 0, then the first property above can be applied to find the values of x that will make the equation x2 – 16 = 0 true. x 2 = 16 → x = ± 16 x=±4 To check, substitute these values in the original equation. For x = 4: For x = -4: x – 16 = 0 2 x2 – 16 =0 42 – 16 = 0 (–4)2 – 16 =0 16 – 16 = 0 16 – 16 =0 0 = 0 0 =0 Both values of x satisfy the given equation. So the equation x2 – 16 = 0 is true when x = 4 or when x = -4. Answer: The equation x2 – 16 = 0 has two solutions: x = 4 or x = -4. 21 Example 2: Solve the equation t2 = 0. Since t2 equals 0, then the equation has only one solution. That is, t = 0. To check: t2 = 0 02 = 0 0=0 Answer: The equation t2 = 0 has one solution: t = 0. Example 3: Find the roots of the equation s2 + 9 = 0. Write the equation in the form x2 = k. s2 + 9 = 0 → s2 + 9 – 9 = 0 – 9 s2 = –9 Since –9 is less than 0, then the equation s2 = –9 has no real solutions or roots. There is no real number when squared gives –9. Answer: The equation s2 + 9 = 0 has no real solutions or roots. Example 4: Find the solutions of the equation (x – 4)2 – 25 = 0. To solve (x – 4)2 – 25 = 0, add 25 on both sides of the equation. (x – 4)2 – 25 + 25 = 0 + 25 The resulting equation is (x – 4)2 = 25. Solve the resulting equation. ( x – 4) 2 = 25 → x – 4 = ± 25 x –4 =±5 Solve for x in the equation x – 4 = ±5. x–4+4 = ±5 + 4 → x = ±5 + 4 The equation will result to two values of x. x=5+4 x = -5 + 4 x=9 x = -1 22 Check the obtained values of x against the original equation. For x = 9: For x = -1: (x – 4) – 25 = 0 (x – 4)2 – 25 2 =0 (9 – 4)2 – 25 = 0 (–1 – 4)2 – 25 =0 52 – 25 = 0 (–5)2 – 25 =0 25 – 25 = 0 25 – 25 =0 0 = 0 0 =0 Both values of x satisfy the given equation. So the equation (x – 4)2 – 25 = 0 is true when x = 9 or when x = -1. Answer: The equation (x – 4)2 – 25 = 0 has two solutions: x = 9 or x = -1 Learn more about Solving Quadratic Equations by Extracting Square Roots through the WEB. You may open the following links. http://2012books.lardbucket.org/books/beginning-algebra/s12-01-extracting-square-roots. html http://www.purplemath.com/modules/solvquad2.htm http://www.personal.kent.edu/~bosikiew/Algebra-handouts/solving-sqroot.pdf What to PROCESS Your goal in this section is to apply previously learned mathematics concepts and principles in solving quadratic equations by extracting square roots. Use the mathematical ideas and the examples presented in the preceding section to answer the activities provided. ➤ Activity 6: Extract Me! Solve the following quadratic equations by extracting square roots. Answer the questions that follow. 1. x2 = 16 6. 4x2 – 225 = 0 2. t2 = 81 7. 3h2 – 147 = 0 3. r2 – 100 = 0 8. (x – 4)2 = 169 4. x2 – 144 = 0 9. (k + 7)2 = 289 5. 2s2 = 50 10. (2s – 1)2 = 225 Questions: a. How did you find the solutions of each equation? 23 b. What mathematics concepts or principles did you apply in finding the solutions? Explain how you applied these. c. Compare your answers with those of your classmates. Did you arrive at the same solutions? If NOT, explain. Was it easy for you to find the solutions of quadratic equations by extracting square roots? Did you apply the different mathematics concepts and principles in finding the solutions of each equation? I know you did! ➤ Activity 7: What Does a Square Have? Write a quadratic equation that represents the area of each square. Then find the length of its side using the equation formulated. Answer the questions that follow. 1. s 2. s 5 cm s Area = 169 cm2 s Area = 256 cm2 5 cm Questions: a. How did you come up with the equation that represents the area of each shaded region? b. How did you find the length of side of each square? c. Do all solutions to each equation represent the length of side of the square? Explain your answer. In this section, the discussion was about solving quadratic equations by extracting square roots. Go back to the previous section and compare your initial ideas with the discussion. How much of your initial ideas are found in the discussion? Which ideas are different and need revision? Now that you know the important ideas about this topic, let’s go deeper by moving on to the next section. 24 What to REFLECT and UNDERSTAND Your goal in this section is to take a closer look at some aspects of the topic. You are going to think deeper and test further your understanding of solving quadratic equations by extracting square roots. After doing the following activities, you should be able to answer this important question: How does finding solutions of quadratic equations facilitate in solving real-life problems and in making decisions? ➤ Activity 8: Extract Then Describe Me! Solve each of the following quadratic equations by extracting square roots. Answer the ques- tions that follow. 1. 3t2 = 12 4. x2 = 150 9 2. x2 – 7 = 0 5. x 2 = 16 3. 3r = 18 2 6. (s – 4)2 – 81 = 0 Questions: a. How did you find the roots of each equation? b. Which equation did you find difficult to solve by extracting square roots? Why? c. Which roots are rational? Which are not? Explain your answer. d. How will you approximate those roots that are irrational? Were you able to find and describe the roots of each equation? Were you able to approximate the roots that are irrational? I’m sure you did! Deepen further your understanding of solving quadratic equations by extracting square roots by doing the next activity. ➤ Activity 9: Intensify Your Understanding! Answer the following. 1. Do you agree that a quadratic equation has at most two solutions? Justify your answer and give examples. 2. Give examples of quadratic equations with (a) two real solutions, (b) one real solution, and (c) no real solution. 3. Sheryl says that the solutions of the quadratic equations w2 = 49 and w2 + 49 = 0 are the same. Do you agree with Sheryl? Justify your answer. 4. Mr. Cruz asked Emilio to construct a square table such that its area is 3 m2. Is it possible for Emilio to construct such table using an ordinary tape measure? Explain your answer. 25 5. A 9 ft2 square painting is mounted with border on a square frame. If the total area of the border is 3.25 ft2, what is the length of a side of the frame? In this section, the discussion was about your understanding of solving quadratic equations by extracting square roots. What new realizations do you have about solving quadratic equations by extracting square roots? How would you connect this to real life? How would you use this in making decisions? Now that you have a deeper understanding of the topic, you are ready to do the tasks in the next section. What to TRANSFER Your goal in this section is to apply your learning to real-life situations. You will be given a practical task in which you will demonstrate your understanding of solving quadratic equations by extracting square roots. ➤ Activity 10: What More Can I Do? Answer the following. 1. Describe quadratic equations with 2 solutions, 1 solution, and no solution. Give at least two examples for each. 2. Give at least five quadratic equations which can be solved by extracting square roots, then solve. 3. Collect square tiles of different sizes. Using these tiles, formulate quadratic equations that can be solved by extracting square roots. Find the solutions or roots of these equations. How did you find the performance task? How did the task help you see the real-world use of the topic? Summary/Synthesis/Generalization This lesson was about solving quadratic equations by extracting square roots. The lesson provided you with opportunities to describe quadratic equations and solve these by extracting square roots. You were also able to find out how such equations are illustrated in real life. Moreover, you were given the chance to demonstrate your understanding of the lesson by doing a practical task. Your understanding of this lesson and other previously learned mathematics concepts and principles will enable you to learn about the wide applications of quadratic equations in real life. 26 2B Solving Quadratic Equations by Factoring What to KNOW Start Lesson 2B of this module by assessing your knowledge of the different mathematics concepts previously studied and your skills in performing mathematical operations. These knowledge and skills will help you in understanding solving quadratic equations by factoring. As you go through this lesson, think of this important question: “How does finding solutions of quadratic equations facilitate solving real-life problems and making decisions?” To find the answer, perform each activity. If you find any difficulty in answering the exercises, seek the assistance of your teacher or peers or refer to the modules you have gone over earlier. You may check your answers with your teacher. ➤ Activity 1: What Made Me? Factor each of the following polynomials. Answer the questions that follow. 1. 2x2 – 8x 6. x2 – 10x + 21 2. –3s2 + 9s 7. x2 + 5x – 6 3. 4x + 20x2 8. 4r2 + 20r + 25 4. 5t – 10t2 9. 9t2 – 4 5. s2 + 8s + 12 10. 2x2 + 3x – 14 Questions: a. How did you factor each polynomial? b. What factoring technique did you use to come up with the factors of each polynomial? Explain how you used this technique. c. How would you know if the factors you got are the correct ones? d. Which of the polynomials did you find difficult to factor? Why? How did you find the activity? Were you able to recall and apply the different mathematics concepts or principles in factoring polynomials? I’m sure you were. In the next activity, you will be representing a situation using a mathematical sentence. This mathematical sentence will be used to satisfy the conditions of the given situation. 27 ➤ Activity 2: The Manhole Use the situation below to answer the questions that follow. A rectangular metal manhole with an area of 0.5 m2 is situated along a cemented pathway. The length of the pathway is 8 m longer than its width. 1. Draw a diagram to illustrate the given situation. 2. How are you going to represent the length and the width of the pathway? How about its area? 3. What expression would represent the area of the cemented portion of the pathway? 4. Suppose the area of the cemented portion of the pathway is 19.5 m2. What equation would describe its area? 5. How will you find the length and the width of the pathway? The activity you have just done shows how a real-life situation can be represented by a mathematical sentence. Were you able to represent the given situation by an equation? Do you now have an idea on how to use the equation in finding the length and the width of the pathway? To further give you ideas in solving the equation or other similar equations, perform the next activity. ➤ Activity 3: Why Is the Product Zero? Use the equations below to answer the following questions. x+7=0 x–4=0 (x + 7) (x – 4) = 0 1. How would you compare the three equations? 2. What value(s) of x would make each equation true? 3. How would you know if the value of x that you got satisfies each equation? 4. Compare the solutions of the given equations. What statement can you make? 5. Are the solutions of x + 7 = 0 and x – 4 = 0 the same as the solutions of (x + 7)(x – 4) = 0? Why? 6. How would you interpret the meaning of the equation (x + 7)(x – 4) = 0? 28 How did you find the preceding activities? Are you ready to learn about solving quadratic equations by factoring? I’m sure you are!!! From the activities done, you were able to find the factors of polynomials, represent a real-life situation by a mathematical statement, and interpret zero product. But how does finding solutions of quadratic equations facilitate solving real-life problems and making decisions? You will find these out in the activities in the next section. Before doing these activities, read and understand first some important notes on solving quadratic equations by factoring and the examples presented. Some quadratic equations can be solved easily by factoring. To solve such quadratic equations, the following procedure can be followed. 1. Transform the quadratic equation into standard form if necessary. 2. Factor the quadratic expression. 3. Apply the zero product property by setting each factor of the quadratic expression equal to 0. Zero Product Property If the product of two real numbers is zero, then either of the two is equal to zero or both numbers are equal to zero. 4. Solve each resulting equation. 5. Check the values of the variable obtained by substituting each in the original equation. Example 1: Find the solutions of x2 + 9x = -8 by factoring. a. Transform the equation into standard form ax2 + bx + c = 0. x2 + 9x = -8 → x2 + 9x + 8 = 0 b. Factor the quadratic expression x2 + 9x + 8. x2 + 9x + 8 = 0 → (x + 1)(x + 8) = 0 c. Apply the zero product property by setting each factor of the quadratic expression equal to 0. (x + 1)(x + 8) = 0 → x + 1 = 0; x + 8 = 0 d. Solve each resulting equation. x+1=0 → x+1–1=0–1 x = -1 x+8=0 → x+8–8=0–8 x = -8 e. Check the values of the variable obtained by substituting each in the equation x2 + 9x = -8. 29 For x = -1: For x = –8: x2 + 9x = –8 x2 + 9x = –8 (–1)2 + 9(–1) = –8 (–8)2 + 9(–8) = –8 1 – 9 = –8 64 – 72 = –8 –8 = –8 –8 = –8 Both values of x satisfy the given equation. So the equation x2 + 9x = –8 is true when x = -1 or when x = -8. Answer: The equation x2 + 9x = –8 has two solutions: x = -1 or x = -8 Example 2: Solve 9x2 – 4 = 0 by factoring. To solve the equation, factor the quadratic expression 9x2 – 4. 9x2 – 4 = 0 → (3x + 2)(3x – 2) = 0 Equate each factor to 0. 3x + 2 = 0; 3x – 2 = 0 Solve each resulting equation. 3x + 2 = 0 → 3x + 2 − 2 = 0 − 2 3x + 2 = 0 → 3x − 2 + 2 = 0 + 2 3x = – 2 3x = 2 3x –2 3x 2 = = 3 3 3 3 2 2 x=– x= 3 3 Check the values of the variable obtained by substituting each in the equation 9x2 – 4 = 0. −2 2 For x = For x = 3 3 9x – 4 = 0 2 9x 2 – 4 = 0 2 2  –2   2 9  – 4 = 0 9  – 4 = 0  3  3  4  4 9  –4 = 0 9  –4 = 0  9  9 4–4= 0 4–4=0 0=0 0=0 Both values of x satisfy the given equation. So the equation 9x2 – 4 = 0 is true −2 2 when x = or when x =. 3 3 30 -2 2 Answer: The equation 9x2 – 4 = 0 has two solutions: x = or x = 3 3 Learn more about Solving Quadratic Equations by Factoring through the WEB. You may open the following links. http://2012books.lardbucket.org/books/beginning-algebra/s09-06-solving-equations-by- factoring.html http://www.purplemath.com/modules/solvquad.htm http://www.webmath.com/quadtri.html http://www.mathwarehouse.com/quadratic/solve-quadratic-equation-by-factoring.php What to PROCESS Your goal in this section is to apply previously learned mathematics concepts and principles in solving quadratic equations by factoring. Use the mathematical ideas and the examples presented in the preceding section to answer the activities provided. ➤ Activity 4: Factor Then Solve! Solve the following quadratic equations by factoring. Answer the questions that follow. 1. x2 + 7x = 0 6. x2 – 14 = 5x 2. 6s2 + 18s = 0 7. 11r + 15 = –2r2 3. t2 + 8t + 16 = 0 8. x2 – 25 = 0 4. x2 – 10x + 25 = 0 9. 81 – 4x2 = 0 5. h2 + 6h = 16 10. 4s2 + 9 = 12s Questions: a. How did you find the solutions of each equation? b. What mathematics concepts or principles did you apply in finding the solutions? Explain how you applied these. c. Compare your answers with those of your classmates. Did you arrive at the same solutions? If NOT, explain. Was it easy for you to find the solutions of quadratic equations by factoring? Did you apply the different mathematics concepts and principles in finding the solutions of each equation? I know you did! 31 ➤ Activity 5: What Must Be My Length and Width? The quadratic equation given describes the area of the shaded region of each figure. Use the equation to find the length and width of the figure. Answer the questions that follow. 1. 2. s 6 2s 3 s s (2s + 3)(s + 4) = 228 4 2 Questions: a. How did you find the length and width of each figure? b. Can all solutions to each equation be used to determine the length and width of each figure? Explain your answer. In this section, the discussion was about solving quadratic equations by factoring. Go back to the previous section and compare your initial ideas with the discussion. How much of your initial ideas are found in the discussion? Which ideas are different and need revision? Now that you know the important ideas about this topic, let’s go deeper by moving on to the next section. What to REFLECT and UNDERSTAND Your goal in this section is to take a closer look at some aspects of the topic. You are going to think deeper and test further your understanding of solving quadratic equations by fac- toring. After doing the following activities, you should be able to answer this important question: How does finding solutions of quadratic equations facilitate solving real-life problems and making decisions? 32 ➤ Activity 6: How Well Did I Understand? Answer each of the following. 1. Which of the following quadratic equations may be solved more appropriately by factoring? Explain your answer. a. 2x2 = 72 c. w2 – 64 = 0 b. t2 + 12t + 36 = 0 d. 2s2 + 8s – 10 = 0 2. Patricia says that it’s more appropriate to use the method of factoring than extracting square roots in solving the quadratic equation 4x2 – 9 = 0. Do you agree with Patricia? Explain your answer. 3. Do you agree that not all quadratic equations can be solved by factoring? Justify your answer by giving examples. 4. Find the solutions of each of the following quadratic equations by factoring. Explain how you arrived at your answer. a. (x + 3)2 = 25 c. (2t – 3)2 = 2t2 + 5t – 26 b. (s + 4)2 = -2s d. 3(x + 2)2 = 2x2 + 3x – 8 5. Do you agree that x2 + 5x – 14 = 0 and 14 – 5x – x2 = 0 have the same solutions? Justify your answer. 6. Show that the equation (x – 4)2 = 9 can be solved both by factoring and extracting square roots. 7. A computer manufacturing company would like to come up with a new laptop computer such that its monitor is 80 square inches smaller than the present ones. Suppose the length of the monitor of the larger computer is 5 inches longer than its width and the area of the smaller computer is 70 square inches. What are the dimensions of the monitor of the larger computer? In this section, the discussion was about your understanding of solving quadratic equations by factoring. What new insights do you have about solving quadratic equations by factoring? How would you connect this to real life? How would you use this in making decisions? Now that you have a deeper understanding of the topic, you are ready to do the tasks in the next section. What to TRANSFER Your goal in this section is to apply your learning to real-life situations. You will be given a practical task which will demonstrate your understanding of solving quadratic equations by factoring. 33 ➤ Activity 7: Meet My Demands! Answer the following. Mr. Lakandula would like to increase his production of milkfish (bangus) due to its high demand in the market. He is thinking of making a larger fishpond in his 8000 sq m lot near a river. Help Mr. Lakandula by making a sketch plan of the fishpond to be made. Out of the given situation and the sketch plan made, formulate as many quadratic equations then solve by factoring. You may use the rubric below to rate your work. Rubric for the Sketch Plan and Equations Formulated and Solved 4 3 2 1 The sketch plan is The sketch plan is The sketch plan is not The sketch plan accurately made, accurately made and accurately made but is made but not presentable, and appropriate. appropriate. appropriate. appropriate. Quadratic equations Quadratic equations Quadratic equations Quadratic equations are accurately are accurately are accurately are accurately formulated and solved formulated but not all formulated but are not formulated but are not correctly. are solved correctly. solved correctly. solved. How did you find the performance task? How did the task help you see the real-world use of the topic? Summary/Synthesis/Generalization This lesson was about solving quadratic equations by factoring. The lesson provided you with opportunities to describe quadratic equations and solve these by factoring. You were able to find out also how such equations are illustrated in real life. Moreover, you were given the chance to demonstrate your understanding of the lesson by doing a practical task. Your understanding of this lesson and other previously learned mathematics concepts and principles will facilitate your learning of the wide applications of quadratic equations in real life. 34 2C Solving Quadratic Equations by Completing the Square What to KNOW Start Lesson 2C of this module by assessing your knowledge of the different mathematics concepts previously studied and your skills in performing mathematical operations. These knowledge and skills will help you understand Solving Quadratic Equations by Complet- ing the Square. As you go through this lesson, think of this important question: “How does finding solutions of quadratic equations facilitate solving real-life problems and making deci- sions?” To find the answer, perform each activity. If you find any difficulty in answering the exercises, seek the assistance of your teacher or peers or refer to the modules you have gone over earlier. You may check your answers with your teacher. ➤ Activity 1: How Many Solutions Do I Have? Find the solution/s of each of the following equations. Answer the questions that follow. 3 1 1. x +12 = 17 6. x – = 4 2 2. s + 15 = –9 7. (x + 10)2 = 36 3. r – 25 = 12 8. (w – 9)2 = 12 2 5  1 9 4. x – = 3 9.  k +  = 6  2 16 2 4  3 1 5. t + = 5 10.  h –  = 7  5 2 Questions: a. How did you find the solution(s) of each equation? b. Which of the equations has only one solution? Why? c. Which of the equations has two solutions? Why? d. Which of the equations has solutions that are irrational? Why? e. Were you able to simplify those solutions that are irrational? Why? f. How did you write those irrational solutions? How did you find the activity? Were you able to recall and apply the different mathematics concepts or principles in finding the solution/s of each equation? I’m sure you did! In the next activity, you will be expressing a perfect square trinomial as a square of a binomial. I know that you already have an idea on how to do this. This activity will help you solve qua- dratic equations by completing the square. 35 ➤ Activity 2: Perfect Square Trinomial to Square of a Binomial Express each of the following perfect square trinomials as a square of a binomial. Answer the questions that follow. 1. x2 + 4x + 4 6. x2 + 18x + 81 2 1 2. t2 + 12t + 36 7. t 2 + t + 3 9 49 3. s2 + 10s + 25 8. r 2 – 7r + 4 3 9 4. x2 – 16x + 64 9. s 2 + s+ 4 64 25 10. w – 5w + 2 5. h2 – 14h + 49 4 Questions: a. How do you describe a perfect square trinomial? b. How did you express each perfect square trinomial as the square of a binomial? c. What mathematics concepts or principles did you apply to come up with your answer? Explain how you applied these. d. Compare your answer with those of your classmates. Did you get the same answer? If NOT, explain. e. Observe the terms of each trinomial. How is the third term related to the coefficient of the middle term? f. Is there an easy way of expressing a perfect square trinomial as a square of a binomial? If there is any, explain how. Were you able to express each perfect square trinomial as a square of a binomial? I’m sure you did! Let us further strengthen your knowledge and skills in mathematics particularly in writing perfect square trinomials by doing the next activity. 36 ➤ Activity 3: Make It Perfect!!! Determine a number that must be added to make each of the following a perfect square trinomial. Explain how you arrived at your answer. 1. x2 + 2x + _____ 6. x2 + 11x + _____ 2. t2 + 20t + _____ 7. x2 – 15x + _____ 3. r2 – 16r + _____ 8. w2 + 21w + _____ 2 9. s – s + _____ 2 4. r2 + 24r + _____ 3 3 10. h – h + _____ 2 5. x2 – 30x + _____ 4 Was it easy for you to determine the number that must be added to the terms of a polynomial to make it a perfect square trinomial? Were you able to figure out how it can be easily done? In the next activity, you will be representing a situation using a mathematical sentence. Such a mathematical sentence will be used to satisfy the conditions of the given situation. ➤ Activity 4: Finish the Contract! 10 m The shaded region of the diagram at the right shows the portion of a square-shaped car park that is already cemented. The area of the cemented part is 600 m2. Use the diagram to answer the following questions. 1. How would you represent the length of the side of the car park? How about the width of the cemented portion? 2. What equation would represent the area of the cemented part of the car park? 3. Using the equation formulated, how are you going to find the length of a side of the car park? 10 m How did you find the preceding activities? Are you ready to learn about solving quadratic equations by completing the square? I’m sure you are!!! From the activities done, you were able to solve equations, express a perfect square trinomial as a square of a binomial, write perfect square trinomials, and represent a real-life situation by a mathematical sentence. But how does finding solutions of quadratic equations facilitate solving real-life problems and making decisions? You will find these out in the activities in the next section. Before doing these activities, read and understand first some important notes on Solving Quadratic Equa- tions by Completing the Square and the examples presented. 37 Extracting square roots and factoring are usually used to solve quadratic equations of the form ax2 – c = 0. If the factors of the quadratic expression of ax2 + bx + c = 0 are determined, then it is more convenient to use factoring to solve it. Another method of solving quadratic equations is by completing the square. This method involves transforming the quadratic equation ax2 + bx + c = 0 into the form (x – h)2 = k, where k ≥ 0. Can you tell why the value of k should be positive? To solve the quadratic equation ax2 + bx + c = 0 by completing the square, the following steps can be followed: 1. Divide both sides of the equation by a then simplify. 2. Write the equation such that the terms with variables are on the left side of the equation and the constant term is on the right side. 3. Add the square of one-half of the coefficient of x on both sides of the resulting equation. The left side of the equation becomes a perfect square trinomial. 4. Express the perfect square trinomial on the left side of the equation as a square of a binomial. 5. Solve the resulting quadratic equation by extracting the square root. 6. Solve the resulting linear equations. 7. Check the solutions obtained against the original equation. Example 1: Solve the quadratic equation 2x2 + 8x – 10 = 0 by completing the square. Divide both sides of the equation by 2 then simplify. 2x 2 + 8x – 10 0 2x2 + 8x – 10 = 0 → = 2 2 x + 4x − 5 = 0 2 Add 5 to both sides of the equation then simplify. x2 + 4x – 5= 0 → x2 + 4x – 5 + 5 = 0 + 5 x2 + 4x = 5 Add to both sides of the equation the square of one-half of 4. 1 ( 4 ) = 2 → 22 = 4 2 x2 + 4x = 5 → x2 + 4x + 4 = 5 + 4 x2 + 4x + 4 = 9 Express x2 + 4x + 4 as a square of a binomial. x2 + 4x + 4 = 9 → (x + 2)2 = 9 Solve (x + 2)2 = 9 by extracting the square root. (x + 2)2 = 9 → x + 2 = ± 9 x + 2 = ±3 38 Solve the resulting linear equations. x+2=3 x + 2 = -3 x+2–2=3–2 x + 2 – 2 = -3 – 2 x=1 x = -5 Check the solutions obtained against the original equation 2x2 + 8x – 10 = 0. For x = 1: For x = 5: 2x2 + 8x – 10 = 0 2x2 + 8x – 10 = 0 2(1)2 + 8(1) – 10 = 0 2(–5)2 + 8(–5) – 10 = 0 2(1) + 8 – 10 = 0 2(25) – 40 – 10 = 0 2 + 8 – 10 = 0 50 – 40 – 10 = 0 0=0 0=0 Both values of x satisfy the given equation. So the equation 2x2 + 8x – 10 = 0 is true when x = 1 or when x = -5. Answer: The equation 2x2 + 8x – 10 = 0 has two solutions: x = 1 or x = -5 Example 2: Find the solutions of the equation x2 + 3x – 18 = 0 by completing the square. Add 18 to both sides of the equation then simplify. x2 + 3x – 18 = 0 → x2 + 3x – 18 + 18 = 0 + 18 x2 + 3x = 18 Add to both sides of the equation the square of one-half of 3. 2 ( 3) = →   = 1 3 3 9 2 2 2 4 9 9 x 2 + 3x = 18 → x 2 + 3x += 18 + 4 4 9 72 9 9 81 x 2 + 3x + = + → x 2 + 3x + = 4 4 4 4 4 9 Express x 2 + 3x + as a square of a binomial. 4 2 9 81  3 81 x 2 + 3x + = → x +  = 4 4  2 4 39 2  3 81 Solve  x +   = by extracting the square root. 2 4 2  3 81 3 81  x +  = → x+ =± 2 4 2 4 3 9 x+ =± 2 2 Solve the resulting linear equations. 3 9 3 9 x+ = x+ =– 2 2 2 2 3 3 9 3 3 3 9 3 x+ – = – x + – =– – 2 2 2 2 2 2 2 2 6 12 x= x =– 2 2 x=3 x = –6 Check the solutions obtained against the equation x2 + 3x – 18 = 0. For x = 3: For x = -6: x2 + 3x – 18 = 0 x2 + 3x – 18 = 0 (3)2 + 3(3) – 18 = 0 (–6)2 + 3(–6) – 18 = 0 9 + 9 – 18 = 0 36 – 18 – 18 = 0 0=0 0=0 Both values of x satisfy the given equation. So the equation x2 + 3x – 18 = 0 is true when x = 3 or when x = -6. Answer: The equation has two solutions: x = 3 or x = -6 Example 3: Find the solutions of x2 – 6x – 41 = 0 by completing the square. Add 41 to both sides of the equation then simplify. x2 – 6x – 41 = 0 → x2 – 6x – 41 + 41 = 0 + 41 x2 – 6x = 41 Add to both sides of the equation the square of one-half of -6. 1 ( –6 ) = – 3 → ( –3)2 = 9 2 x2 – 6x = 41 → x2 – 6x + 9 = 41 + 9 x2 – 6x + 9 = 50 40 Express x2 – 6x + 9 as a square of a binomial. x2 – 6x + 9 = 50 → (x – 3)2 = 50 Solve (x – 3)2 = 50 by extracting the square root. (x – 3)2 = 50 → x – 3 = ± 50 ± 50 can be expressed as ± 25 ⋅ 2 or ± 25 ⋅ 2. Notice that 25 is a perfect square. So, ± 25 ⋅ 2 can be simplified further to ± 5 ⋅ 2. Hence, x – 3 = ± 50 is the same as x – 3 = ± 5 2. Solve the resulting linear equations. x –3=5 2 x – 3 = –5 2 x– 3+ 3= 5 2 + 3 x– 3 + 3 = –5 2 + 3 x =3+5 2 x=3–5 2 Check the solutions obtained against the equation x2 – 6x – 41 = 0. For x = 3 + 5 2 : x 2 – 6x – 41 = 0 (3 + 5 2 ) ( ) 2 – 6 3 + 5 2 – 41 = 0 9 + 30 2 + 50 – 18 – 30 2 – 41 = 0 0=0 For x = 3 – 5 2 : x 2 – 6x – 41 = 0 (3 – 5 2 ) ( ) 2 – 6 3 – 5 2 – 41 = 0 9 – 30 2 + 50 – 18 + 30 2 – 41 = 0 0=0 Both values of x satisfy the given equation. So the equation x2 – 6x – 41 = 0 is true when x = 3 + 5 2 or when x = 3 – 5 2. Answer: The equation x2 – 6x – 41 = 0 has two solutions: x = 3 + 5 2 or x = 3 – 5 2. 41 Learn more about Solving Quadratic Equations by Completing the Square through the WEB. You may open the following links. http://www.purplemath.com/modules/sqrquad.htm http://2012books.lardbucket.org/books/beginning-algebra/s12-02-completing-the-square. html http://www.regentsprep.org/Regents/math/algtrig/ATE12/indexATE12.htm http://www.mathsisfun.com/algebra/completing-square.html What to PROCESS Your goal in this section is to apply the key concepts of solving quadratic equations by completing the square. Use the mathematical ideas and the examples presented in the preceding section to answer the activities provided. ➤ Activity 5: Complete Me! Find the solutions of each of the following quadratic equations by completing the square. Answer the questions that follow. 1. x2 – 2x = 3 6. 4x2 – 32x = -28 2. s2 + 4s – 21 = 0 7. x2 – 5x – 6 = 0 51 3. t2 + 10t + 9 = 0 8. m 2 + 7m – =0 4 4. x2 + 14x = 32 9. r2 + 4r = -1 5. r2 – 10r = -17 10. w2 + 6w – 11 = 0 Questions: a. How did you find the solutions of each equation? b. What mathematics concepts or principles did you apply in finding the solutions? Explain how you applied these. c. Compare your answers with those of your classmates. Did you arrive at the same answers? If NOT, explain. Was it easy for you to find the solutions of quadratic equations by completing the squa

Use Quizgecko on...
Browser
Browser