Fluid Mechanics PDF
Document Details
Uploaded by ElatedChrysoprase1998
St. John's Public School
Tags
Summary
These notes cover fundamental concepts and formulas in fluid mechanics, ideal for students preparing for competitive examinations like JEE. Topics include density, pressure, buoyancy, and fluid dynamics.
Full Transcript
# Fluid Dynamics ## Density - **Uniform Substance:** ρ = M/V - **Non-Uniform Substance:** ρ = dm/dV - 1 g/cc = 10^3 kg/m^3 - **Water** ρ(water) = 1g/cc = 10^3 kg/m^3 - **Mercury** ρ Hq = 13.6 g/cc - 1000 L = 1 m^3 ## Mixtures - **Two liquids of equal volume and different densities:** - ρ<su...
# Fluid Dynamics ## Density - **Uniform Substance:** ρ = M/V - **Non-Uniform Substance:** ρ = dm/dV - 1 g/cc = 10^3 kg/m^3 - **Water** ρ(water) = 1g/cc = 10^3 kg/m^3 - **Mercury** ρ Hq = 13.6 g/cc - 1000 L = 1 m^3 ## Mixtures - **Two liquids of equal volume and different densities:** - ρ<sub>mix</sub> = (ρ<sub>1</sub> + ρ<sub>2</sub>)/2 - **Two liquids of equal mass and different densities:** - ρ<sub>mix</sub> = 2ρ<sub>1</sub>ρ<sub>2</sub>/(ρ<sub>1</sub>+ρ<sub>2</sub>) - **n Equal mass liquids:** - ρ<sub>mix</sub> = 1/ρ<sub>1</sub> + 1/ρ<sub>2</sub> + … + 1/ρ<sub>n</sub> - ρ<sub>mix</sub> = (ρ<sub>1</sub> + ρ<sub>2</sub> + ρ<sub>3</sub> + …+ ρ<sub>n</sub>)/n ## Pressure - **Definition:** - P = F/A - P = dF/A - **Units:** - N/m<sup>2</sup> (or) Pascal (or) atm - 1 N/m<sup>2</sup> = 1 Pascal - 1 atm = 1.013 x 10<sup>5</sup> N/m<sup>2</sup> ## Atmospheric Pressure - **Formula:** P<sub>o</sub> = ρgh - **Standard Atmospheric Pressure:** P<sub>o</sub> = 1 atm - **Mercury** ρm = 13.6 x 10<sup>3</sup> kg/m<sup>3</sup> - **Gravity** g = 9.8m/s<sup>2</sup> - **Height (Mercury column)** h = 76cm = 0.76m ## Pressure Due to Liquid Column - **Total Pressure** P<sub>T</sub> = P = P<sub>o</sub> + ρgh - **Absolute Pressure** P = P<sub>o</sub> + ρgh - **Gauge Pressure:** P<sub>liquid</sub> = gauge pressure = (P - P<sub>o</sub>) - **Accelerating Container** P = P<sub>o</sub> + ρg<sub>eff</sub>h - g<sub>eff</sub> = g + a ## Accelerating Fluid - **Case 1:** - P<sub>B</sub> - P<sub>A</sub> = ρg<sub>eff</sub>h - P<sub>B</sub> - P<sub>A</sub> = ρ(g + a)sh - **Case 2:** - Tan θ = ma/mg = a/g = ρg<sub>eff</sub>h/mg - Tanθ = h/L = a/g - h = (g/g)L ## Hydrostatic Paradox - P<sub>A</sub> = P<sub>B</sub> = P<sub>C</sub> = P<sub>D</sub> ## Pascal's Law - **Formula:** F<sub>1</sub>/A<sub>1</sub> = F<sub>2</sub>/A<sub>2</sub> ## Rotating Fluid in Container (Cylindrical) - **Position Formula:** y = w<sup>2</sup>x<sup>2</sup>/2g - **Height Formula using position formula:** h = w<sup>2</sup>R<sup>2</sup>/2g ## Rotating Density (RD) (Specific Gravity) - **Formula:** RD = P<sub>body</sub>/P<sub>water</sub> - **Alternative formula:** RD = weight<sub>body</sub>/weight<sub>equal volume of water</sub> - **Another formula:** RD = M<sub>body</sub>/M<sub>equal volume of water</sub> - **Note:** RD of body = W<sub>air</sub>/W<sub>loss</sub> = W<sub>air</sub>/(W<sub>air</sub> - W<sub>water</sub>) - **Note:** P<sub>liquid</sub>/P<sub>water</sub> = (W<sub>air</sub> - W<sub>liquid</sub>)/(W<sub>air</sub> - W<sub>water</sub>) = RD ## Archimedes Principle - **Buoyancy Force formula:** F<sub>B</sub> = ρ<sub>c</sub>(V<sub>i</sub>)g ## Principle of Rotation - **Velocity formula:** V<sub>i</sub> = P<sub>b</sub>A/P<sub>L</sub> - **Force formula:** F<sub>in</sub> = P<sub>b</sub>/P<sub>L</sub> ## Force Acting on Wall of Container Due To Liquid - **Force formula:** F<sub>wall</sub> = ρ<sub>q</sub>wh<sup>2</sup>/2 ## Torque on Wall of Container Due To Liquid - **Torque formula:** T = ρ<sub>q</sub>wh<sup>3</sup>/3 - **Torque is unstable:** T = F x R (unit = m/s<sup>3</sup>) ## Fluid Dynamics - **Streamline flow (Laminar flow):** the fluid particles move in parallel, smooth, and continuous paths - **Turbulent flow:** characterized by chaotic and irregular motion, creating eddies and vortices - **Ideal Flow:** Incompressible, Non-viscous, streamlined flow - **Rate of Flow of Fluid:** R<sub>F</sub> = AV = PAV/t - **Equation of Continuity:** AV = const; A<sub>1</sub>V<sub>1</sub> = A<sub>2</sub>V<sub>2</sub>; A<sub>1</sub>V<sub>1</sub> = A<sub>2</sub>V<sub>2</sub> + A<sub>3</sub>V<sub>3</sub> - **K.E of fluid:** KE = 1/2pV<sup>2</sup> = 1/2W<sub>v</sub><sup>2</sup>/g ## Bernoullis Principal - **Formula:** P + ρgh + 1/2ρV<sup>2</sup> = const - **Note 1:** P<sub>1</sub> + ρgh<sub>1</sub> + 1/2ρV<sub>1</sub><sup>2</sup> = P<sub>2</sub> + ρgh<sub>2</sub> + 1/2 ρV<sub>2</sub><sup>2</sup> - **Note 2:** P<sub>1</sub> + 1/2ρV<sub>1</sub><sup>2</sup> = P<sub>2</sub> + 1/2 ρV<sub>2</sub><sup>2</sup> - **Application:** P - P<sub>o</sub> + ρgh = 1/2ρ(V<sub>2</sub><sup>2</sup> - V<sub>1</sub><sup>2</sup>) - **Velocity Formula using Application formula:** V<sub>2</sub> = √[(2(P - P<sub>o</sub> + ρgh))/(ρ(1 - (A<sub>2</sub>/A<sub>1</sub>)<sup>2</sup>))] - **Speed of efflux formula:** V = √2gh ## Range of Liquid Ejected From Base of Large Container - **Range formula:** R = √4h(H - h) - **Maximum Range formula:** h = H/2 - **Maximum Range result:** R<sub>max</sub> = H ## Time Taken to Decrease Liquid Level in Open Container - **Formula:** t = A√[2(h<sub>i</sub> - h<sub>f</sub>)/g] ## Venturimeter - **Formula:** Rate of flow = A<sub>1</sub>A<sub>2</sub>√[2ρg<sub>h</sub>/(ρ(A<sub>2</sub><sup>2</sup> - A<sub>1</sub><sup>2</sup>))] ## Buoyancy Force - **Formula:** F<sub>B</sub> = ½ρAg ## Important Formulas for JEE - **Hydrostatic Pressure:** P = P<sub>o</sub> + ρgh - **Buoyancy Force:** F<sub>B</sub> = ρVg - **Continuity Equation:** AV<sub>1</sub> = AV<sub>2</sub> - **Bernoullis Equation:** P + 0.5ρV<sup>2</sup> + ρgh = constant - **Rate of Flow (Venturi Meter):** Q = AV - **Surface Tension: ** F = L - **Capillary Rise:** h = 2cos θ/ (ρgr) - **Viscosity:** F = A(du/dy) These formulas provide a concise summary of key principles in fluid mechanics that are essential for solving problems in JEE examinations.