Final Information Theory Base PDF

Document Details

Uploaded by Deleted User

Tags

information theory coding theory error correction mathematics

Summary

This document contains multiple-choice questions on information theory and coding theory concepts. Questions cover topics such as parity bits, error syndrome, entropy, and Shannon's and Hartley's formulas in different scenarios. The document also includes calculations of code rate and redundancy aspects.

Full Transcript

1.\_\_\_\_\_\_ indicate(s) an error in a received combination. A\) Parity bits **B) Error syndrome** C\) Data bits D\) None of the given 2\. \... is a measure of uncertainty A\) Encoding **B) Entropy** C\) Information D\) Redundancy 3\. A code has two allowable combinations 101 and 010. Wh...

1.\_\_\_\_\_\_ indicate(s) an error in a received combination. A\) Parity bits **B) Error syndrome** C\) Data bits D\) None of the given 2\. \... is a measure of uncertainty A\) Encoding **B) Entropy** C\) Information D\) Redundancy 3\. A code has two allowable combinations 101 and 010. What is the allowable combination for the error combination 001? **A) 101** B\) 010 C\) 001 D\) None 4\. A code has two allowable combinations 101 and 010. What is the allowable combination for the error combination 100? **A) 101** B\) 010 C\) 100 D\) None 5\. A code has two allowable combinations 101 and 010. What is the allowable combination for the error combination 000? **A) 010** B\) 101 C\) 000 D\) None 6\. A code has two allowable combinations 101 and 010. What is the allowable combination for the error combination 111? **A) 101** B\) 010 C\) 111 D\) None 7\. A code has two allowable combinations 101 and 010. What is the allowable combination for the error combination 011? **A) 010** B\) 101 C\) 011 D\) None 8\. A code has two allowable combinations 101 and 010. What is the allowable combination for the error combination 110? **A) 010** B\) 101 C\) 110 D\) None 9\. A codeword of the Hamming code consists of \_\_\_\_\_\_\_\_ and \_\_\_\_\_\_\_\_ bits. **A) data; parity** B\) with errors; without errors C\) allowable; not allowable D\) none of the given 10\. A Huffman code is a = 1, b = 000, c = 001, d = 01. Probabilities are p(a) = 0.4, p(b) = 0.1, p(c) = 0.2, p(d) = 0.3. The average length of codewords q is A\) 2.1 bit **B) 1.9 bit** C\) 2.0 bit D\) 8.0 bit 11\. A redundancy of a code S = \... **A) 1 - Iavr/Imax** B\) Iavr/Imax C\) 1 + Iavr/Imax D\) Imax/Iavr 12\. An average length of codewords qavr = \... **A) ∑ (pi\*qi)** B\) ∑ (pi/qi) C\) ∑pi / n D\) ∑qi / n 13\. An efficiency of a code E = \... **A) Iavr/Imax** B\) Imax/Iavr C\) Iavr/100 D\) Imax - Iavr 14\. ASCII code is a A\) Variable length code **B) Fixed length code** C\) Error-correction code D\) None of the given 15\. By the Bayes\' rule for conditional entropy H(Y\|X) = \... **A) H(X\|Y) - H(X) + H(Y)** B\) \[P(A)\] /P(B) C\) H(X\|Y) - H(X) D\) H(X\|Y)+ H(Y) 16\. By the Bayes\' theorem \... A\) P(B\|A) = P(A and B)/P(A) **B) P(A\|B) = \[P(B\|A)\]\[P(A)\] /P(B)** C\) P(B\|A) = P(A and B)\*P(A) D\) P(A\|B) = \[P(B\|A)\]\[P(A)\] \* P(B) 17\. By the Chain rule H(X,Y) = H(Y\|X) + \... **A) H(X)** B\) H(Y) C\) H(Y\|X) D\) H(X\|Y) 18\. By the Hartley\'s formula the amount of information I = \... **A) I = n\*log m** B\) I = m\*n C\) I = log (m/n) D\) I = log (m\*n) 19\. By the Hartley\'s formula the entropy H = \... A\) H = - ∑(pi\*log pi) B\) H = - ∑ (log pi) **C) H = log m** D\) H = - ∑ (pi/log pi) 20\. By the property of joint entropy H(X,Y) \= H(X) and H(X,Y) \= H(X) and H(X,Y) \>= H(Y)** D\) H(X,Y) \>= H(X) + H(Y) 22\. By the Shannon\'s formula the amount of information I = \... **A) H = - n \* ∑(pi\*log pi)** B\) H = - n \* ∑ (log pi) C\) H = - n \* ∑ pi D\) H = - n \* ∑ (pi/log pi) 23\. By the Shannon\'s formula the entropy H = \... **A) H = - ∑(pi\*log pi)** B\) H = - ∑ (log pi) C\) H = - ∑ pi D\) H = - ∑ (pi/log pi) 24\. Calculate the code rate for Hamming (15,11) code A\) 1 **B) 0,733** C\) 0,571 D\) 0,839 25\. Calculate the code rate for Hamming (31,26) code A\) 1 **B) 0,839** C\) 0,733 D\) 0,571 26\. Calculate the code rate for Hamming (7,4) code A\) 1 **B) 0,571** C\) 0,733 D\) 0,839 27\. Calculate the **efficiency** of the language if it has 32 letters and its I average is 1 bit. A\) 0,8 **B) 0,2** C\) 5 D\) 1 28\. Calculate the **redundancy** of the language if it has 32 letters and its I average is 1 bit. **A) 0,8** B\) 0,2 C\) 5 D\) 1 29\. Choose an example of block code A\) Shannon-Fano code B\) Huffman code **C) Hamming code** D\) None of the given 30\. Choose conditions of an optimal coding (p -- probability, l -- length of a code word) **A) pi \< pj and li\ pj and li\ pj and li\>=lj D\) none of the given 31\. Choose the formula to create the Hamming code **A) (n, k) = (2r - 1, 2r - 1 - r)** B\) (n, k) = (2r, 2r - 1 - r) C\) (n, k) = (2r - 1, 2r - r) D\) (n, k) = (2r - 1, 2r - 1 + r) 32\. Choose the formula to determine the number N of possible messages with length n if the message source alphabet consists of m characters, each of which can be an element of the message. **A) N = mn** B\) N = nm C\) N = m\*n D\) N = log m **Правильный ответ N = m\^n** 33\. Code has dmin = 1. How many errors can be **corrected** by this code? A\) 2 B\) 3 **C) 0** D\) 1 34\. Code has dmin = 1. How many errors can be **detected** by this code? A\) 2 B\) 3 **C) 0** D\) 1 35\. Code has dmin = 10. How many errors can be **detected** by this code? A\) 4 B\) 8 **C) 9** D\) 10 36\. Code has dmin = 11. How many errors can be **corrected** by this code? A\) 11 B\) 7 **C) 5** D\) 10 37\. Code has dmin = 11. How many errors can be **detected** by this code? A\) 5 B\) 9 **C) 10** D\) 11 38\. Code has dmin = 12. How many errors can be **detected** by this code? A\) 5 B\) 10 **C) 11** D\) 12 39\. Code has dmin = 2. How many errors can be **corrected** by this code? A\) 2 B\) 3 **C) 0** D\) 1 40\. Code has dmin = 2. How many errors can be **detected** by this code? A\) 2 B\) 3 **C) 1** D\) 0 41\. Code has dmin = 3. How many errors can be **corrected** by this code? A\) 2 B\) 3 D\) 4 42\. Code has dmin = 3. How many errors can be **detected** by this code? A\) 1 B\) 3 **C) 2** D\) 4 43\. Code has dmin = 4. How many errors can be **detected** by this code? A\) 5 B\) 1 **C) 3** D\) 4 44\. Code has dmin = 5. How many errors can be **corrected** by this code? A\) 5 B\) 3 **C) 2** D\) 4 45\. Code has dmin = 5. How many errors can be **detected** by this code? A\) 6 B\) 2 **C) 4** D\) 5 46\. Code has dmin = 6. How many errors can be **detected** by this code? A\) 6 B\) 2 **C) 5** D\) 4 47\. Code has dmin = 7. How many errors can be **corrected** by this code? A\) 5 B\) 6 **C) 3** D\) 4 48\. Code has dmin = 7. How many errors can be **detected** by this code? A\) 7 B\) 3 **C) 6** D\) 5 49\. Code has dmin = 8. How many errors can be **detected** by this code? A\) 8 B\) 6 **C) 7** D\) 3 50\. Code has dmin = 9. How many errors can be **corrected** by this code? A\) 5 B\) 7 **C) 4** D\) 8

Use Quizgecko on...
Browser
Browser