Innealadh Corrosion Engineering PDF
Document Details
Uploaded by RobustGyrolite8968
Tags
Summary
This document appears to be lecture notes or a textbook chapter on corrosion engineering. It contains numerous equations and diagrams related to corrosion, including electrochemical principles and corrosion rate calculations.
Full Transcript
→ → → → → → 𝐞𝐘𝐜𝐡 𝐌𝐖 𝚫𝐖 = 𝐞𝐘𝐞𝐜𝐡 ⋅ 𝐐 = ⋅𝐐= ⋅𝐈 ⋅𝐭 𝐅 𝐳𝐅 𝚫𝐖...
→ → → → → → 𝐞𝐘𝐜𝐡 𝐌𝐖 𝚫𝐖 = 𝐞𝐘𝐞𝐜𝐡 ⋅ 𝐐 = ⋅𝐐= ⋅𝐈 ⋅𝐭 𝐅 𝐳𝐅 𝚫𝐖 𝛎𝒘 = 𝐒 ⋅𝐭 μ μ 𝚫𝐖 𝐂𝐑 = 𝛒 ⋅𝐒 ⋅𝐭 𝟏 𝐦𝐝𝐝 ≅ 𝟓 𝛍𝐦/𝐲 𝑖𝑎 = 1 𝑚𝐴/𝑚2 → 𝐶𝑅 = 1,17 μ𝑚/𝑦 → ν𝑤 = 0,234 𝑚𝑑𝑑 𝑖𝑎 = 1 𝑚𝐴/𝑚2 𝑖𝑎 = 1 𝑚𝐴/𝑚2 𝐶𝑅 = 1.2 μ𝑚/𝑦 𝚫𝐆 = −𝐳 ⋅ 𝐅 ⋅ (𝚫𝐄) 𝚫𝐄 = 𝐄𝐞𝐪,𝐂 − 𝐄𝐞𝐪,𝐀 𝚫𝐆 𝚫𝐄 = 𝐄𝐞𝐪,𝐂 − 𝐄𝐞𝐪,𝐀 = − 𝐳⋅𝐅 Ω 𝚫𝐄 = 𝐄𝐞𝐪,𝐜 − 𝐄𝐞𝐪,𝐚 = 𝛈𝒂 (𝒊) + 𝛈𝒄 (𝒊) + 𝑹𝑰 𝛈𝒂 (𝒊) 𝛈𝒄 (𝒊) 𝐑𝐈 𝐢 𝐂𝟐 − 𝐂𝟏 =𝐃 𝐳𝐅 𝛅 C1 = O2 C2 = O2 D = δ = C1 = 0 C2 = [O2 ]bulk 𝟒𝐅𝐃[𝐎𝟐 ]𝐛𝐮𝐥𝐤 𝐢𝐋 = 𝛅 𝐢𝐋 = 𝟏𝟎[𝐎𝟐 ] 𝟒𝐅𝐃[𝐎𝟐 ] 𝐢𝐋 = 𝛅 → o o o ⋅ ↑ → 𝐂𝐑 𝟏 𝐬 = 𝐂𝐑 𝟏 ⋅ 𝐭 𝐛 → 𝐂𝐑 𝟐𝟎 = 𝐂𝐑 𝟏 ⋅ 𝐛 ⋅ 𝟐𝟎𝐛−𝟏 𝛍 μ μ ▪ ▪ ▪ ▪ → μ μ 𝛍 ½ o o o o o o o o o 𝐂𝐑 = 𝐢𝐋 = 𝟏𝟐[𝐎𝟐 ]𝐟(𝐓) 4FD iL = [O2 ] ≅ 𝟏𝟎[O2 ] δ 𝐶𝑅 = 1.17iL ≅ 𝟏𝟐[O2 ]f(T) μ μ μ μ 𝐓−𝟐𝟓 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ]𝟐 𝟐𝟓 𝐂𝐑 < 𝟏𝟎 𝛍𝐦/𝐲 ΔE = R ⋅ I L { L → ΔE = ρ I R=ρ S S S L= ΔE ρicorr L icorr ΔE = ∫ ρ 𝑑𝐿 0 𝑆 Sc = πD ⋅ L ⋅ 2 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ]𝐟(𝐓)𝐟(𝐠𝐞𝐨𝐦𝐞𝐭𝐫𝐲) 𝑆𝑂2 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑐 f(geometry) ∝ → 𝑆𝑎 𝑆𝑎 T−25 Sc CR = 12[O2 ]2 25 Sa Δ ρ Ω∙ Ω∙ Ω∙ Ω∙ Ω∙ Ω∙ 𝑖𝐿 Sa 𝐒𝐚 + 𝐒𝐜 icorr = iL ⋅ 𝐒𝐚 𝚫𝐄 𝐋= 𝟐 𝛒𝐢𝐜𝐨𝐫𝐫 Sa + Sc 2πDL 2L icorr = iL ⋅ = iL ⋅ = iL ⋅ Sa πDH H ΔE 0.2 V Lmax = = = 0.05 m = 5 cm 2 ρicorr 2 ⋅ 20Ωm ⋅ 0.1A/m2 2L 10 cm icorr = iL ⋅ = iL ⋅ = 2iL = 2 ⋅ 0.1 A/m2 = 0.2 A/m2 H 5 cm 𝐒𝐜 𝟏𝟎 𝐜𝐦 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ] = 𝟏𝟐𝟎 𝛍𝐦/𝐲 ⋅ = 𝟐𝟒𝟎𝛍𝐦/𝐲 𝐒𝐚 𝟓 𝐜𝐦 𝐒𝐜 𝐋 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ] = 𝟏𝟐[𝐎𝟐 ] 𝐒𝐚 𝐇 ÷ ÷ Sc CR = 12[O2 ] = 1230 = 0.72 mm/y Sa Sc CR = 12[O2 ] = 1230 = 2.88 mm/y Sa - 𝐒𝐜 𝐒𝐜 𝐂𝐑 = 𝐢𝐋 ⋅ = 𝟏𝟐[𝐎𝟐 ]𝐟(𝐓) 𝐒𝐚 𝐒𝐚 𝛍 𝛍 → Ω Ω Ω Ω o o o 𝐈 𝐈 1 mA 𝐢𝐚 = = 𝟐= ≅ 12740mA/m2 ≅ 12.7A/m2 𝐒𝐚 𝛑𝐫 π(0.005m)2 𝐂𝐑 = 𝟏. 𝟐𝐢𝐜𝐨𝐫𝐫 = 𝟏. 𝟐𝐢𝐚 = 15.3 mm/y 𝐈𝐑 𝐫 𝐢= 𝐑𝟏 + 𝐑𝐩 + 𝐑𝟐 Rr → R1 + R 2 Rp → Δ → → → → → → → Ω Ω Ω ρ o o o o o o o o o o 𝟒𝐅𝐃[𝐎𝟐 ] 𝐢𝐋 = 𝛅 𝑖𝐿 o o 𝛿 o ⋅ Q D = D0 eRT 𝐢𝐋 = 𝟏𝟎 ⋅ ([𝐎𝟐 ] + 𝐤[𝐂𝐥𝟐 ]) ⋅ 𝐟(𝐯) 𝐓−𝟐𝟓 𝐂𝐑 ≅ 𝟏. 𝟐 ∙ 𝐢𝐋 = 𝟏𝟐 ⋅ [([𝐎𝟐 ] + 𝐤 ⋅ [𝐂𝐥𝟐 ]) ⋅ 𝟐𝟐𝟓 ∙ (𝟏 + √𝐯)] 𝐇𝐂𝐎− − 𝟐− 𝟑 + 𝐎𝐇 = 𝐂𝐎𝟑 ↓ +𝐇𝟐 𝐎 𝐂𝐚𝐂𝐎𝟑 𝐌𝐠𝐂𝐎𝟑 𝐂𝐚𝟐+ + 𝐇𝐂𝐎𝟑− + 𝐎𝐇 − = 𝐂𝐚𝐂𝐎𝟑 ↓ +𝐇𝟐 𝐎 𝐌𝐠 𝟐+ + 𝐇𝐂𝐎𝟑− + 𝐎𝐇 − = 𝐌𝐠𝐂𝐎𝟑 ↓ +𝐇𝟐 𝐎 T−25 CR = 1.2iL = 12 ⋅ [([O2 ] + k ⋅ [Cl2 ]) ⋅ 2 25 (1 + √v)] 𝟏𝟎 − 𝐋𝐒𝐈 𝟐 𝐂𝐑 = 𝐂𝐑 𝐧𝐨𝐬𝐜𝐚𝐥𝐞 (𝟏 − 𝐩) = 𝐂𝐑 𝐧𝐨𝐬𝐜𝐚𝐥𝐞 ⋅ 𝟏𝟎 𝐓−𝟐𝟓 𝐂𝐑 = 𝟏. 𝟐𝐢𝐋 = 𝟏𝟐 ⋅ [([𝐎𝟐 ] + 𝐤 ⋅ [𝐂𝐥𝟐 ]) ⋅ 𝟐 𝟐𝟓 (𝟏 + √𝐯)] [𝟏𝟎 − 𝐋𝐒𝐈𝟐 ] 𝐓−𝟐𝟓 𝐂𝐑 ≅ 𝟏. 𝟐 ∙ 𝐢𝐋 = 𝟏𝟐 ⋅ [([𝐎𝟐 ] + 𝐤 ⋅ [𝐂𝐥𝟐 ]) ⋅ 𝟐𝟐𝟓 ∙ (𝟏 + √𝐯)] 𝐂𝐀 = 𝐂𝐑 ⋅ 𝐒𝐋 𝐒𝐚 + 𝐒𝐜 𝐢𝐜𝐨𝐫𝐫 = 𝐢 𝐒𝐚 i Sa Sc 𝐿 𝑅=ρ 𝑆 Δ Δ 𝐒𝐚 +𝐒𝐜 𝐒 𝚫𝐕 𝐢 𝚫𝐕 𝐢𝐜𝐨𝐫𝐫 = 𝐢𝐜 (𝐒𝐜 ) = 𝐤√𝐢 𝑳 𝐂𝐑(𝐦𝐦/𝐲) = 𝟐𝟎√𝛒+𝟎.𝟖 𝐒𝐚 𝐚 𝐦𝐚𝐱 𝐜 (𝛒+𝟎.𝟖) 𝑖𝑐 = 𝑖𝐿 ρ Ω 𝑘 = 20 𝑚0.5 Δ𝑉 ρ σ ρ σ ρ σ Φ 𝐒𝐜 = 𝟐 ⋅ 𝐚𝐫𝐜 ⋅ 𝟐 ⋅ 𝐋 𝐒𝐜 = 𝛑 ⋅ 𝐋𝟐 o o o o o o o o → → 𝜇 𝟏𝟕 𝟐 𝐠𝐚𝐩 < ( ) 𝐏𝐑𝐄𝐍 ⋅ ⋅ ⋅ 𝐒𝐜 𝐒𝐜 𝐂𝐑 = 𝟏. 𝟐 ∙ 𝐢𝐋 ∙ = 𝟏𝟐 ∙ [𝐎𝟐 ] ∙ 𝐒𝐚 𝐒𝐚 𝐒𝐜 𝐒 𝐒 𝐒𝐚 = 𝟒𝟎 𝟏𝟎𝟎𝟎𝛍𝐦/𝐲 = 𝟏𝟐 ⋅ [𝟐𝐩𝐩𝐦] ⋅ 𝐒𝐜 = 𝟐𝟒 ⋅ 𝐒𝐜 𝐚 𝐚 𝚫𝐄𝚽 𝐋=√ 𝟐𝛒𝐢 Φ Φ ρ ⋅ Φ ·Φ· · 𝛀 o o o 𝐂𝐑 = 𝟏. 𝟐 ∙ 𝐢𝐋 ∙ 𝐟(𝐠𝐞𝐨𝐦) ∙ 𝐟(𝐯) ∙ 𝐟(𝐓) 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ] = 𝟕𝟐𝛍𝐦/𝐲 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ](𝟏 + √𝐯) = 𝟕𝟐(𝟏 + 𝟎. 𝟓𝟓) = 𝟏𝟏𝟐 𝛍𝐦/𝐲 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ](𝟏 + 𝟎. 𝟓𝐯) = 𝟕𝟐(𝟏 + 𝟐) = 𝟐𝟏𝟔 𝛍𝐦/𝐲 𝐂𝐑 = 𝟏𝟐[𝐎𝟐 ] 𝐌𝐖 𝐌= ⋅𝐢⋅𝐒⋅𝐭 𝐳𝐅 o 𝐄𝐞𝐪,𝐅𝐞 = 𝐄𝟎,𝐅𝐞 + (𝟎. 𝟎𝟓𝟗𝐕/𝟐) ⋅ 𝐋𝐨𝐠[𝟏𝟎−𝟔 ] = −𝟎. 𝟒𝟒𝐕 − 𝟎. 𝟏𝟖𝐕 = −𝟎. 𝟔𝟐𝐕 𝐒𝐇𝐄 o 𝐄𝐞𝐪,𝐀𝐥 = 𝐄𝟎,𝐀𝐥 + (𝟎. 𝟎𝟓𝟗𝐕/𝟑) ⋅ 𝐋𝐨𝐠[𝟏𝟎−𝟔 ] = −𝟏. 𝟔𝟔𝐕 − 𝟎. 𝟏𝟐𝐕 = −𝟏. 𝟕𝟖𝐕 𝐒𝐇𝐄 o 𝐄𝐞𝐪,𝐌𝐠 = 𝐄𝟎,𝐅𝐞 + (𝟎. 𝟎𝟓𝟗𝐕/𝟐) ⋅ 𝐋𝐨𝐠[𝟏𝟎−𝟔 ] = −𝟐. 𝟑𝟔𝐕 − 𝟎. 𝟏𝟖𝐕 = −𝟐. 𝟓𝟒𝐕 𝐒𝐇𝐄 o 𝐄𝐞𝐪,𝐇 = −𝟎. 𝟎𝟓𝟗 ⋅ 𝐩𝐇 = −𝟎. 𝟒𝟖 𝐕 𝐒𝐇𝐄 𝚫𝐄𝐅𝐞 = 𝐄𝐞𝐪.𝐇 − 𝐄𝐞𝐪.𝐅𝐞 = +𝟎. 𝟏𝟒 𝐕 𝚫𝐄𝑨𝒍 = 𝐄𝐞𝐪.𝐇 − 𝐄𝐞𝐪.𝐀𝐥 = +𝟏. 𝟑𝟎 𝐕 𝚫𝐄𝑴𝒈 = 𝐄𝐞𝐪.𝐇 − 𝐄𝐞𝐪.𝐌𝐠 = +𝟐. 𝟎𝟔 𝐕 o 𝐢𝟎,𝐅𝐞 = 𝟏𝐦𝐀/𝐦𝟐 o 𝐢𝟎,𝐀𝐥 > 𝟏𝟎𝟑 𝐦𝐀/𝐦𝟐 o 𝐢𝟎,𝐌𝐠 > 𝟏𝟎𝟑 𝐦𝐀/𝐦𝟐 o 𝐢𝟎,𝐇 𝐨𝐧 𝐅𝐞 = 𝟏𝐦𝐀/𝐦𝟐 o 𝐢𝟎,𝐇 𝐨𝐧 𝐀𝐥 = 𝟏𝟎−𝟑 𝐦𝐀/𝐦𝟐 o 𝐢𝟎,𝐇 𝐨𝐧 𝐌𝐠 = 𝟏𝟎−𝟑 𝐦𝐀/𝐦𝟐 → → o o o 𝛜 = 𝟏𝟎𝟎 ⋅ (𝐂𝐑 𝟎 − 𝐂𝐑 𝐢𝐧𝐢𝐛 )/𝐂𝐑 𝟎 ≫ o o o ▪ o o ▪ o o ▪ o o o ▪ o o o o o o o 𝐂𝐑 = 𝐂𝐑 𝐓𝐇 ⋅ 𝐅𝐖𝐖 [𝐂𝐎𝟐 ] = 𝐇 ⋅ 𝐩𝐂𝐎𝟐 ⋅ 𝐅𝐂𝐎𝐍𝐃 = 𝟎. 𝟏 𝐅𝐂𝐎𝐍𝐃 = 𝟏 → 𝐂𝐑 𝐝𝐖𝐌,𝐁 𝐂𝐑 𝐝𝐖𝐌,𝐂 = 𝐂𝐑 𝐝𝐖𝐌,𝐁 ⋅ 𝚷𝐅𝐢 𝐂𝐑 = 𝐂𝐑 𝐝𝐖𝐌,𝐂 ⋅ 𝐅𝐖𝐖 𝐂𝐑 𝐢𝐧𝐡𝐢𝐛 = 𝐂𝐑 ⋅ (𝟏 − 𝐂𝐈𝐄) ⋅ ⋅ ⋅ η ⋅ ⋅ 𝐂 𝐔𝐂 = √𝛒𝐦 ρ𝑚 o o o o o → ∼ ∼ ∼ → → → ∼ ∼ 𝟐𝐇𝟐 𝐒 + 𝐎𝟐 = 𝟐𝐇𝟐 𝐎 + 𝟐𝐒 → → → → 𝐄𝐩𝐫𝐨𝐭 < 𝐄𝐞𝐪.𝐚 𝐄𝐞𝐪,𝐅𝐞 = 𝐄𝟎,𝐅𝐞 + (𝟎. 𝟎𝟓𝟗𝐕/𝟐) ⋅ 𝐋𝐨𝐠[𝟏𝟎−𝟔 ] = −𝟎. 𝟒𝟒𝐕 − 𝟎. 𝟏𝟖𝐕 = −𝟎. 𝟔𝟐𝐕 𝐒𝐇𝐄 𝐄𝐩𝐫𝐨𝐭 < 𝐄𝐩𝐢𝐭 𝐄𝐩𝐫𝐨𝐭 < 𝐄𝐞𝐪.𝐚 𝐄𝐜𝐨𝐫𝐫 < 𝐄𝐩𝐫𝐨𝐭 < 𝐄𝐞𝐪.𝐚 𝐄𝒑𝒑 < 𝐄𝐩𝐫𝐨𝐭 < 𝐄𝐩𝐢𝐭 𝐈𝐩𝐫𝐨𝐭 𝐈𝐩𝐫𝐨𝐭 = 𝐢𝐩𝐫𝐨𝐭 ∙ 𝐒 ∙ 𝐈𝐩𝐫𝐨𝐭 = 𝐢𝐩𝐫𝐨𝐭 ∙ 𝐒 ∙ (𝟏 − 𝛜) ϵ 𝐈𝐩𝐫𝐨𝐭 ⋅ ⋅ 𝐄𝐜𝐨𝐫𝐫,𝟏 𝐄𝐜𝐨𝐫𝐫,𝟐 𝐄𝐚 𝐄𝐜 𝚫𝐄 = 𝐄𝐩𝐫𝐨𝐭 − 𝐄𝐚 𝚫𝐄 𝐢= 𝐑 ≥ 𝐈𝐩𝐫𝐨𝐭 = 𝐢𝐩𝐫𝐨𝐭 ⋅ 𝐒 𝚫𝐋𝐦𝐚𝐱 = 𝚫𝐄/𝛒𝐢 𝐍𝐚,𝐦𝐢𝐧 = 𝐒𝐭𝐨𝐭 /𝐒𝐜 = 𝐋𝐭𝐨𝐭 /𝚫𝐋𝐦𝐚𝐱 𝐒𝐜 = 𝛑𝚽 𝚫𝐋𝐦𝐚𝐱 o o R c = R 0 /Sc o 𝐈𝐚 = 𝚫𝐄/(𝐑 𝐚 + 𝐑 𝐜 ) o 𝐍𝐚,𝐝 = 𝐈𝐩𝐫𝐨𝐭 /𝐈𝐚 o 𝐖𝐭𝐨𝐭 = (𝐩𝐫𝐚𝐜𝐭𝐢𝐜𝐚𝐥 𝐜𝐨𝐧𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧 ⋅ 𝐈𝐩𝐫𝐨𝐭 ⋅ 𝐃𝐋)/𝐔𝐅 o 𝐍𝐚,𝐌 = 𝐖𝐭𝐨𝐭 /𝐖𝐚 Wa = o o → → → 𝛗 𝐕 = 𝐈𝐑 𝐭𝐨𝐭 + 𝛗 𝐈𝐩𝐫𝐨𝐭 = 𝐢𝐩𝐫𝐨𝐭 ⋅ 𝐒 𝑆𝑖 o o R cable o R cable = R 0 /Sc o 𝐑 𝐭𝐨𝐭 = 𝐑 𝐚 + 𝐑 𝐜 + 𝐑 𝐜𝐚𝐛𝐥𝐞 𝐕 = 𝐈𝐑 𝐭𝐨𝐭 + 𝛗 𝐋𝐦𝐚𝐱 → → 𝐂𝐠𝐚𝐬 = 𝐏/𝐇 → → → → → → ↔ α → → → → →