DA_202_04_CSP_part1 (1).pdf

Document Details

FamedSapphire689

Uploaded by FamedSapphire689

Yarmouk University

Tags

artificial intelligence constraint satisfaction problems search algorithms computer science

Full Transcript

DA 202 Basic of Artificial Intelligence Constraint Satisfaction Problems 1 What is Search For? ▪ Assumptions about the world: a single agent, deterministic actions, fully observed...

DA 202 Basic of Artificial Intelligence Constraint Satisfaction Problems 1 What is Search For? ▪ Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space ▪ Planning: sequences of actions ▪ The path to the goal is the important thing ▪ Paths have various costs, depths ▪ Heuristics give problem-specific guidance ▪ Identification: assignments to variables ▪ The goal itself is important, not the path ▪ All paths at the same depth (for some formulations) ▪ CSPs are specialized for identification problems 2 1 Constraint Satisfaction Problems ▪ Standard search problems: ▪ State is a “black box”: arbitrary data structure ▪ Goal test can be any function over states ▪ Successor function can also be anything ▪ Constraint satisfaction problems (CSPs): ▪ A special subset of search problems ▪ State is defined by variables Xi with values from a domain D (sometimes D depends on i) ▪ Goal test is a set of constraints specifying allowable combinations of values for subsets of variables ▪ Simple example of a formal representation language ▪ Allows useful general-purpose algorithms with more power than standard search algorithms 3 Example: Map Coloring ▪ Variables: ▪ Domains: ▪ Constraints: adjacent regions must have different colors Implicit: Explicit: ▪ Solutions are assignments satisfying all constraints, e.g.: 4 2 Example: N-Queens ▪ Formulation 1: ▪ Variables: ▪ Domains: ▪ Constraints 5 Example: N-Queens ▪ Formulation 2: ▪ Variables: ▪ Domains: ▪ Constraints: Implicit: Explicit: 6 3 Constraint Graphs 7 Constraint Graphs ▪ Binary CSP: each constraint relates (at most) two variables ▪ Binary constraint graph: nodes are variables, arcs show constraints ▪ General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem! 8 4 Example: Cryptarithmetic ▪ Variables: ▪ Domains: ▪ Constraints: 9 Example: Sudoku ▪ Variables: ▪ Each (open) square ▪ Domains: ▪ {1,2,…,9} ▪ Constraints: 9-way alldiff for each column 9-way alldiff for each row 9-way alldiff for each region (or can have a bunch of pairwise inequality constraints) 10 5 Example: The Waltz Algorithm ▪ The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects ▪ An early example of an AI computation posed as a CSP ? ▪ Approach: ▪ Each intersection is a variable ▪ Adjacent intersections impose constraints on each other ▪ Solutions are physically realizable 3D interpretations 12 Varieties of CSPs ▪ Discrete Variables ▪ Finite domains ▪ Size d means O(dn) complete assignments ▪ E.g., Boolean CSPs, including Boolean satisfiability (NP- complete) ▪ Infinite domains (integers, strings, etc.) ▪ E.g., job scheduling, variables are start/end times for each job ▪ Linear constraints solvable, nonlinear undecidable ▪ Continuous variables ▪ E.g., start/end times for Hubble Telescope observations ▪ Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory) 13 6 Varieties of Constraints ▪ Varieties of Constraints ▪ Unary constraints involve a single variable (equivalent to reducing domains), e.g.: ▪ Binary constraints involve pairs of variables, e.g.: ▪ Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints ▪ Preferences (soft constraints): ▪ E.g., red is better than green ▪ Often representable by a cost for each variable assignment ▪ Gives constrained optimization problems ▪ (We’ll ignore these until we get to Bayes’ nets) 14 Real-World CSPs ▪ Assignment problems: e.g., who teaches what class ▪ Timetabling problems: e.g., which class is offered when and where? ▪ Hardware configuration ▪ Transportation scheduling ▪ Factory scheduling ▪ Circuit layout ▪ Fault diagnosis ▪ … lots more! ▪ Many real-world problems involve real-valued variables… 15 7 Solving CSPs 16 Standard Search Formulation ▪ Standard search formulation of CSPs ▪ States defined by the values assigned so far (partial assignments) ▪ Initial state: the empty assignment, {} ▪ Successor function: assign a value to an unassigned variable ▪ Goal test: the current assignment is complete and satisfies all constraints ▪ We’ll start with the straightforward, naïve approach, then improve it 17 8 Search Methods ▪ What would BFS do? ▪ What would DFS do? ▪ What problems does naïve search have? 18 Backtracking Search ▪ Backtracking search is the basic uninformed algorithm for solving CSPs ▪ Idea 1: One variable at a time ▪ Variable assignments are commutative, so fix ordering ▪ I.e., [WA = red then NT = green] same as [NT = green then WA = red] ▪ Only need to consider assignments to a single variable at each step ▪ Idea 2: Check constraints as you go ▪ I.e. consider only values which do not conflict previous assignments ▪ Might have to do some computation to check the constraints ▪ “Incremental goal test” ▪ Depth-first search with these two improvements is called backtracking search (not the best name) ▪ Can solve n-queens for n  25 19 9 Backtracking Example 20 Backtracking Search ▪ Backtracking = DFS + variable-ordering + fail-on-violation ▪ What are the choice points? 21 10 Improving Backtracking ▪ General-purpose ideas give huge gains in speed ▪ Ordering: ▪ Which variable should be assigned next? ▪ In what order should its values be tried? ▪ Filtering: Can we detect inevitable failure early? ▪ Structure: Can we exploit the problem structure? 22 Filtering: Forward Checking ▪ Filtering: Keep track of domains for unassigned variables and cross off bad options ▪ Forward checking: Cross off values that violate a constraint when added to the existing assignment NT Q WA SA NSW V 23 11 Filtering: Constraint Propagation ▪ Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures: NT Q WA SA NSW V ▪ NT and SA cannot both be blue! ▪ Why didn’t we detect this yet? ▪ Constraint propagation: reason from constraint to constraint 24 Consistency of A Single Arc ▪ An arc X → Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint NT Q WA SA NSW V Delete from the tail! ▪ Forward checking: Enforcing consistency of arcs pointing to each new assignment 25 12 Arc Consistency of an Entire CSP ▪ A simple form of propagation makes sure all arcs are consistent: NT Q WA SA NSW V ▪ Important: If X loses a value, neighbors of X need to be rechecked! ▪ Arc consistency detects failure earlier than forward checking Remember: Delete ▪ Can be run as a preprocessor or after each assignment from the tail! ▪ What’s the downside of enforcing arc consistency? 26 Enforcing Arc Consistency in a CSP ▪ Runtime: O(n2d3), can be reduced to O(n2d2) ▪ … but detecting all possible future problems is NP-hard – why? 27 13 Limitations of Arc Consistency ▪ After enforcing arc consistency: ▪ Can have one solution left ▪ Can have multiple solutions left ▪ Can have no solutions left (and not know it) ▪ Arc consistency still runs What went wrong here? inside a backtracking search! 28 Ordering: Minimum Remaining Values ▪ Variable Ordering: Minimum remaining values (MRV): ▪ Choose the variable with the fewest legal left values in its domain ▪ Why min rather than max? ▪ Also called “most constrained variable” ▪ “Fail-fast” ordering 29 14 Ordering: Least Constraining Value ▪ Value Ordering: Least Constraining Value ▪ Given a choice of variable, choose the least constraining value ▪ I.e., the one that rules out the fewest values in the remaining variables ▪ Note that it may take some computation to determine this! (E.g., rerunning filtering) ▪ Why least rather than most? ▪ Combining these ordering ideas makes 1000 queens feasible 30 15

Use Quizgecko on...
Browser
Browser