The Study of Language (4th Edition) - Chapter 1 - PDF
Document Details
George Yule
Tags
Summary
This chapter explores the origins of language, considering perspectives from the divine source and natural sound theories. It discusses the biblical, Hindu, Herodotus and Darwin accounts to further develop speculation on this ancient and enduring topic of linguistics.
Full Transcript
The Study of Language Fourth edition GEORGE YULE 1 The origins of language The suspicion does not appear improbable that the progenitors of man, either the males or females, or both sexes, before they had acquired the power of expressing their mutual love in...
The Study of Language Fourth edition GEORGE YULE 1 The origins of language The suspicion does not appear improbable that the progenitors of man, either the males or females, or both sexes, before they had acquired the power of expressing their mutual love in articulate language, endeavoured to charm each other with musical notes and rhythm. Darwin (1871) In Charles Darwin’s vision of the origins of language, early humans had already developed musical ability prior to language and were using it “to charm each other.” This may not match the typical image that most of us have of our early ancestors as rather rough characters wearing animal skins and not very charming, but it is an interesting speculation about how language may have originated. It remains, however, a speculation. We simply don’t know how language originated. We do know that the ability to produce sound and simple vocal patterning (a hum versus a grunt, for example) appears to be in an ancient part of the brain that we share with all vertebrates, including fish, frogs, birds and other mammals. But that isn’t human language. We suspect that some type of spoken language must have developed between 100,000 and 50,000 years ago, well before written language (about 5,000 years ago). Yet, among the traces of earlier periods of life on earth, we never find any direct evidence or artifacts relating to the speech of our distant ancestors that might tell us how language was back in the early stages. Perhaps because of this absence of direct physical evidence, there has been no shortage of speculation about the origins of human speech. 2 The Study of Language The divine source In the biblical tradition, as described in the book of Genesis, God created Adam and “whatsoever Adam called every living creature, that was the name thereof.” Alternatively, following a Hindu tradition, language came from Sarasvati, wife of Brahma, creator of the universe. In most religions, there appears to be a divine source who provides humans with language. In an attempt to rediscover this original divine language, a few experiments have been carried out, with rather conflicting results. The basic hypothesis seems to have been that, if human infants were allowed to grow up without hearing any language around them, then they would spontaneously begin using the original God-given language. The Greek writer Herodotus reported the story of an Egyptian pharaoh named Psammetichus (or Psamtik) who tried the experiment with two newborn babies more than 2,500 years ago. After two years of isolation except for the company of goats and a mute shepherd, the children were reported to have spontaneously uttered, not an Egyptian word, but something that was identified as the Phrygian word bekos, meaning “bread.” The pharaoh concluded that Phrygian, an older language spoken in part of what is modern Turkey, must be the original language. That seems very unlikely. The children may not have picked up this “word” from any human source, but as several commenta- tors have pointed out, they must have heard what the goats were saying. (First remove the -kos ending, which was added in the Greek version of the story, then pronounce be- as you would the English word bed without -d at the end. Can you hear a goat?) King James the Fourth of Scotland carried out a similar experiment around the year 1500 and the children were reported to have spontaneously started speaking Hebrew, confirming the King’s belief that Hebrew had indeed been the language of the Garden of Eden. It is unfortunate that all other cases of children who have been discovered living in isolation, without coming into contact with human speech, tend not to confirm the results of these types of divine-source experiments. Very young children living without access to human language in their early years grow up with no language at all. (We will consider the case of one such child later in Chapter 12.) If human language did emanate from a divine source, we have no way of reconstructing that original language, especially given the events in a place called Babel, “because the Lord did there confound the language of all the earth,” as described in the book of Genesis in the Bible (11: 9). The natural sound source A quite different view of the beginnings of language is based on the concept of natural sounds. The basic idea is that primitive words could have been imitations of the The origins of language 3 natural sounds which early men and women heard around them. When an object flew by, making a CAW-CAW sound, the early human tried to imitate the sound and used it to refer to the thing associated with the sound. And when another flying creature made a COO-COO sound, that natural sound was adopted to refer to that kind of object. The fact that all modern languages have some words with pronunciations that seem to echo naturally occurring sounds could be used to support this theory. In English, in addition to cuckoo, we have splash, bang, boom, rattle, buzz, hiss, screech, and forms such as bow-wow. In fact, this type of view has been called the “bow-wow theory” of language origin. Words that sound similar to the noises they describe are examples of onoma- topeia. While it is true that a number of words in any language are onomatopoeic, it is hard to see how most of the soundless things as well as abstract concepts in our world could have been referred to in a language that simply echoed natural sounds. We might also be rather skeptical about a view that seems to assume that a language is only a set of words used as “names” for things. It has also been suggested that the original sounds of language may have come from natural cries of emotion such as pain, anger and joy. By this route, presumably, Ouch! came to have its painful connotations. But Ouch! and other interjections such as Ah!, Ooh!, Wow! or Yuck!, are usually produced with sudden intakes of breath, which is the opposite of ordinary talk. We normally produce spoken language on exhaled breath. Basically, the expressive noises people make in emotional reactions contain sounds that are not otherwise used in speech production and consequently would seem to be rather unlikely candidates as source sounds for language. The social interaction source Another proposal involving natural sounds has been called the “yo-he-ho” theory. The idea is that the sounds of a person involved in physical effort could be the source of our language, especially when that physical effort involved several people and the inter- action had to be coordinated. So, a group of early humans might develop a set of hums, grunts, groans and curses that were used when they were lifting and carrying large bits of trees or lifeless hairy mammoths. The appeal of this proposal is that it places the development of human language in a social context. Early people must have lived in groups, if only because larger groups offered better protection from attack. Groups are necessarily social organizations and, to maintain those organizations, some form of communication is required, even if it is just grunts and curses. So, human sounds, however they were produced, must have had some principled use within the life and social interaction of early human groups. This is an important idea that may relate to the uses of humanly produced sounds. It does not, however, answer our question regarding the origins of the sounds produced. 4 The Study of Language Apes and other primates live in social groups and use grunts and social calls, but they do not seem to have developed the capacity for speech. The physical adaptation source Instead of looking at types of sounds as the source of human speech, we can look at the types of physical features humans possess, especially those that are distinct from other creatures, which may have been able to support speech production. We can start with the observation that, at some early stage, our ancestors made a very significant transition to an upright posture, with bipedal (on two feet) locomotion, and a revised role for the front limbs. Some effects of this type of change can be seen in physical differences between the skull of a gorilla and that of a Neanderthal man from around 60,000 years ago. The reconstructed vocal tract of a Neanderthal suggests that some consonant-like sound distinctions would have been possible. We have to wait until about 35,000 years ago for features in reconstructions of fossilized skeletal structures that begin to resemble those of modern humans. In the study of evolutionary development, there are certain physical features, best thought of as partial adaptations, which appear to be relevant for speech. They are streamlined versions of features found in other primates. By themselves, such features would not necessarily lead to speech production, but they are good clues that a creature possessing such features probably has the capacity for speech. Teeth, lips, mouth, larynx and pharynx Human teeth are upright, not slanting outwards like those of apes, and they are roughly even in height. Such characteristics are not very useful for ripping or tearing food and seem better adapted for grinding and chewing. They are also very helpful in making sounds such as f or v. Human lips have much more intricate muscle interlacing than is found in other primates and their resulting flexibility certainly helps in making sounds like p or b. The human mouth is relatively small compared to other primates, can be opened and closed rapidly, and contains a smaller, thicker and more muscular tongue which can be used to shape a wide variety of sounds inside the oral cavity. In addition, unlike other primates, humans can close off the airway through the nose to create more air pressure in the mouth. The overall effect of these small differences taken together is a face with more intricate muscle interlacing in the lips and mouth, capable of a wider range of shapes and a more rapid and powerful delivery of sounds produced through these different shapes. The origins of language 5 The human larynx or “voice box” (containing the vocal folds or vocal cords) differs significantly in position from the larynx of other primates such as monkeys. In the course of human physical development, the assumption of an upright posture moved the head more directly above the spinal column and the larynx dropped to a lower position. This created a longer cavity called the pharynx, above the vocal folds, which acts as a resonator for increased range and clarity of the sounds produced via the larynx and the vocal tract. One unfortunate consequence of this development is that the lower position of the human larynx makes it much more possible for the human to choke on pieces of food. Monkeys may not be able to use their larynx to produce speech sounds, but they do not suffer from the problem of getting food stuck in their windpipe. In evolutionary terms, there must have been a big advantage in getting this extra vocal power (i.e. a larger range of sound distinctions) to outweigh the potential disadvantage from an increased risk of choking to death. The tool-making source In the physical adaptation view, one function (producing speech sounds) must have been superimposed on existing anatomical features (teeth, lips) previously used for other purposes (chewing, sucking). A similar development is believed to have taken place with human hands and some believe that manual gestures may have been a precursor of language. By about two million years ago, there is evidence that humans had developed preferential right-handedness and had become capable of making stone tools. Wood tools and composite tools eventually followed. Tool-making, or the outcome of manip- ulating objects and changing them using both hands, is evidence of a brain at work. The human brain is not only large relative to human body size, it is also lateralized, that is, it has specialized functions in each of the two hemispheres. (More details are presented in Chapter 12.) Those functions that control the motor movements involved in complex vocalization (speaking) and object manipulation (making or using tools) are very close to each other in the left hemisphere of the brain. It may be that there was an evolutionary connection between the language-using and tool-using abilities of humans and that both were involved in the development of the speaking brain. Most of the other speculative proposals concerning the origins of speech seem to be based on a picture of humans producing single noises to indicate objects in their environment. This activity may indeed have been a crucial stage in the development of language, but what it lacks is any structural organization. All languages, including sign language, require the organiz- ing and combining of sounds or signs in specific arrangements. We seem to have developed a part of our brain that specializes in making these arrangements. If we think in terms of the most basic process involved in primitive tool-making, it is not enough to be able to grasp one rock (make one sound); the human must also be able 6 The Study of Language to bring another rock (other sounds) into proper contact with the first in order to develop a tool. In terms of language structure, the human may have first developed a naming ability by producing a specific and consistent noise (e.g. bEEr) for a specific object. The crucial additional step was to bring another specific noise (e.g. gOOd) into combination with the first to build a complex message (bEEr gOOd). Several thousand years of development later, humans have honed this message-building capacity to a point where, on Saturdays, watching a football game, they can drink a sustaining beverage and proclaim This beer is good. As far as we know, other primates are not doing this. The genetic source We can think of the human baby in its first few years as a living example of some of these physical changes taking place. At birth, the baby’s brain is only a quarter of its eventual weight and the larynx is much higher in the throat, allowing babies, like chimpanzees, to breathe and drink at the same time. In a relatively short period of time, the larynx descends, the brain develops, the child assumes an upright posture and starts walking and talking. This almost automatic set of developments and the complexity of the young child’s language have led some scholars to look for something more powerful than small physical adaptations of the species over time as the source of language. Even children who are born deaf (and do not develop speech) become fluent sign language users, given appropriate circumstances, very early in life. This seems to indicate that human offspring are born with a special capacity for language. It is innate, no other creature seems to have it, and it isn’t tied to a specific variety of language. Is it possible that this language capacity is genetically hard-wired in the newborn human? As a solution to the puzzle of the origins of language, this innateness hypothesis would seem to point to something in human genetics, possibly a crucial mutation, as the source. This would not have been a gradual change, but something that happened rather quickly. We are not sure when this proposed genetic change might have taken place or how it might relate to the physical adaptations described earlier. However, as we consider this hypothesis, we find our speculations about the origins of language moving away from fossil evidence or the physical source of basic human sounds toward analogies with how computers work (e.g. being pre-programmed or hard-wired) and concepts taken from the study of genetics. The investigation of the origins of language then turns into a search for the special “language gene” that only humans possess. If we are indeed the only creatures with this special capacity for language, then will it be completely impossible for any other creature to produce or understand language? We’ll try to answer that question in Chapter 2. The origins of language 7 Study questions 1 Why is it difficult to agree with Psammetichus that Phrygian must have been the original human language? 2 What is the basic idea behind the “bow-wow” theory of language origin? 3 Why are interjections such as Ouch considered to be unlikely sources of human speech sounds? 4 Where is the pharynx and how did it become an important part of human sound production? 5 Why do you think that young deaf children who become fluent in sign language would be cited in support of the innateness hypothesis? 6 With which of the six “sources” would you associate this quotation? Chewing, licking and sucking are extremely widespread mammalian activities, which, in terms of casual observation, have obvious similarities with speech. (MacNeilage, 1998) Tasks A What is the connection between the Heimlich maneuver and the development of human speech? B What exactly happened at Babel and why is it used in explanations of language origins? C What are the arguments for and against a teleological explanation of the origins of human language? D The idea that “ontogeny recapitulates phylogeny” was first proposed by Ernst Haeckel in 1866 and is still frequently used in discussions of language origins. Can you find a simpler or less technical way to express this idea? E In his analysis of the beginnings of human language, William Foley comes to the conclusion that “language as we understand it was born about 200,000 years ago” (1997: 73). This is substantially earlier than the dates (between 100,000 and 50,000 years ago) that other scholars have proposed. What kinds of evidence and arguments are typically presented in order to choose a particular date “when language was born”? F What is the connection between the innateness hypothesis, as described in this chapter, and the idea of a Universal Grammar? 8 The Study of Language Discussion topics/projects I In this chapter we didn’t address the issue of whether language has developed as part of our general cognitive abilities or whether it has evolved as a separate component that can exist independently (and is unrelated to intelligence, for example). What kind of evidence do you think would be needed to resolve this question? (For background reading, see chapter 4 of Aitchison, 2000.) II A connection has been proposed between language, tool-using and right- handedness in the majority of humans. Is it possible that freedom to use the hands, after assuming an upright bipedal posture, resulted in certain skills that led to the development of language? Why did we assume an upright posture? What kind of changes must have taken place in our hands? (For background reading, see chapter 5 of Beaken, 1996.) Further reading Basic treatments Aitchison, J. (2000) The Seeds of Speech (Canto edition) Cambridge University Press Kenneally, C. (2007) The First Word Viking Press More detailed treatments Beaken, M. (1996) The Making of Language Edinburgh University Press Johannson, S. (2005) Origins of Language John Benjamins Music before language Mithen, S. (2006) The Singing Neanderthals Harvard University Press A hum versus a grunt Bass, A., E. Gilland and R. Baker (2008) “Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment” Science 321 (July 18): 417–421 “Bow-wow” theory, etc. Jespersen, O. (1922) Language: Its Nature, Development and Origin Macmillan Social interaction Burling, R. (2005) The Talking Ape Oxford University Press Physical development Lieberman, P. (1998) Eve Spoke: Human Language and Human Evolution W. W. Norton Gesture Corballis, M. (2002) From Hand to Mouth Princeton University Press Brain development Loritz, D. (1999) How the Brain Evolved Language Oxford University Press Tool-making Gibson, K. and T. Ingold (eds.) (1993) Tools, Language and Cognition in Human Evolution Cambridge University Press Innateness Pinker, S. (1994) The Language Instinct William Morrow The origins of language 9 Against innateness Sampson, G. (2005) The “Language Instinct” Debate (Revised edition) Continuum Other references Foley, W. (1997) Anthropological Linguistics Blackwell MacNeilage, P. (1998) “The frame/content theory of evolution of speech production” Behavioral and Brain Sciences 21: 499–546 One evening in the mid 1980s my wife and I were returning from an evening cruise around Boston Harbor and decided to take a waterfront stroll. We were passing in front of the Boston Aquarium when a gravelly voice yelled out, “Hey! Hey! Get outa there!” Thinking we had mistakenly wandered somewhere we were not allowed, we stopped and looked around for a security guard or some other official, but saw no one, and no warning signs. Again the voice boomed, “Hey! Hey you!” As we tracked the voice we found ourselves approaching a large, glass fenced pool in front of the aquarium where four harbor seals were lounging on display. Incredulous, I traced the source of the command to a large seal reclining vertically in the water, with his head extended back and up, his mouth slightly open, rotating slowly. A seal was talking, not to me, but to the air, and incidentally to anyone within earshot who cared to listen. Deacon (1997) There are a lot of stories about creatures that can talk. We usually assume that they are fantasy or fiction or that they involve birds or animals simply imitating something they have heard humans say (as Terrence Deacon discovered was the case with the loud seal in Boston Aquarium). Yet we think that creatures are capable of communicating, certainly with other members of their own species. Is it possible that a creature could learn to communicate with humans using language? Or does human language have properties that make it so unique that it is quite unlike any other communication system and hence unlearnable by any other creature? To answer these questions, we first look at some special properties of human language, then review a number of experiments in communication involving humans and animals. Animals and human language 11 Communication We should first distinguish between specifically communicative signals and those which may be unintentionally informative signals. Someone listening to you may become informed about you through a number of signals that you have not intentionally sent. She may note that you have a cold (you sneezed), that you aren’t at ease (you shifted around in your seat), that you are disorganized (non-matching socks) and that you are from somewhere else (you have a strange accent). However, when you use language to tell this person, I’m one of the applicants for the vacant position of senior brain surgeon at the hospital, you are normally considered to be intentionally communicating something. Similarly, the blackbird is not normally taken to be communicating anything by having black feathers, sitting on a branch and looking down at the ground, but is considered to be sending a communicative signal with the loud squawking produced when a cat appears on the scene. So, when we talk about distinctions between human language and animal communication, we are considering both in terms of their potential as a means of intentional communication. Properties of human language While we tend to think of communication as the primary function of human language, it is not a distinguishing feature. All creatures communicate in some way. However, we suspect that other creatures are not reflecting on the way they create their communi- cative messages or reviewing how they work (or not). That is, one barking dog is probably not offering advice to another barking dog along the lines of “Hey, you should lower your bark to make it sound more menacing.” They’re not barking about barking. Humans are clearly able to reflect on language and its uses (e.g. “I wish he wouldn’t use so many technical terms”). This is reflexivity. The property of reflexivity (or “reflexiveness”) accounts for the fact that we can use language to think and talk about language itself, making it one of the distinguishing features of human language. Indeed, without this general ability, we wouldn’t be able to reflect on or identify any of the other distinct properties of human language. We’ll look in detail at another five of them: displacement, arbitrariness, productivity, cultural transmission and duality. Displacement When your pet cat comes home and stands at your feet calling meow, you are likely to understand this message as relating to that immediate time and place. If you ask your 12 The Study of Language cat where it has been and what it was up to, you’ll probably get the same meow response. Animal communication seems to be designed exclusively for this moment, here and now. It cannot effectively be used to relate events that are far removed in time and place. When your dog says GRRR, it means GRRR, right now, because dogs don’t seem to be capable of communicating GRRR, last night, over in the park. In contrast, human language users are normally capable of producing messages equivalent to GRRR, last night, over in the park, and then going on to say In fact, I’ll be going back tomorrow for some more. Humans can refer to past and future time. This property of human language is called displacement. It allows language users to talk about things and events not present in the immediate environment. Indeed, displacement allows us to talk about things and places (e.g. angels, fairies, Santa Claus, Superman, heaven, hell) whose existence we cannot even be sure of. Animal communication is generally considered to lack this property. We could look at bee communication as a small exception because it seems to have some version of displacement. For example, when a honeybee finds a source of nectar and returns to the beehive, it can perform a complex dance routine to communicate to the other bees the location of this nectar. Depending on the type of dance (round dance for nearby and tail-wagging dance, with variable tempo, for further away and how far), the other bees can work out where this newly discovered feast can be found. Doesn’t this ability of the bee to indicate a location some distance away mean that bee communication has at least some degree of displacement as a feature? Yes, but it is displacement of a very limited type. It just doesn’t have the range of possibilities found in human language. Certainly, the bee can direct other bees to a food source. However, it must be the most recent food source. It cannot be that delicious rose bush on the other side of town that we visited last weekend, nor can it be, as far as we know, possible future nectar in bee heaven. Arbitrariness It is generally the case that there is no “natural” connection between a linguistic form and its meaning. The connection is quite arbitrary. We can’t just look at the Arabic word ﮎﻝﺏand, from its shape, for example, determine that it has a natural and obvious meaning any more than we can with its English translation form dog. The linguistic form has no natural or “iconic” relationship with that hairy four-legged barking object out in the world. This aspect of the relationship between linguistic signs and objects in the world is described as arbitrariness. Of course, you can play a game with words to make them appear to “fit” the idea or activity they indicate, as shown in these words from a child’s game. However, this type of game only emphasizes the arbitrariness of the connection that normally exists between a word and its meaning. Animals and human language 13 Figure 2.1 There are some words in language with sounds that seem to “echo” the sounds of objects or activities and hence seem to have a less arbitrary connection. English examples are cuckoo, crash, slurp, squelch or whirr. However, these onomatopoeic words are relatively rare in human language. For the majority of animal signals, there does appear to be a clear connection between the conveyed message and the signal used to convey it. This impression we have of the non-arbitrariness of animal signaling may be closely connected to the fact that, for any animal, the set of signals used in communication is finite. That is, each variety of animal communication consists of a fixed and limited set of vocal or gestural forms. Many of these forms are only used in specific situations (e.g. establishing territory) and at particular times (e.g. during the mating season). Productivity Humans are continually creating new expressions and novel utterances by manipulat- ing their linguistic resources to describe new objects and situations. This property is described as productivity (or “creativity” or “open-endedness”) and essentially means that the potential number of utterances in any human language is infinite. The communication systems of other creatures are not like that. Cicadas have four signals to choose from and vervet monkeys have thirty-six vocal calls. Nor does it seem possible for creatures to produce new signals to communicate novel experiences or events. The honeybee, normally able to communicate the location of a nectar source to other bees, will fail to do so if the location is really “new.” In one experiment, a hive of bees was placed at the foot of a radio tower and a food source placed at the top. Ten bees were taken to the top, given a taste of the delicious food, and sent off to tell the rest of the hive about their find. The message was conveyed via a bee dance and the whole gang buzzed off to get the free food. They flew around in all directions, but couldn’t locate the food. (It’s probably one way to make bees really mad.) The problem seems to be that bee communication has a fixed set of signals for communicating location and they all relate to horizontal distance. The bee cannot manipulate its communication system to create a “new” message indicating vertical distance. According to Karl von 14 The Study of Language Frisch, who conducted the experiment, “the bees have no word for up in their language” and they can’t invent one. This limiting feature of animal communication is described in terms of fixed reference. Each signal in the system is fixed as relating to a particular object or occasion. Among the vervet monkey’s repertoire, there is one danger signal CHUTTER, which is used when a snake is around, and another RRAUP, used when an eagle is spotted nearby. These signals are fixed in terms of their reference and cannot be manipulated. What might count as evidence of productivity in the mon- key’s communication system would be an utterance of something like CHUTT-RRAUP when a flying creature that looked like a snake came by. Despite a lot of research involving snakes suddenly appearing in the air above them (among other unusual and terrifying experiences), the vervet monkeys didn’t produce a new danger signal. The human, given similar circumstances, is quite capable of creating a “new” signal, after initial surprise perhaps, by saying something never said before, as in Hey! Watch out for that flying snake! Cultural transmission While we may inherit physical features such as brown eyes and dark hair from our parents, we do not inherit their language. We acquire a language in a culture with other speakers and not from parental genes. An infant born to Korean parents in Korea, but adopted and brought up from birth by English speakers in the United States, will have physical characteristics inherited from his or her natural parents, but will inevitably speak English. A kitten, given comparable early experiences, will produce meow regardless. This process whereby a language is passed on from one generation to the next is described as cultural transmission. It is clear that humans are born with some kind of predisposition to acquire language in a general sense. However, we are not born with the ability to produce utterances in a specific language such as English. We acquire our first language as children in a culture. The general pattern in animal communication is that creatures are born with a set of specific signals that are produced instinctively. There is some evidence from studies of birds as they develop their songs that instinct has to combine with learning (or exposure) in order for the right song to be produced. If those birds spend their first seven weeks without hearing other birds, they will instinctively produce songs or calls, but those songs will be abnormal in some way. Human infants, growing up in isolation, produce no “instinctive” language. Cultural transmission of a specific lan- guage is crucial in the human acquisition process. Animals and human language 15 Duality Human language is organized at two levels or layers simultaneously. This property is called duality (or “double articulation”). In speech production, we have a physical level at which we can produce individual sounds, like n, b and i. As individual sounds, none of these discrete forms has any intrinsic meaning. In a particular combination such as bin, we have another level producing a meaning that is different from the meaning of the combination in nib. So, at one level, we have distinct sounds, and, at another level, we have distinct meanings. This duality of levels is, in fact, one of the most economical features of human language because, with a limited set of discrete sounds, we are capable of producing a very large number of sound combinations (e.g. words) which are distinct in meaning. Among other creatures, each communicative signal appears to be a single fixed form that cannot be broken down into separate parts. Although your dog may be able to produce woof (“I’m happy to see you”), it does not seem to do so on the basis of a distinct level of production combining the separate elements of w + oo + f. If the dog was operating with the double level (i.e. duality), then we might expect to hear different combinations with different meanings, such as oowf (“I’m hungry”) and foow (“I’m really bored”). Talking to animals If these properties of human language make it such a unique communication system, quite different from the communication systems of other creatures, then it would seem extremely unlikely that other creatures would be able to understand it. Some humans, however, do not behave as if this is the case. There is, after all, a lot of spoken language directed by humans to animals, apparently under the impression that the animal follows what is being said. Riders can say Whoa to horses and they stop (or so it seems), we can say Heel to dogs and they will follow at heel (well, sometimes), and a variety of circus animals go Up, Down and Roll over in response to spoken commands. Should we treat these examples as evidence that non-humans can understand human language? Probably not. The standard explanation is that the animal produces a particular behavior in response to a particular sound-stimulus or noise, but does not actually “understand” what the words in the noise mean. If it seems difficult to conceive of animals understanding human language, then it appears to be even less likely that an animal would be capable of producing human language. After all, we do not generally observe animals of one species learning to produce the signals of another species. You could keep your horse in a field of cows for 16 The Study of Language years, but it still won’t say moo. And, in some homes, a new baby and a puppy may arrive at the same time. Baby and puppy grow up in the same environment, hearing mostly the same things, but about two years later, the baby is making lots of human speech sounds and the puppy is not. But perhaps a puppy is a poor example. Wouldn’t it be better to work with a closer relative such as a chimpanzee? Chimpanzees and language The idea of raising a chimp and a child together may seem like a nightmare, but this is basically what was done in an early attempt to teach a chimpanzee to use human language. In the 1930s, two scientists (Luella and Winthrop Kellogg) reported on their experience of raising an infant chimpanzee together with their baby son. The chim- panzee, called Gua, was reported to be able to understand about a hundred words, but did not “say” any of them. In the 1940s, a chimpanzee named Viki was reared by another scientist couple (Catherine and Keith Hayes) in their own home, exactly as if she was a human child. These foster parents spent five years attempting to get Viki to “say” English words by trying to shape her mouth as she produced sounds. Viki eventually managed to produce some words, rather poorly articulated versions of mama, papa and cup. In retrospect, this was a remarkable achievement since it has become clear that non-human primates do not actually have a physically structured vocal tract which is suitable for articulating the sounds used in speech. Apes and gorillas can, like chimpanzees, communicate with a wide range of vocal calls, but they just can’t make human speech sounds. Washoe Recognizing that a chimpanzee was a poor candidate for spoken language learning, another scientist couple (Beatrix and Allen Gardner) set out to teach a female chim- panzee called Washoe to use a version of American Sign Language. As described later in Chapter 15, this sign language has all the essential properties of human language and is learned by many congenitally deaf children as their natural first language. From the beginning, the Gardners and their research assistants raised Washoe like a human child in a comfortable domestic environment. Sign language was always used when Washoe was around and she was encouraged to use signs, even her own incomplete “baby-versions” of the signs used by adults. In a period of three and a half years, Washoe came to use signs for more than a hundred words, ranging from airplane, baby and banana through to window, woman and you. Even more impres- sive was Washoe’s ability to take these forms and combine them to produce Animals and human language 17 “sentences” of the type gimme tickle, more fruit and open food drink (to get someone to open the refrigerator). Some of the forms appear to have been inventions by Washoe, as in her novel sign for bib and in the combination water bird (referring to a swan), which would seem to indicate that her communication system had the potential for productivity. Washoe also demonstrated understanding of a much larger number of signs than she produced and was capable of holding rudimentary conversations, mainly in the form of question–answer sequences. A similar ability with sign language was reported by Francine Patterson working with a gorilla named Koko not long after. Sarah and Lana At the same time as Washoe was learning sign language, another chimpanzee was being taught (by Ann and David Premack) to use a set of plastic shapes for the purpose of communicating with humans. These plastic shapes represented “words” that could be arranged in sequence to build “sentences” (Sarah preferred a vertical order). The basic approach was quite different from that of the Gardners. Sarah was systematically trained to associate these shapes with objects or actions. She remained an animal in a cage, being trained with food rewards to manipulate a set of symbols. Once she had learned to use a large number of these plastic shapes, Sarah was capable of getting an apple by selecting the correct plastic shape (a blue triangle) from a large array. Notice that this symbol is arbitrary since it would be hard to argue for any natural connection between an apple and a blue plastic triangle. Sarah was also capable of producing Figure 2.2 MARY GIVE CHOCOLATE SARAH 18 The Study of Language “sentences” such as Mary give chocolate Sarah and had the impressive capacity to understand complex structures such as If Sarah put red on green, Mary give Sarah chocolate. Sarah got the chocolate. A similar training technique with another artificial language was used (by Duane Rumbaugh) to train a chimpanzee called Lana. The language she learned was called Yerkish and consisted of a set of symbols on a large keyboard linked to a computer. When Lana wanted some water, she had to press four symbols, in the correct sequence, to produce the message please machine give water. Figure 2.3 Both Sarah and Lana demonstrated an ability to use what look like word symbols and basic structures in ways that superficially resemble the use of language. There is, however, a lot of skepticism regarding these apparent linguistic skills. It has been pointed out that when Lana used the symbol for “please” she did not have to under- stand the meaning of the English word please. The symbol for “please” on the computer keyboard might simply be the equivalent of a button on a vending machine and, so the argument goes, we could learn to operate vending machines without necessarily knowing language. This is only one of the many arguments that have been presented against the idea that the use of signs and symbols by these chimpan- zees is similar to the use of language. The controversy On the basis of his work with another chimpanzee called Nim, the psychologist Herbert Terrace argued that chimpanzees simply produce signs in response to the demands of people and tend to repeat signs those people use, yet they are treated (by naive researchers) as if they are taking part in a “conversation.” As in many critical studies of animal learning, the chimpanzees’ behavior is viewed as a type of conditioned response to cues provided (often unwittingly) by human trainers. Herbert’s conclusion was that chimpanzees are clever creatures who learn to produce a certain type of behavior (signing or symbol selection) in order to get rewards and are essentially performing sophisticated “tricks.” In response, the Gardners argued that they were not animal trainers, nor were they inculcating and then eliciting conditioned responses from Washoe. In complex Animals and human language 19 experiments, designed to eliminate any possible provision of cues by humans, they showed that in the absence of any human, Washoe could produce correct signs to identify objects in pictures. They also emphasize a major difference between the experiences of Washoe and Nim. While Nim was kept in a windowless cell as a research animal and had to deal with a lot of different research assistants who were often not fluent in American Sign Language, Washoe lived in a domestic environment with a lot of opportunity for imaginative play and interaction with fluent signers who were also using sign language with each other. They also report that another group of younger chimpanzees not only learned sign language, but also occasionally used signs with each other and with Washoe, even when there were no humans present. Kanzi In a more recent set of studies, an interesting development relevant to this controversy came about almost by accident. While Sue Savage-Rumbaugh was attempting to train a bonobo (a pygmy chimpanzee) called Matata how to use the symbols of Yerkish, Matata’s adopted baby, Kanzi, was always with her. Although Matata did not do very well, her son Kanzi spontaneously started using the symbol system with great ease. He had learned not by being taught, but by being exposed to, and observing, a kind of language in use at a very early age. Kanzi eventually developed a large symbol vocabulary (over 250 forms). By the age of eight, he was reported to be able, through the association of symbols with spoken words, to demonstrate understanding of spoken English at a level comparable to a two-and-a-half-year-old human child. There was also evidence that he was using a consistently distinct set of “gentle noises” as words to refer to things such as bananas, grapes and juice. He had also become capable of using his symbol system to ask to watch his favorite movies, Quest for Fire (about primitive humans) and Greystoke (about the Tarzan legend). Using language Important lessons have been learned from attempts to teach chimpanzees how to use forms of language. We have answered some questions. Were Washoe and Kanzi capable of taking part in interaction with humans by using a symbol system chosen by humans and not chimpanzees? The answer is clearly “Yes.” Did Washoe and Kanzi go on to perform linguistically on a level comparable to a human child about to begin pre-school? The answer is just as clearly “No.” In arriving at these answers, we have also had to face the fact that, even with our list of key properties, we still don’t seem to have a non-controversial definition of what counts as “using language.” 20 The Study of Language One solution might be to stop thinking of language, at least in the phrase “using language,” as a single thing that one can either have or not have. We could then say that there are (at least) two ways of thinking about what “using language” means. In a very broad sense, language does serve as a type of communication system that can be observed in a variety of different situations. In one situation, we look at the behavior of a two-year-old human child interacting with a caregiver as an example of “using language” in the broad sense. In another situation, we observe very similar behavior from chimpanzees and bonobos when they are interacting with humans they know. It has to be fair to say that, in both cases, we observe the participants “using language.” However, there is a difference. Underlying the two-year-old’s communicative activ- ity is the capacity to develop a highly complex system of sounds and structures, plus a set of computational procedures, that will allow the child to produce extended dis- course containing a potentially infinite number of novel utterances. No other creature has been observed “using language” in this sense. It is in this more fundamental or abstract sense that we say that language is uniquely human. In the following chapters, we will begin to look in detail at the many elements that make up this uniquely human phenomenon. Animals and human language 21 Study questions 1 Why is reflexivity considered to be a special property of human language? 2 What kind of evidence is used to support the idea that language is culturally transmitted? 3 What is the difference between a communication system with productivity and one with fixed reference? 4 How did the Gardners try to show that Washoe was not simply repeating signs made by interacting humans? 5 If Sarah could use a gray plastic shape to convey the meaning of the word red, which property does her “language” seem to have? 6 What was considered to be the key element in Kanzi’s language learning? Tasks A In studies of communication involving animals and humans, there is sometimes a reference to “the Clever Hans phenomenon.” Who or what was Clever Hans, why was he/she/it famous and what exactly is the “phenomenon”? B We recognized a distinction early in the chapter between communicative and informative signals. How would “body language” be characterized? Also, what kind of signaling is involved in “distance zones”? What about “eye contact” and “eyebrow flashes”? C What is meant by “sound symbolism” and how does it relate to the property of arbitrariness? D What was the significance of the name given to the chimpanzee in the research conducted by the psychologist Herbert Terrace? E We reviewed studies involving chimpanzees and bonobos learning to communicate with humans. Can only African apes accomplish this task? Are there any studies involving the Asian great ape, the orangutan, learning how to use a human communication system? F Consider these statements about the symbol-using abilities of chimpanzees in animal language studies and decide if they are correct or not. What evidence can be used to argue for or against the accuracy of these statements? 1 They can create combinations of signs that look like the telegraphic speech produced by young children. 2 They can invent new sign combinations. 3 They can understand structures with complex word order, such as conditionals (i.e. if X, then Y). 22 The Study of Language 4 They overgeneralize the references of signs, using one sign for many different things, just as human children do in the early stages. 5 They don’t use signs spontaneously and only produce them in response to humans. 6 They have complex concepts such as time because they produce sign combinations such as “time eat.” 7 They use signs to interact with each other, just as three-year-old children do with speech. 8 They steadily increase the length of their utterances, so that their average utterance length of 3.0 is equivalent to that of a three-and-a-half-year-old child. Discussion topics/projects I Listed below are six other properties (or “design features”) that are often discussed when human language is compared to other communication systems. vocal-auditory channel use (language signals are sent using the vocal organs and received by the ears) specialization (language signals do not serve any other type of purpose such as breathing or feeding) non-directionality (language signals have no inherent direction and can be picked up by anyone within hearing, even unseen) rapid fade (language signals are produced and disappear quickly) reciprocity (any sender of a language signal can also be a receiver) prevarication (language signals can be false or used to lie or deceive) (i) Are these properties found in all forms of human communication via language? (ii) Are these special properties of human language or can they be found in the communication systems of other creatures? (For background reading, see chapter 17 of O’Grady et al., 2005.) II The most persistent criticism of the chimpanzee language-learning projects is that the chimpanzees are simply making responses like trained animals for rewards and are consequently not using language to express anything. Read over the following reports and try to decide how the different behaviors of these chimpanzees (Dar, Washoe and Moja) should be characterized. Signs are represented by words in capital letters. Animals and human language 23 After her nap, Washoe signed OUT. I was hoping for Washoe to potty herself and did not comply. Then Washoe took my hands and put them together to make OUT and then signed OUT with her own hands to show me how. Greg was hooting and making other sounds, to prevent Dar from falling asleep. Dar put his fist to Greg’s lips and made kissing sounds. Greg asked WHAT WANT? and Dar replied QUIET, placing the sign on Greg’s lips. Moja signed DOG on Ron and me and looked at our faces, waiting for us to “woof.” After several rounds I made a “meeow” instead. Moja signed DOG again, I repeated “meeow” again, and Moja slapped my leg harder. This went on. Finally I woofed and Moja leapt on me and hugged me. Moja stares longingly at Dairy Queen as we drive by. Then for a minute or more signs NO ICE CREAM many times, by shaking her head while holding fist to mouth, index edge up. (For background reading, see Rimpau et al., 1989, which is the source of these examples.) Further reading Basic treatments Aitchison, J. (2008) The Articulate Mammal (chapter 2) (5th edition) Routledge Friend, T. (2004) Animal Talk Simon and Schuster More detailed treatments Anderson, S. (2004) Doctor Dolittle’s Delusion Yale University Press Rogers, L. and G. Kaplan (2000) Songs, Roars and Rituals Harvard University Press General properties of language Hockett, C. (1960) “The origin of speech” Scientific American 203: 89–96 Animal communication and consciousness Griffin, D. (2001) Animal Minds University of Chicago Press Hauser, M. (1996) The Evolution of Communication MIT Press Bee communication von Frisch, K. (1993) The Dance Language and Orientation of Bees Harvard University Press Vervet monkey communication Cheney, D. and R. Seyfarth (1990) How Monkeys See the World University of Chicago Press Individual chimpanzees, gorillas and bonobos (Gua) Kellogg, W. and L. Kellogg (1933) The Ape and the Child McGraw-Hill (Viki) Hayes, C. (1951) The Ape in Our House Harper (Washoe) Gardner, R., B. Gardner and T. van Cantfort (eds.) (1989) Teaching Sign Language to Chimpanzees State University of New York Press 24 The Study of Language (Koko) Patterson, F. and E. Linden (1981) The Education of Koko Holt (Sarah) Premack, A. and D. Premack (1991) “Teaching language to an ape” In W. Wang (ed.) The Emergence of Language (16–27) W. H. Freeman (Lana) Rumbaugh, D. (ed.) (1977) Language Learning by a Chimpanzee: The LANA Project Academic Press (Nim) Terrace, H. (1979) Nim: A Chimpanzee Who Learned Sign Language Knopf Hess, E. (2008) Nim Chimpsky: The Chimp Who Would Be Human Bantam Books (Kanzi) Savage-Rumbaugh, S. and R. Lewin (1994) Kanzi: The Ape at the Brink of the Human Mind John Wiley Other references O’Grady, W., J. Archibald, M. Aronoff and J. Rees-Miller (2005) Contemporary Linguistics (chapter 17) (5th edition) Bedford/St. Martin’s Press Rimpau, J., R. Gardner and B. Gardner (1989) “Expression of person, place and instrument in ASL utterances of children and chimpanzees” In R. Gardner, B. Gardner and T. van Cantfort (eds.) Teaching Sign Language to Chimpanzees (240–268) State University of New York Press