Unit IV: Correlation & Spectral Densities PDF

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Summary

These notes cover correlation and spectral densities for stationary random processes. The document defines key concepts such as autocorrelation and cross-correlation functions, explores their properties, and includes example problems and solutions. It also touches on topics like statistical independence and orthogonality.

Full Transcript

UNIT IV CORRELATION AND SPECTRAL DENSITIES PART – A 1. Define correlation of the process { X t }. Answer: If the process X t is stationary either in the strict sense or in the wide...

UNIT IV CORRELATION AND SPECTRAL DENSITIES PART – A 1. Define correlation of the process { X t }. Answer: If the process X t is stationary either in the strict sense or in the wide sense, then E[ X t X t   ] is a function of  , denoted by R  or RXX  . This function RXX   is called the autocorrelation function of the process X t . 2. State any two properties of an autocorrelation function. Answer: i. R  is an even function of . ii. If R  is the autocorrelation function of a stationary process X t with no periodic component, then lim R    x2 , provided the limit exists.   3. Prove that for a WSS process { X t } , RXX    RXX   . Answer: RXX    E[ X t X t   ] RXX     E[ X t X t   ]  E[ X t   X t ]  RXX   Therefore R  is an even function of . 4. Show that the autocorrelation function RXX   is maximum at   0. Answer: RXX   is maximum at   0 i.e. R   R0    Cauchy-Schwarz inequality is E[ XY ]  E X 2 E Y 2 2 Put X  X t  and Y  X t    , then EX t X t   2  EX 2 t E X 2 t    i.e. R 2  EX 2  2 [Since E  X t  and Var  X t  are constants for a stationary process] R 2  R02 Taking square root on both sides,   R   R0. [Since R0  E X 2 t  is positive] 5. Statistically independent zero mean random processes X t  and Y t  have autocorrelation functions RXX    e and RYY    cos 2 respectively.  Find the autocorrelation function of the sum Z t   X t   Y t . Answer: 104 ------------------------------------------------------------------------------------------------------------------------------------------------ Given RXX    e , RYY    cos 2  E  X t   EY t   0 If Z t   X t   Y t  , then RZZ    RXX    RYY    RXY    RYX   RXY    E[ X t Y t   ] [Since the processes are independent] RXY    0 0  0 Similarly RYX    0 RZZ    e    cos 2  0  0   e  cos 2 6. The autocorrelation function of a stationary process is RXX    16  9. Find the mean and variance of the process. 1  6 2 Answer: Given RXX    16  9 1  6 2  x2  lim R     9   lim16      1  6 2   9   16  lim    1  6 2    16  0  16 Mean   x  E X t   4  E X 2 t    RXX 0  9  16  1  60   16  9  25 Variance 2    E X t   E  X t  2  25  4   25  16  9 2 7. If the autocorrelation function of a stationary processes is RXX    36  4. Find the mean and variance of the process. 1  3 2 Answer: Given RXX    36  4 1  3 2  x2  lim R     4   lim 36      1  3 2   4   36  lim    1  3 2    36  0  36 105 ------------------------------------------------------------------------------------------------------------------------------------------------ Mean   x  E  X t   6  E X 2 t    RXX 0  4  36  1  30   36  4  40 Variance 2    E X t   E  X t  2  40  6   40  36  4. 2 8. The random process X t  has an autocorrelation function RXX    18  1  4 cos12 . Find E[ X t ] and E[ X 2 t ]. 2 6   2 Answer: Given RXX    18  1  4 cos12  2 6  2 E X 2 t     RXX 0  2  18  [1  4 cos 0] 60 2 59  18  [1  4]  6 3 Removing the periodic components of RXX   , then  x2  lim RXX      2   lim18      6  2   2   18  lim    6   2    18  0  18 Mean   x  E  X t   18 9. Define cross correlation function and state any two of its properties. Answer: If the process X t and Y t  are jointly wide sense stationary, then E  X t Y t    is a function of  , denoted by RXY  . This function RXY   is called the cross correlation function of the process X t and Y t . Properties of cross correlation function are: i. RXY     RYX  . ii. If the process X t and Y t  are orthogonal, then RXY    0. iii. If the process X t and Y t  are independent, then RXY    E X t E Y t   . 106 ------------------------------------------------------------------------------------------------------------------------------------------------ 10. Define power spectral density function of stationary random processes X t . Answer: If X t is a stationary process with autocorrelation function R  , then the Fourier transform of R  is called the power spectral density function of X t and denoted as S   or S XX  .  i.e. S     R e  i d.  11. Define cross spectral density. Answer: If X t and Y t  are two jointly stationary random processes with cross correlation function RXY   , then the Fourier transform of RXY   is called the cross spectral density of X t and Y t  and denoted as S XY  .  i.e. S XY     R  eXY  i d.  12. State and prove any one of the properties of the cross spectral density function. Answer: Cross spectral density function is not an even function of  , but it has a symmetry relationship. i.e. SYX    S XY    Proof:  S XY     R  eXY  i d   S XY      R  e d  XY i  Putting   u when   , u   d  du when   , u    S XY      RXY  u e  iu  du    S XY      R u e YX  iu du  RXY     RYX      R  e  i  YX d   SYX   i.e. SYX    SYX    107 ------------------------------------------------------------------------------------------------------------------------------------------------ 13. Find the power spectral density of a random signal with   autocorrelation function e. Answer: Given RXX    e    S     R  e XX  i d    e   e  i d    e   cos  i sin  d     e   cos d  i  e    sin  d     2 e   cos  d (Since the first integrand is even 0 and the second integral is odd)       2 e   cos   sin         2 2 0   2 0  2 1    0    2  2 S    2  2 14. The autocorrelation function of the random telegraph signal process is given by R   a 2e 2  . Determine the power density spectrum of the random telegraph signal. Answer: Given R   a 2e 2    S     R  e XX  i d     a 2e  2  e  i d    a2  e  2  cos  i sin  d     a2  e  2  cos d  ia 2  e 2  sin  d     2a 2  e  2  cos  d (Since the first integrand is even 0 and 108 ------------------------------------------------------------------------------------------------------------------------------------------------ the second integral is odd)   2    2a 2  e  2 cos    sin     2    2 2 0   2a 2 0  2 1  2  0  4   2  4 S    2 4   2 15. Find the power spectral density of a WSS process with autocorrelation function R   e . 2 Answer: Given R   e  2  S     R e  i d     e  e  i d 2    i     2    e    d   i  i   i   2 2     2            e     d  2 2    i  2  2             e  2   4 d 2  e  i  2 2         e 4 e   2  d  i  dx Put      x   d  dx  d   2   When   , x   When   , x   2   S   dx e  x2 e 4   2  4  e e  x2  dx    i.e. S XY     R  e XY  i d 2   4 e    2   4  e  109 ------------------------------------------------------------------------------------------------------------------------------------------------ 16. IF the power spectral density of a WSS process is give b  a    ,  a by S     a. 0 ,  a  Answer:  R   S  e 1 i  d 2  1   a a    S  e i d    S  e i d    S  ei d  2    a a  1  b  a   a   e d  i  2   a a  a b a   cos  i sin d 2a a  a a  b  a   cos d  i b  a   sin d 2a  a 2a  a a 2  a   cos d  i 0 b b  2a 0 2a a b a   cos d a 0  a    sin   cos a b     a     0 2 b  cos a   1  0     0  2  a       2 b  1 cos a    2  a   2  R   1  cos a . b a 2 17. The power spectral density function of a zero mean wide sense 1 ;   0 stationary process X t is given by S    . Find R . 0 ; Elsewhere Answer:  R   S  ei d 1 2    0 0     S  e d   S  e d   S  e d  1 i i i  2     0 0  1  0 i      1.e d  2   0  110 ------------------------------------------------------------------------------------------------------------------------------------------------ 0  cos  i sin d 1  2  0 0 0  cos d  i  sin d 1 1  2  0 2  0  1 0 2  cos d  i 0 [ The 1st integrand is 1  2 0 2 even and the 2nd is odd]  1  sin   0       0  1 sin 0  0  sin  0 R  .  18. The power spectral density of the random process X t is given  ; 1 by S    . Find its autocorrelation function. 0 ; Elsewhere Answer:  R   S  e 1 i  d 2  1   1 1    S  e d   S  e d   S  e d  i i i  2    1 1  1   1   .e d  i  2  1  1  cos  i sin  d 1 2 1  1 1  1  cos d  i 1  sin  d 2 1 2 1 1  2  cos d  i 0 [ The 1st integrand is 1 1 2 0 2 even and the 2nd is odd]  sin   1     0  sin   0 1  sin  R  .  111 ------------------------------------------------------------------------------------------------------------------------------------------------ Given the power spectral density S XX    1 19. , find the average 4 2 power of the process. Answer:  R   S  e 1 i  d 2   1 1  2  4   2 ei d  1 1  2   4  z 2 eiz dz [Where C is the closed contour  consisting of the real axis from  R to R and the upper half of the circle z  R ]  eiz  2i  lim  z  2i  1  2  z 2 i z  2i z  2i   ei.2i   i   2i  2i   e 2   i   4i  e 2 R   4 e0  1 Average power  R0    4 4 112 ------------------------------------------------------------------------------------------------------------------------------------------------ PART – B 1. If X t is a WSS process with autocorrelation function RXX   and if Y t   X t  a   X t  a . Show that RYY    2 RXX    RXX   2a   RXX   2a . Answer: Given Y t   X t  a   X t  a  RYY t   E Y t Y t     E  X t  a   X t  a  X t    a   X t    a   E[ X t  a  X t    a   X t  a X t    a   X t  a X t    a   X t  a X t    a   E X t  a  X t  a     E  X t  a  X t  a     E  X t  a X t  a    a  a   E X t  a  X t  a    a  a   E X t  a X t  a     E X t  a X t  a     E X t  a  X t  a    2a   E X t  a  X t  a    2a   E X t  a  X t  a     E X t  a X t  a     E  X t  a X t  a    2a   E X t  a X t  a    2a   RXX    RXX    RXX   2a   RXX   2a  RYY    2 RXX    RXX   2a   RXX   2a . 2. A stationary random process X t  has autocorrelation function given 24 2  36 by RXX   . Find the mean and variance of X t . 6 2  4 Answer: 24 2  36 Given RXX    6 2  4  x2  lim R     24 2  36   lim   6  4    2  2 36      24  2      lim    2 4    6  2        24  0  4 60 Mean   x  E  X t   2 113 ------------------------------------------------------------------------------------------------------------------------------------------------  E X 2 t    RXX 0  240   36  60   4 36  9 4 Variance    E X 2 t   E  X t  2  9  2   9  4  5. 2 3. State the properties of autocorrelation function for a WSS process. Answer: i. R  is an even function of . i.e. RXX     RXX   ii. R  is maximum at   0. i.e. R   R 0 iii. If the autocorrelation function R  of a real stationary function X t is continuous at   0 , it is continuous at every other point. iv. If R  is the autocorrelation function of a stationary process X t with no periodic component, then lim R    x2 , provided the limit exists.   4. Given a stationary random process X t   10 cos100t    where     ,  followed uniform distribution. Find the autocorrelation function of the process. Answer: Given  is uniformly distributed in   ,  , the PDF of  is f    1 1  ,    .      2 RXX    E X t X t    RXX    E10 cos100t   .10 cos100t       RXX    100 E cos100t   cos100t  100      100  cos100t   cos100t  100    f  d    100  cos100t   cos100t  100    1 d  2  100 1 2 cos100t   cos100t  100   d 2  2   100 cos100t    100t  100   cos100t    100t  100   d 4   25        cos200t  100  2 d   cos100d       114 ------------------------------------------------------------------------------------------------------------------------------------------------ 25  sin 200t  100  2          cos100  d    2     25  sin 200t  100  2   sin 200t  100  2         cos100      2    sin200t  100 cos 2  cos200t  100 sin 2      25  sin200t  100 cos 2  cos200t  100 sin 2     cos100        2         25  2 cos100  RXX    50 cos100. 5. Consider two random processes X t   3 cost    and Y t   2 cost     where     and  is uniformly distributed random variable 2 over 0,2 . Verify whether RXX    RXX 0 RYY 0 . Answer: Given  is uniformly distributed in 0,2  , the PDF of  is f    1 1  ,0    2.      2   X t   3 cost    and Y t   2 cos t      2 RXX 0   E X t  2   2   9 cos 2 t    f  d 0  1  cos 2t     1 2  9   d 0 2  2 2 2 9     d   cos2t  2 d  4  0 0  9  2  sin 2t  2    2   0     4   2 0    2  0   2 sin 2t  4   sin 2t  0  9 1  4   2  2 sin 2t cos 4  cos 2t sin 4  sin 2t  9 1  4   2  2 sin 2t  sin 2t  9 1  4  1  9 2  2 0   4 2  2 9 9  4 115 ------------------------------------------------------------------------------------------------------------------------------------------------ RYY 0   E Y 2 t   2     4 cos 2  t     f  d 0  2      1  cos 2 t      2  4   2  1 d  2  2 0     2 2 4      d   cos2t  2   d  4  0 0  1  2  sin 2t  2      2   0        2 0  1  2  0  1 sin 2t  4     sin 2t     2  1  2  0  1 sin2t       sin2t     2  1  2  sin 2t cos3  cos2t sin 3  sin 2t cos  cos2t sin  1    2  1   2   sin 2t  sin 2t  1  2  1 1  1  2  0   2  2  2   RXX 0 RYY 0  .2  9 9 2 RXX 0 RYY 0   3 RXY    E  X t Y t    2     3 cost   2 cos t       f  d 0  2 2   1  6  cost   cos t       d 0  2  2 2   2 cost   cos t       d 31    20  2 2 3        2  cost    t      2   cost    t      2 d 0 2 2 3           cos 2t     2  d   cos     d  2  0  2   20  116 ------------------------------------------------------------------------------------------------------------------------------------------------ 2       sin  2t     2    3        2   cos    0 2  2  2   2      0  1             sin 2t     4   sin 2t       cos  2  0 3  2 2   2   2   2  1   7          sin 2t      sin 2t       cos  2  3  2 2   2   2   2  1   7           sin 2t      sin 2t       cos cos  sin sin 2  3  2 2   2  2   2 2    7 7    1  sin2t    cos 2  cos2t    sin 2    3     0  sin 2  2  2   sin2t    cos  cos2t   sin      2  2   3 1     cos2t     cos2t     2 sin  2  2  3 1  3   0  2 sin    2 sin   3sin 2  2  2 RXY     3 sin   3 sin  i.e. 3  3 sin  Since the function takes the maximum and minimum values to be 1 to -1, 3  3 sin . Hence RXX 0 RYY 0   RXY  . 6. The autocorrelation function for a stationary process X t  is given by RXX    9  2e . Find the mean value of the random 2 variable Y   X t dt and variance of X t . 0 Answer: Given RXX    9  2e.     x2  lim RXX    lim 9  2e    9  20   9      x  E  X t   3 2 E Y    E X t dt 0 2   3dt  3t 0  32  0   6 2 0  Mean of Y  E Y   6 117 ------------------------------------------------------------------------------------------------------------------------------------------------   2   2   R  d 2 EY XX 2  2   9  2e d 2   2  d 2  2  2    9  2e  0   2  2 2    9  2e  d 0   2  2  14  4e   9  2e  d 0 2  2   214  4e   9  2  e   e      2 0     2 18.2  4e  2  9  2 2e  2  e  2   0  4  0  20  1 22  2     2 36  4e  18  2 3e    2  2 2   220  2e   40  4e 2 2  E Y   E Y  2 Variance of Y 2  40  4e 2  62  4e 2  4  4e 3  1. 7. If X t   5 cost    and Y t   2 cost    where  is a constant     and  is a random variable uniformly distributed in 0,2  , 2 find RXX   , RYY   , RXY   and RYX  . Verify two properties of autocorrelation function and cross correlation function. Answer: Given  is uniformly distributed in 0,2  , the PDF of  is f    1 1  ,0    2.      2   X t   3 cost    and Y t   2 cos t      2 RXX    E X t X t    RXX    E 5 sin t   5 sin  t       2   5 sin t   5 sin  t       f  d 0 2  25  sin t   sin  t       1 d 0 2 2 2 sin t   sin t     d 25 1 2 2 0  118 ------------------------------------------------------------------------------------------------------------------------------------------------ 2  cost    t       cost    t     d 25  4 0 2  cos   cos2t    2 d 25  4 0 25   2 2  cos   d   cos2t    2 d  4  0 0   sin 2t    2   2 25   cos   0   2    4   2 0  25   cos  2  0   sin 2t    4   sin 2t    1   4  2  25  1  sin 2t   cos 4  cos2t   sin 4   2 cos     4  2   sin 2t     25   2 cos   sin 2t     sin 2t    1  4  2  25  1    2 cos   0  4  2  RXX    25 2 cos   25 cos 4 2 RYY    E Y t Y t    RYY    E2 cost   2 cos t              RYY    E 2 cos t    2 cos  t          2   2  2         2 cos t    2 cos  t        f  d 0  2   2  2       1  4  cost     cos  t        d 0  2   2  2 2 4        2  cost  2    cost    2   d 0 2     sin t    sin t     d 2  [ cos    cos ]  0  2 2 2 sin t   sin t     d 21  2 0  2  cost    t       cost    t     d 1   0 2  cos   cos2t    2 d 1   0 119 ------------------------------------------------------------------------------------------------------------------------------------------------ 2 2 1   cos   d   cos2t    2 d   0 0   sin 2t    2   2 1   cos  0   2      2 0  1  2 cos   sin 2t    4   sin 2t    1    2  1   2 cos   sin 2t     sin 2t    1  2  1 1   2 cos   0   2   2 cos   1  RYY    2 cos  RXY    E X t Y t        RXY    E 5 sin t   2 cos t         2       10 E sin t   cos t         2   10 E sin t    sin t      2  10  sin t   sin t      f  d 0 2 2 sin t   sin t      d 10 1   2 0 2 2  cost    t       cost    t     d 5  2 0 2  cos  2   cos2t   d 5  2 0 2 2 5      cos  2 d  cos2t     d  2  0 0  5  sin   2   2    cos2t    0  2   2  2 0  1   2 sin   4   sin   0   2 cos2t    5  2 1   2 sin   sin    2 cos2t    5  2  5  2 cos2t    2 120 ------------------------------------------------------------------------------------------------------------------------------------------------ RXY    5 cos2t    RYX    E Y t X t         RYX    E 2 cos t    5 sin t        2         10 E cos t     sin t        2    10 E  sin t   sin t      2  10  sin t   sin t      f  d 0 2 2 sin t   sin t      d 10 1   2 0 2 2  cost    t       cost    t     d 5  2 0 2  cos  2   cos2t   d 5  2 0 5   2 2    cos  2 d  cos2t     d  2  0 0  5  sin   2   2    cos2t    0  2   2  2 0  5 1   sin   4   sin   0  2 cos2t    2  2  5  1   sin  sin    2 cos2t    2  2     2 cos2t    5 2 RYX    5 cos2t    RXX     cos      cos   RXX   25 25 2 2 RXX     RXX   (1) RXX 0   cos  0   25 25 2 2 RXX    25 cos   25 2 RXX    RXX 0 (2) 8. Define power spectral density and cross spectral density of a random process. State their properties. 121 ------------------------------------------------------------------------------------------------------------------------------------------------ Answer: Power spectral density: If X t is a stationary process with the autocorrelation function R  , then the Fourier transform of R  is called the power spectral density function of X t and denoted as S XX  .  i.e. S XX     R e  i d.  Properties of power spectral density function: i. The value of the spectral density function at zero frequency is equal to the total area under the graph of the autocorrelation function. ii. The mean square value of a wide sense stationary process is equal to the total area under the graph of the spectral density. iii. The spectral density function of a real random process is an even function. iv. The spectral density of a process X t , real or complex is a real function of  and nonnegative. v. The spectral density and the autocorrelation function of a real WSS process form a Fourier cosine transform pair. Cross spectral density: If X t and Y t are two jointly stationary random processes with cross correlation function RXY   , then the Fourier transform of RXY   is called the cross spectral density of X t and Y t and denoted as S XY  .  i.e. S XY     R  e XY  i d  Properties of cross spectral density function: i. S XY    SYX    ii. ReS XY   and ReSYX   are even functions of  iii. ImS XY   and ImSYX   are odd functions of  iv. S XY    0 and SYX    0 if X t  and y t  are orthogonal. v. If X t  and y t  are uncorrelated, then S XY    SYX    2E X E Y S  . 9. State and prove Wiener-Khinchine theorem. Answer: Statement: If X T   is the Fourier transform of the truncated  X t  , for t  T random process defined as X T     where X t is a real 0 , for t  T WSS process with power spectral density function S   , then S    lim 1 T  2T E X T  . 2   122 ------------------------------------------------------------------------------------------------------------------------------------------------ Proof:  Given X T     X t eT  it dt  T   X t e  it dt [ X t is real] T X T    X T  X T    2 T T  X t e dt1  X t2 eit 2 dt2  it1  1

Use Quizgecko on...
Browser
Browser