EMath 1101 Past Paper PDF
Document Details
Uploaded by RomanticCedar
Central Philippine University
2024
Tags
Summary
EMath 1101 notes from Dec 06, 2024, cover topics including exponential functions, logarithmic functions, derivatives, and properties of inverse functions, with solved examples. The context is within a mathematical course.
Full Transcript
## EMath 1101 Dec 06, 2024 ### Bases Other than e The base of the natural exponential function is e. This “natural” base can be used to assign a meaning to a general base *a*. ### Definition of Exponential Function to Base *a* If *a* is a positive real number (*a* ≠ 1) and *x* is any real numb...
## EMath 1101 Dec 06, 2024 ### Bases Other than e The base of the natural exponential function is e. This “natural” base can be used to assign a meaning to a general base *a*. ### Definition of Exponential Function to Base *a* If *a* is a positive real number (*a* ≠ 1) and *x* is any real number, then the exponential function to the base *a* is denoted by *a<sup>x</sup>* and is defined by *a<sup>x</sup>* = *e<sup>(ln a) x</sup>*. If *a* = 1, then *y* = 1<sup>*x*</sup> = 1 is a constant function. These functions obey the usual laws of exponents. For instance, here are some familiar properties. - *a<sup>0</sup>* = 1 - *a<sup>x</sup>* *a<sup>y</sup>* = *a<sup>x + y</sup>* - *a<sup>x</sup>* / *a<sup>y</sup>* = *a<sup>x - y</sup>* - (*a<sup>x</sup>*)<sup>*y*</sup> = *a<sup>xy</sup>* ### Example: Radioactive Half-Life Model The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14. How much will be present in 10,000 years? **Solution:** Let *t* = 0 represent the present time and let *y* represent the amount (in grams) of carbon-14 in the sample. Using a base of *½*, you can model *y* by the equation: *y* = *(½)<sup>(t/ 5715)</sup>* Notice that when *t* = 5715, the amount is reduced to half of the original amount. *y* = *(½)<sup>(5715/ 5715)</sup>* = *½* gram When *t* = 11, 430, the amount is reduced to a quarter of the original amount, and so on. To find the amount of carbon-14 after 10,000 years, substitute 10,000 for *t*. *y* = *(½)<sup>(10,000/ 5715)</sup>* ≈ 0.30 gram The graph of *y* is shown in the attached image. ### Logarithmic Functions to Bases Other than *e* Logarithmic functions to bases other than *e* can be defined in much the same way as exponential functions to other bases are defined. ### Definition of Logarithmic Function to Base *a* If *a* is a positive real number (*a* ≠ 1) and *x* is any positive real number, then the logarithmic function to the base *a* is denoted by *log<sub>a</sub>x* and is defined as: *log<sub>a</sub>x* = *1 / ln(a) x*. Logarithmic functions to the base *a* have properties similar to those of the natural logarithmic function given in Theorem 5.2. (Assume x and y are positive numbers and *n* is rational.) - *log<sub>a</sub>1* = 0 - *log<sub>a</sub>xy* = *log<sub>a</sub>x* + *log<sub>a</sub>y* - *log<sub>a</sub>x<sup>n</sup>* = *n log<sub>a</sub>x* - *log<sub>a</sub>(x/y)* = *log<sub>a</sub>x* - *log<sub>a</sub>y* ### Properties of Inverse Functions From the definitions of the exponential and logarithmic functions to the base *a*, it follows that *f(x)* = *a<sup>x</sup>* and *g(x)* = *log<sub>a</sub>x* are inverse functions of each other. - *y* = *a<sup>x</sup>* if, and only if, *x* = *log<sub>a</sub>y* - *a<sup>log<sub>a</sub>x</sup>* = *x* for *x* > 0 - *log<sub>a</sub>a<sup>x</sup>* = *x* for all *x* ### Example: Bases Other than *e* Solve for *x* in each equation: a. *3<sup>x</sup>* = *1/81* **Solution:** To solve this equation, you can apply the logarithmic function to the base 3 to each side of the equation. *log<sub>3</sub>3<sup>x</sup>* = *log<sub>3</sub>1/81* *x* = *log<sub>3</sub>3<sup>-4</sup>* *x* = *-4* b. *log<sub>2</sub>x* = *-4* **Solution:** To solve this equation, you can apply the exponential function to the base 2 to each side of the equation. *2<sup>log<sub>2</sub>x</sup>* = *2<sup>-4</sup>* *x* = *1/2<sup>4</sup>* *x* = *1/16* ### Derivatives for Bases Other than *e* Let *a* be a positive real number (*a* ≠ 1), and let *u* be a differentiable function of *x*. - *d/dx*[*a<sup>x</sup>*] = *(ln a)a<sup>x</sup>* - *d/dx*[*a<sup>u</sup>*] = *(ln a)a<sup>u</sup> du/dx* - *d/dx*[*log<sub>a</sub>x*] = *1 / (ln a)x* - *d/dx*[*log<sub>a</sub>u*] = *1 / (ln a)u du/dx* ### Example: Differentiating Functions to Other Bases Find the derivative of each function: a. *y* = *2<sup>x</sup>* **Solution:** *y'* = *d/dx*[*2<sup>x</sup>*] = *(ln 2)2<sup>x</sup>* b. *y* = *2<sup>3x</sup>* **Solution:** *y'* = *d/dx*[*2<sup>3x</sup>*] = *(ln 2)2<sup>3x</sup>(3)* = *(3 ln 2)2<sup>3x</sup>* Try writing *2<sup>3x</sup>* as *8<sup>x</sup>* and differentiating to see that you obtain the same result. c. *y* = *log<sub>10</sub>cos x* **Solution:** *y'* = *d/dx*[*log<sub>10</sub>cos x*] = *-sin x * 1/(ln 10)cos x* = *-1/ln 10 tan x*. ### The Power Rule for Real Exponents Let *n* be any real number and let *u* be a differentiable function of *x*. - *d/dx*[*x<sup>n</sup>*] = *nx<sup>n - 1</sup>* - *d/dx*[*u<sup>n</sup>*] = *nu<sup>n-1</sup> du/dx* ### Example: Comparing Variables and Constants a. *d/dx*[e] = 0* **Constant Rule** b. *d/dx[e<sup>x</sup>] = e<sup>x</sup>* **Exponential Rule** c. *d/dx[x<sup>x</sup>] = xe<sup>x-1 </sup>* **Power Rule** d. *y* = *x<sup>x</sup> **Logarithmic Differentiation** *ln y* = *ln x<sup>x</sup>* *ln y* = *x ln x* *y'/y* = *(1/x)* + (ln *x*)(1) = *1* + *ln x* *y'* = *y*(1 + *ln x*) = *x<sup>x</sup>*(1 + *ln x*) ### Definitions of Inverse Trigonometric Functions | Function | Domain | Range | |---|---|---| | *y* = *arcsin x* iff *sin y* = *x* | -1 ≤ *x* ≤ 1 | -π / 2 ≤ *y* ≤ π / 2 | | *y* = *arccos x* iff *cos y* = *x* | -1 ≤ *x* ≤ 1 | 0 ≤ *y* ≤ π | | *y* = *arctan x* iff *tan y* = *x* | -∞ < *x* < ∞ | -π / 2 < *y* < π / 2 | | *y* = *arccot x* iff *cot y* = *x* | -∞ < *x* < ∞ | 0 < *y* < π | | *y* = *arcsec x* iff *sec y* = *x* | |*x|* ≥ 1 | 0 ≤ *y* ≤ π, *y* ≠ π / 2 | | *y* = *arccsc x* iff *csc y* = *x* | |*x|* ≥ 1 | -π / 2 ≤ *y* ≤ π / 2, *y* ≠ 0 | ### Example: Evaluating Inverse Trigonometric Functions Evaluate each function: a. *arcsin(-½)* **Solution:** By definition, *y* = *arcsin(-½)* implies that *sin y* = -½. In the interval [-π / 2, π / 2], the correct value of *y* is -π / 6. *arcsin(-½)* = *-π / 6* b. *arccos 0* **Solution:** By definition, *y* = *arccos 0* implies that *cos y* = 0. In the interval [0, π], you have *y* = π / 2. *arccos 0* = *π / 2* c. *arctan √3* **Solution:** By definition, *y* = *arctan √3* implies that *tan y* = √3. In the interval (-π / 2, π / 2), you have *y* = π / 3. *arctan √3* = *π / 3* d. *arcsin(0.3)* **Solution:** Using a calculator set in radian mode produces *arcsin(0.3)* ≈ 0.305. ### Properties of Inverse Trigonometric Functions - If -1 ≤ *x* ≤ 1 and -π / 2 ≤ *y* ≤ π / 2, then: >*sin(arcsin x)* = *x* >*arcsin(sin y)* = *y* - If -π / 2 < *y* < π / 2, then: >*tan(arctan x)* = *x* >*arctan(tan y)* = *y* - If |*x|* ≥ 1 and 0 ≤ *y* < π / 2 or π / 2 < *y* ≤ π, then: >*sec(arcsec x)* = *x* >*arcsec(sec y)* = *y* Similar properties hold for the other inverse trigonometric functions. ### Example: Solving an Equation *arctan(2x - 3)* = *π / 4* **Solution:** *tan[arctan(2x - 3)]* = *tan π / 4* *2x - 3* = *1* *x* = *2* Some problems in calculus require that you evaluate expressions such as *cos(arcsin x)*, as shown in the example below. ### Example: Using Right Triangles a. Given *y* = *arcsin x*, where *0 < y < π / 2*, find *cos y*. b. Given *y* = *arcsec(√5 / 2)*, find *tan y*. **Solution:** a. Because *y* = *arcsin x*, you know that *sin y* = *x*. This relationship between *x* and *y* can be represented by a right triangle, as shown in the attached image. *cos y* = *cos(arcsin x)* = *adj. / hyp.* = √(1 - *x<sup>2</sup>*) / 1 (This result is also valid for -π / 2 < * y* < 0.) b. Use the right triangle shown in the attached image. *tan y* = *tan arcsec (√5 / 2)* = *opp. / adj.* = 1 / 2 ### Derivatives of Inverse Trigonometric Functions Let *u* be a differentiable function of *x*. - *d/dx*[arcsin u]* = *u' / √(1 - u<sup>2</sup>)* - *d/dx*[arccos u]* = *-u' / √(1 - u<sup>2</sup>)* - *d/dx*[arctan u]* = *u' / (1 + u<sup>2</sup>)* - *d/dx*[arccot u]* = *-u' / (1 + u<sup>2</sup>)* - *d/dx*[arcsec u]* = *u' / |u|√(u<sup>2</sup> - 1)* - *d/dx*[arccsc u]* = *-u' / |u|√(u<sup>2</sup> - 1)* ### Example: Differentiating Inverse Trigonometric Functions a. *d/dx*[arcsin(2x)]* = *2 / √(1 - (2x)<sup>2</sup>)* = *2 / √(1 - 4x<sup>2</sup>)* b. *d/dx*[arctan(3x)]* = *3 / (1 + (3x)<sup>2</sup>)* = *3 / (1 + 9x<sup>2</sup>)* c. *d/dx*[arcsin√x]* = *(1/2)x<sup>-1/2</sup> / √(1 - x)* = *1 / 2√x√(1 - x)* = *1 / 2√(x - x<sup>2</sup>)* d. *d/dx*[arcsec e<sup>2x</sup>]* = *2e<sup>2x</sup> / e<sup>2x</sup>√((2x)<sup>2</sup> - 1)* = *2 / √(e<sup>4x</sup> - 1)* The absolute value sign is not necessary because e<sup>2x</sup> > 0. ### Example: A Derivative That Can Be Simplified *y* = *arcsin x + x√(1 - x<sup>2</sup>)* **Solution:** *y'* = *1 / √(1 - x<sup>2</sup>)* + *x(2)(-2x)(1 - x<sup>2</sup>)<sup>-1/2 </sup>+ √(1 - *x<sup>2</sup>)* = *1 / √(1 - x<sup>2</sup>)* - *x<sup>2</sup> / √(1 - x<sup>2</sup>)* + √(1 - *x<sup>2</sup>)* = *2√(1 - x<sup>2</sup>)* ### Example: Analyzing an Inverse Trigonometric Graph Analyze the graph of *y* = *(arctan x)<sup>2</sup>*. **Solution:** From the derivative: *y’* = 2(*arctan x*)(*1* + *x<sup>2</sup>*) = *2arctan x / (1 + x<sup>2</sup>)* you can see that the only critical number is *x* = 0. By the First Derivative Test, this value corresponds to a relative minimum. From the second derivative: *y”* = *(1 + x<sup>2</sup>)<sup>2</sup>* - *(2 arctan x)(2x) / (1 + x<sup>2</sup>)<sup>2</sup>* = *2(1 - 2x arctan x) / (1 + *x<sup>2</sup>)<sup>2</sup>* it follows that points of inflection occur when *2x arctan x* = *1*. Using Newton’s Method, these points occur when *x* ≈ ±0.765. Finally, because: lim *x*→∞ (*arctan x*)<sup>2</sup>* = *π<sup>2</sup> / 4* it follows that the graph has a horizontal asymptote at *y* = *π<sup>2</sup> / 4*. The graph is shown in the attached image. ### Basic Differentiation Rules for Elementary Functions | Rule | Formula | |---|---| | 1 | *d/dx*[c*u*] = c*u’* | | 2 | *d/dx*[u ± v]* = *u’ ± v’* | | 3 | *d/dx*[u*v*] = *u*v’ + *v*u’* | | 4 | *d/dx*[u/v]* = (*v*u’ - *u*v’)/ *v<sup>2</sup>* | | 5 | *d/dx*[c]* = 0 | | 6 | *d/dx*[u<sup>n</sup>]* = *n*u<sup>n-1 </sup>*u’* | | 7 | *d/dx*[x]* = 1 | | 8 | *d/dx*[|u|]* = *u’ / |u|*, *u* ≠ 0 | | 9 | *d/dx*[ln u]* = *u’ / u* | | 10 | *d/dx*[e<sup>u</sup>]* = *e<sup>u</sup>* u’* | | 11 | *d/dx*[log<sub>a</sub>u]* = *(u’ / ln a)u* | | 12 | *d/dx*[a<sup>u</sup>]* = *(ln a)a<sup>u</sup>u’* | | 13 | *d/dx*[sin u]* = *(cos u)u’* | | 14 | *d/dx*[cos u]* = *-(sin u)u’* | | 15 | *d/dx*[tan u]* = *(sec<sup>2</sup> u)u’* | | 16 | *d/dx*[cot u]* = *-(csc<sup>2</sup> u)u’* | | 17 | *d/dx*[sec u]* = *(sec u tan u)u’* | | 18 | *d/dx*[csc u]* = *-(csc u cot u)u’* | | 19 | *d/dx*[arcsin u]* = *u’ / √(1 - u<sup>2</sup>)* | | 20 | *d/dx*[arccos u]* = *-u’ / √(1 - u<sup>2</sup>)* | | 21 | *d/dx*[arctan u]* = *u’ / (1 + u<sup>2</sup>)* | | 22 | *d/dx*[arccot u]* = *-u’ / (1 + u<sup>2</sup>)* | | 23 | *d/dx*[arcsec u]* = *u’ / |u|√(u<sup>2</sup> - 1)* | | 24 | *d/dx*[arccsc u]* = *-u’ / |u|√(u<sup>2</sup> - 1)* | ### Hyperbolic Identities - *cosh<sup>2</sup>x* - *sinh<sup>2</sup>x* = 1 - *tanh<sup>2</sup>x* + *sech<sup>2</sup>x* = 1 - *coth<sup>2</sup>x* - *csch<sup>2</sup>x* = 1 - *sinh(x + y)* = *sinh x cosh y* + *cosh x sinh y* - *sinh(x - y)* = *sinh x cosh y* - *cosh x sinh y* - *cosh(x + y)* = *cosh x cosh y* + *sinh x sinh y* - *cosh(x - y)* = *cosh x cosh y* - *sinh x sinh y* - *sinh<sup>2</sup>x* = (-1 + *cosh 2x*) / 2 - *cosh<sup>2</sup>x* = (1 + *cosh 2x*) / 2 - *sinh 2x* = 2 *sinh x cosh x* - *cosh 2x* = *cosh<sup>2</sup>x* + *sinh<sup>2</sup>x* ### Derivatives and Integrals of Hyperbolic Functions Let *u* be a differentiable function of *x*. | Rule | Formula | |---|---| | *d/dx*[sinh u]* = *(cosh u)u’* | ∫cosh u du = sinh u + C | | *d/dx*[cosh u]* = *(sinh u)u’* | ∫sinh u du = cosh u + C | | *d/dx*[tanh u]* = *(sech<sup>2</sup> u)u’* | ∫sech<sup>2</sup> u du = tanh u + C | | *d/dx*[coth u]* = *-(csch<sup>2</sup> u)u’* | ∫csch<sup>2</sup> u du = -coth u + C | | *d/dx*[sech u]* = *-(sech u tanh u)u’* | ∫sech u tanh u du = -sech u + C | | *d/dx*[csch u]* = *-(csch u coth u)u’* | ∫csch u coth u du = -csch u + C | ### Example: Differentiation of Hyperbolic Functions a. *d/dx*[sinh(x<sup>2</sup> - 3)]* = *2x cosh(x<sup>2</sup> - 3)* b. *d/dx*[ln(cosh x)]* = *sinh x / cosh x* = *tanh x* c. *d/dx*[x sinh x - cosh x]* = *x cosh x + sinh x - sinh x* = *x cosh x* ### Example: Finding Relative Extrema Find the relative extrema of *f(x)* = *(x - 1) cosh x - sinh x*. **Solution:** Begin by setting the first derivative of *f* equal to 0. *f’(x)* = *(x - 1) sinh x + cosh x cosh x* = 0 *(x - 1) sinh x + cosh<sup>2</sup>x* = 0 *(x - 1) sinh x* = 0 So, the critical numbers are *x* = 1 and *x* = 0. Using the Second Derivative Test, you can verify that the point (0, -1) yields a relative maximum and the point (1, -sinh 1) yields a relative minimum, as shown in the attached image. Try using a graphing utility to confirm this result. If your graphing utility does not have hyperbolic functions, you can use exponential functions, as follows. *f(x)* = *(x - 1)(½)(e<sup>x</sup> + e<sup>-x</sup>) - (e<sup>x</sup> - e<sup>-x</sup>)* = *(xe<sup>x</sup> + xe<sup>-x</sup> - e<sup>x</sup> - e<sup>-x</sup> - e<sup>x</sup> + e<sup>-x</sup>)* = *(xe<sup>x</sup> + xe<sup>-x</sup> - 2e<sup>x</sup>)* When a uniform flexible cable, such as a telephone wire, is suspended from two points, it takes the shape of a catenary, as discussed in the example below. ### Example: The Catenary The shape of a hanging cable, like a telephone wire, is described by the equation *y* = *a cosh(x/a)*. The constant *a* represents the tension in the cable. This curve is called a catenary.