Chapter 1 Aircraft Structures PDF
Document Details
Uploaded by DaringDream
Tags
Summary
This document covers general information on aircraft structures, including fuselages, wings, and their various types. It details construction materials and design principles.
Full Transcript
a frame. Manufacturer instructions and specifications for a specific aircraft are the best guides. The semimonocoque fuselage is constructed primarily of alloys of aluminum and magnesium, although steel and titanium are sometimes found in areas of high temperatures. Individually, not one of the afor...
a frame. Manufacturer instructions and specifications for a specific aircraft are the best guides. The semimonocoque fuselage is constructed primarily of alloys of aluminum and magnesium, although steel and titanium are sometimes found in areas of high temperatures. Individually, not one of the aforementioned components is strong enough to carry the loads imposed during flight and landing. But, when combined, those components form a strong, rigid framework. This is accomplished with gussets, rivets, nuts and bolts, screws, and even friction stir welding. A gusset is a type of connection bracket that adds strength. [Figure 1-18] To summarize, in semimonocoque fuselages, the strong, heavy longerons hold the bulkheads and formers, and these, in turn, hold the stringers, braces, web members, etc. All are designed to be attached together and to the skin to achieve the full-strength benefits of semimonocoque design. It is important to recognize that the metal skin or covering carries part of the load. The fuselage skin thickness can vary with the load carried and the stresses sustained at a particular location. The advantages of the semimonocoque fuselage are many. The bulkheads, frames, stringers, and longerons facilitate the design and construction of a streamlined fuselage that is both rigid and strong. Spreading loads among these structures and the skin means no single piece is failure critical. This means that a semimonocoque fuselage, because of its stressed-skin construction, may withstand considerable damage and still be strong enough to hold together. Fuselages are generally constructed in two or more sections. On small aircraft, they are generally made in two or three sections, while larger aircraft may be made up of as many as six sections or more before being assembled. Reinforced Shell Type The reinforced shell has the skin reinforced by a complete framework of structural members. Pressurization Many aircraft are pressurized. This means that air is pumped into the cabin after takeoff and a difference in pressure between the air inside the cabin and the air outside the cabin is established. This differential is regulated and maintained. In this manner, enough oxygen is made available for passengers to breathe normally and move around the cabin without special equipment at high altitudes. Pressurization causes significant stress on the fuselage structure and adds to the complexity of design. In addition to withstanding the difference in pressure between the air inside and outside the cabin, cycling from unpressurized to pressurized and back again on each flight causes metal fatigue. To deal with these impacts and the other stresses of flight, nearly all pressurized aircraft are semimonocoque in design. Pressurized fuselage structures undergo extensive periodic inspections to ensure that any damage is discovered and repaired. Repeated weakness or failure in an area of structure may require that section of the fuselage be modified or redesigned. Wings Wing Configurations Wings are airfoils that, when moved rapidly through the air, create lift. They are built in many shapes and sizes. Wing design can vary to provide certain desirable flight characteristics. Control at various operating speeds, the amount of lift generated, balance, and stability all change as the shape of the wing is altered. Both the leading edge and the trailing edge of the wing may be straight or curved, or one edge may be straight and the other curved. One or both edges may be tapered so that the wing is narrower at the tip than at the root where it joins the fuselage. The wing tip may be square, rounded, or even pointed. Figure 1-19 shows a number of typical wing leading and trailing edge shapes. The wings of an aircraft can be attached to the fuselage at the top, mid-fuselage, or at the bottom. They may extend perpendicular to the horizontal plane of the fuselage or can angle up or down slightly. This angle is known as the wing dihedral. The dihedral angle affects the lateral stability of the aircraft. Figure 1-20 shows some common wing attach points and dihedral angle. Figure 1-18. Gussets are used to increase strength. Wing Structure The wings of an aircraft are designed to lift it into the air. Their particular design for any given aircraft depends on a number of factors, such as size, weight, use of the aircraft, 1-9 Tapered leading edge, straight trailing edge Tapered leading and trailing edges Delta wing Sweptback wings Straight leading and trailing edges Straight leading edge, tapered trailing edge Figure 1-19. Various wing design shapes yield different performance. desired speed in flight and at landing, and desired rate of climb. The wings of aircraft are designated left and right, corresponding to the left and right sides of the operator when seated in the flight deck. [Figure 1-21] Low wing Dihedral High wing Mid wing Gull wing Inverted gull Figure 1-20. Wing attach points and wing dihedrals. Often wings are of full cantilever design. This means they are built so that no external bracing is needed. They are supported internally by structural members assisted by the skin of the aircraft. Other aircraft wings use external struts or wires to assist in supporting the wing and carrying the aerodynamic and landing loads. Wing support cables and struts are generally made from steel. Many struts and their attach fittings have fairings to reduce drag. Short, nearly vertical supports called jury struts are found on struts that attach to the wings a great distance from the fuselage. This serves to subdue strut movement and oscillation caused by the air flowing around the strut in flight. Figure 1-22 shows samples of wings using external bracing, also known as semicantilever wings. Cantilever wings built with no external 1-10 Left wing Right wing Figure 1-21. “Left” and “right” on an aircraft are oriented to the perspective of a pilot sitting in the flight deck. In general, wing construction is based on one of three fundamental designs: bracing are also shown. Aluminum is the most common material from which to construct wings, but they can be wood covered with fabric, and occasionally a magnesium alloy has been used. Moreover, modern aircraft are tending toward lighter and stronger materials throughout the airframe and in wing construction. Wings made entirely of carbon fiber or other composite materials exist, as well as wings made of a combination of materials for maximum strength to weight performance. The internal structures of most wings are made up of spars and stringers running spanwise and ribs and formers or bulkheads running chordwise (leading edge to trailing edge). The spars are the principle structural members of a wing. They support all distributed loads, as well as concentrated weights such as the fuselage, landing gear, and engines. The skin, which is attached to the wing structure, carries part of the loads imposed during flight. It also transfers the stresses to the wing ribs. The ribs, in turn, transfer the loads to the wing spars. [Figure 1-23] Full cantilever 1. Monospar 2. Multispar 3. Box beam Modification of these basic designs may be adopted by various manufacturers. The monospar wing incorporates only one main spanwise or longitudinal member in its construction. Ribs or bulkheads supply the necessary contour or shape to the airfoil. Although the strict monospar wing is not common, this type of design modified by the addition of false spars or light shear webs along the trailing edge for support of control surfaces is sometimes used. The multispar wing incorporates more than one main longitudinal member in its construction. To give the wing contour, ribs or bulkheads are often included. Semicantilever Wire braced biplane Long struts braced with jury struts Figure 1-22. Externally braced wings, also called semicantilever wings, have wires or struts to support the wing. Full cantilever wings have no external bracing and are supported internally. 1-11 Rear spar Ribs Stringer Nose rib Ribs Front spar Skin Figure 1-23. Wing structure nomenclature. The box beam type of wing construction uses two main longitudinal members with connecting bulkheads to furnish additional strength and to give contour to the wing. [Figure 1-24] A corrugated sheet may be placed between the bulkheads and the smooth outer skin so that the wing can better carry tension and compression loads. In some cases, heavy longitudinal stiffeners are substituted for the upper surface of the wing and stiffeners on the lower surface corrugated sheets. A combination of corrugated sheets on the upper surface of the wing and stiffeners on the lower surface is sometimes used. Air transport category aircraft often utilize box beam wing construction. Wing Spars Spars are the principal structural members of the wing. They correspond to the longerons of the fuselage. They run parallel to the lateral axis of the aircraft, from the fuselage toward the tip of the wing, and are usually attached to the fuselage by wing fittings, plain beams, or a truss. Spars may be made of metal, wood, or composite materials depending on the design criteria of a specific aircraft. Wooden spars are usually made from spruce. They can be generally classified into four different types by their crosssectional configuration. As shown in Figure 1-25, they may be (A) solid, (B) box-shaped, (C) partly hollow, or (D) in the form of an I-beam. Lamination of solid wood spars is often used to increase strength. Laminated wood can also be found in box-shaped spars. The spar in Figure 1-25E has had material removed to reduce weight but retains the strength of a rectangular spar. As can be seen, most wing spars are basically rectangular in shape with the long dimension of the cross-section oriented up and down in the wing. Currently, most manufactured aircraft have wing spars made of solid extruded aluminum or aluminum extrusions riveted together to form the spar. The increased use of Figure 1-24. Box beam construction. 1-12 A B C D E Figure 1-25. Typical wooden wing spar cross-sections. composites and the combining of materials should make airmen vigilant for wings spars made from a variety of materials. Figure 1-26 shows examples of metal wing spar cross-sections. In an I–beam spar, the top and bottom of the I–beam are called the caps and the vertical section is called the web. The entire spar can be extruded from one piece of metal but often it is built up from multiple extrusions or formed angles. The web forms the principal depth portion of the spar and the cap strips (extrusions, formed angles, or milled sections) are attached to it. Together, these members carry the loads caused by wing bending, with the caps providing a foundation for attaching the skin. Although the spar shapes in Figure 1-26 are typical, actual wing spar configurations assume many forms. For example, the web of a spar may be a plate or a truss as shown in Figure 1-27. It could be built up from lightweight materials with vertical stiffeners employed for strength. [Figure 1-28] It could also have no stiffeners but might contain flanged holes for reducing weight while maintaining strength. Some metal and composite wing spars retain the I-beam concept but use a sine wave web. [Figure 1-29] Additionally, fail-safe spar web design exists. Fail-safe means that should one member of a complex structure fail, some other part of the structure assumes the load of the failed member and permits continued operation. A spar with failsafe construction is shown in Figure 1-30. This spar is made in two sections. The top section consists of a cap riveted to the upper web plate. The lower section is a single extrusion consisting of the lower cap and web plate. These two sections are spliced together to form the spar. If either section of this type of spar breaks, the other section can still carry the load. This is the fail-safe feature. As a rule, a wing has two spars. One spar is usually located near the front of the wing, and the other about two-thirds of the distance toward the wing’s trailing edge. Regardless of type, the spar is the most important part of the wing. When other structural members of the wing are placed under load, most of the resulting stress is passed on to the wing spar. False spars are commonly used in wing design. They are longitudinal members like spars but do not extend the entire spanwise length of the wing. Often, they are used as hinge Figure 1-26. Examples of metal wing spar shapes. 1-13 Upper spar cap Upper cap member Diagonal tube Rivets Splice Vertical tube Up pe rs pa rw eb Lo we rs pa rw eb Lower spar cap Lower cap member Figure 1-30. A fail-safe spar with a riveted spar web. Figure 1-27. A truss wing spar. Upper spar cap Stiffener Rib attach angle Lower spar cap Figure 1-28. A plate web wing spar with vertical stiffeners. Sine wave web Caps Figure 1-29. A sine wave wing spar can be made from aluminum or composite materials. attach points for control surfaces, such as an aileron spar. Wing Ribs Ribs are the structural crosspieces that combine with spars and stringers to make up the framework of the wing. They usually extend from the wing leading edge to the rear spar or to the trailing edge of the wing. The ribs give the wing its cambered shape and transmit the load from the skin and stringers to the spars. Similar ribs are also used in ailerons, elevators, rudders, and stabilizers. Wing ribs are usually manufactured from either wood or metal. Aircraft with wood wing spars may have wood or metal ribs while most aircraft with metal spars have metal ribs. Wood ribs are usually manufactured from spruce. The three most common types of wooden ribs are the plywood web, the lightened plywood web, and the truss types. Of these three, the truss type is the most efficient because it is strong and lightweight, but it is also the most complex to construct. Figure 1-31 shows wood truss web ribs and a lightened plywood web rib. Wood ribs have a rib cap or cap strip fastened around the entire perimeter of the rib. It is usually made of the same material as the rib itself. The rib cap stiffens and strengthens the rib and provides an attaching surface for the wing covering. In Figure 1-31A, the cross-section of a wing rib with a truss-type web is illustrated. The dark rectangular sections are the front and rear wing spars. Note that to reinforce the truss, gussets are used. In Figure 1-31B, a truss web rib is shown with a continuous gusset. It provides greater support throughout the entire rib with very little additional weight. A continuous gusset stiffens the cap strip in the plane of the rib. This aids in preventing buckling and helps to obtain better rib/ skin joints where nail-gluing is used. Such a rib can resist the driving force of nails better than the other types. Continuous gussets are also more easily handled than the many small separate gussets otherwise required. Figure 1-31C shows a rib with a lighten plywood web. It also contains gussets to support the web/cap strip interface. The cap strip is usually laminated to the web, especially at the leading edge. A wing rib may also be referred to as a plain rib or a main rib. Wing ribs with specialized locations or functions are given names that reflect their uniqueness. For example, ribs that are located entirely forward of the front spar that are used to shape and strengthen the wing leading edge are called nose ribs or false ribs. False ribs are ribs that do not span the entire 1-14 shown crisscrossed between the spars to form a truss to resist forces acting on the wing in the direction of the wing chord. These tension wires are also referred to as tie rods. The wire designed to resist the backward forces is called a drag wire; the anti-drag wire resists the forward forces in the chord direction. Figure 1-32 illustrates the structural components of a basic wood wing. A B At the inboard end of the wing spars is some form of wing attach fitting as illustrated in Figure 1-32. These provide a strong and secure method for attaching the wing to the fuselage. The interface between the wing and fuselage is often covered with a fairing to achieve smooth airflow in this area. The fairing(s) can be removed for access to the wing attach fittings. [Figure 1-33] C Figure 1-31. Examples of wing ribs constructed of wood. wing chord, which is the distance from the leading edge to the trailing edge of the wing. Wing butt ribs may be found at the inboard edge of the wing where the wing attaches to the fuselage. Depending on its location and method of attachment, a butt rib may also be called a bulkhead rib or a compression rib if it is designed to receive compression loads that tend to force the wing spars together. The wing tip is often a removable unit, bolted to the outboard end of the wing panel. One reason for this is the vulnerability of the wing tips to damage, especially during ground handling and taxiing. Figure 1-34 shows a removable wing tip for a large aircraft wing. Others are different. The wing tip assembly is of aluminum alloy construction. The wing tip cap is secured to the tip with countersunk screws and is secured to the interspar structure at four points with ¼-inch diameter bolts. To prevent ice from forming on the leading edge of the wings of large aircraft, hot air from an engine is often channeled through the leading edge from wing root to wing tip. A louver on the top surface of the wing tip allows this warm air to be Since the ribs are laterally weak, they are strengthened in some wings by tapes that are woven above and below rib sections to prevent sidewise bending of the ribs. Drag and anti-drag wires may also be found in a wing. In Figure 1-32, they are Leading edge strip Wing tip Nose rib or false rib Front spar Anti-drag wire or tie rod False spar or aileron spar Aileron Rear spar Aileron hinge Drag wire or tie rod Wing attach fittings Wing rib or plain rib Wing butt rib (or compression rib or bulkhead rib) Figure 1-32. Basic wood wing structure and components. 1-15 Wing Skin Often, the skin on a wing is designed to carry part of the flight and ground loads in combination with the spars and ribs. This is known as a stressed-skin design. The all-metal, full cantilever wing section illustrated in Figure 1-35 shows the structure of one such design. The lack of extra internal or external bracing requires that the skin share some of the load. Notice the skin is stiffened to aid with this function. Figure 1-33. Wing root fairings smooth airflow and hide wing attach fittings. exhausted overboard. Wing position lights are located at the center of the tip and are not directly visible from the flight deck. As an indication that the wing tip light is operating, some wing tips are equipped with a Lucite rod to transmit the light to the leading edge. Fuel is often carried inside the wings of a stressed-skin aircraft. The joints in the wing can be sealed with a special fuel resistant sealant enabling fuel to be stored directly inside the structure. This is known as wet wing design. Alternately, a fuel-carrying bladder or tank can be fitted inside a wing. Figure 1-36 shows a wing section with a box beam structural design such as one that might be found in a transport category aircraft. This structure increases strength while reducing weight. Proper sealing of the structure allows fuel to be stored in the box sections of the wing. The wing skin on an aircraft may be made from a wide variety of materials such as fabric, wood, or aluminum. But a single thin sheet of material is not always employed. Chemically Access panel Upper skin Points of attachment to front and rear spar fittings (2 upper, 2 lower) Louver Wing tip navigation light Leading edge outer skin Corrugated inner skin Reflector rod Heat duct Wing cap Figure 1-34. A removable metal wing tip. 1-16 Figure 1-35. The skin is an integral load carrying part of a stressed skin design. Sealed structure fuel tank—wet wing Figure 1-36. Fuel is often carried in the wings. milled aluminum skin can provide skin of varied thicknesses. On aircraft with stressed-skin wing design, honeycomb structured wing panels are often used as skin. A honeycomb structure is built up from a core material resembling a bee hive’s honeycomb which is laminated or sandwiched between thin outer skin sheets. Figure 1-37 illustrates honeycomb panes and their components. Panels formed like this are lightweight and very strong. They have a variety of uses on the aircraft, such as floor panels, bulkheads, and control surfaces, as well as wing skin panels. Figure 1-38 shows the locations of honeycomb construction wing panels on a jet transport aircraft. A honeycomb panel can be made from a wide variety of materials. Aluminum core honeycomb with an outer skin of aluminum is common. But honeycomb in which the core is an Arimid® fiber and the outer sheets are coated Phenolic® is common as well. In fact, a myriad of other material combinations such as those using fiberglass, plastic, Nomex®, Kevlar ®, and carbon fiber all exist. Each honeycomb structure possesses unique characteristics depending upon the materials, dimensions, and manufacturing techniques employed. Figure 1-39 shows an entire wing leading edge formed from honeycomb structure. Nacelles Nacelles (sometimes called “pods”) are streamlined enclosures used primarily to house the engine and its components. They usually present a round or elliptical profile to the wind thus reducing aerodynamic drag. On most single-engine aircraft, the engine and nacelle are at the forward end of the fuselage. On multiengine aircraft, engine nacelles are built into the wings or attached to the fuselage at the empennage (tail section). Occasionally, a multiengine aircraft is designed with a nacelle in line with the fuselage aft of the passenger compartment. Regardless of its location, a nacelle contains the engine and accessories, engine mounts, structural members, a firewall, and skin and cowling on the 1-17 Core Skin A Skin Constant thickness Core Skin B Skin Tapered core Figure 1-37. The honeycomb panel is a staple in aircraft construction. Cores can be either constant thickness (A) or tapered (B). Tapered core honeycomb panels are frequently used as flight control surfaces and wing trailing edges. exterior to fare the nacelle to the wind. Some aircraft have nacelles that are designed to house the landing gear when retracted. Retracting the gear to reduce wind resistance is standard procedure on high-performance/ high-speed aircraft. The wheel well is the area where the landing gear is attached and stowed when retracted. Wheel wells can be located in the wings and/or fuselage when not part of the nacelle. Figure 1-40 shows an engine nacelle incorporating the landing gear with the wheel well extending into the wing root. The framework of a nacelle usually consists of structural members similar to those of the fuselage. Lengthwise members, such as longerons and stringers, combine with horizontal/vertical members, such as rings, formers, and bulkheads, to give the nacelle its shape and structural integrity. A firewall is incorporated to isolate the engine compartment from the rest of the aircraft. This is basically a stainless steel or titanium bulkhead that contains a fire in the confines of the nacelle rather than letting it spread throughout the airframe. [Figure 1-41] Engine mounts are also found in the nacelle. These are the structural assemblies to which the engine is fastened. They are usually constructed from chrome/molybdenum steel tubing in light aircraft and forged chrome/nickel/molybdenum assemblies in larger aircraft. [Figure 1-42] The exterior of a nacelle is covered with a skin or fitted with a cowling which can be opened to access the engine and components inside. Both are usually made of sheet aluminum or magnesium alloy with stainless steel or titanium alloys being used in high-temperature areas, such as around the exhaust exit. Regardless of the material used, the skin is typically attached to the framework with rivets. Cowling refers to the detachable panels covering those areas 1-18 Trailing edge sandwich panels constant-thickness core Wing leading edge Spoiler sandwich panel tapered core, solid wedge Trailing edge sandwich panels constant-thickness core Inboard flap Spoiler sandwich panel Outboard flap Aileron tab sandwich panel tapered core, Phenolic wedge tapered core, solid wedge Aileron tab sandwich panel constant-thickness core Trailing edge wedge sandwich panel tapered core, cord wedge Figure 1-38. Honeycomb wing construction on a large jet transport aircraft. into which access must be gained regularly, such as the engine and its accessories. It is designed to provide a smooth airflow over the nacelle and to protect the engine from damage. Cowl panels are generally made of aluminum alloy construction. However, stainless steel is often used as the inner skin aft of the power section and for cowl flaps and near cowl flap openings. It is also used for oil cooler ducts. Cowl flaps are moveable parts of the nacelle cowling that open and close to regulate engine temperature. There are many engine cowl designs. Figure 1-43 shows an exploded view of the pieces of cowling for a horizontally opposed engine on a light aircraft. It is attached to the nacelle by means of screws and/or quick release fasteners. Some large reciprocating engines are enclosed by “orange peel” cowlings which provide excellent access to components inside the nacelle. [Figure 1-44] These cowl panels are attached to the forward firewall by mounts which also serve as hinges for opening the cowl. The lower cowl mounts are secured to the hinge brackets by quick release pins. The side and top panels are held open by rods and the lower panel is retained in the open position by a spring and a cable. All of the cowling panels are locked in the closed position by overcenter steel latches which are secured in the closed position by spring-loaded safety catches. An example of a turbojet engine nacelle can be seen in Figure 1-45. The cowl panels are a combination of fixed and easily removable panels which can be opened and closed during maintenance. A nose cowl is also a feature on a jet engine nacelle. It guides air into the engine. Empennage The empennage of an aircraft is also known as the tail section. Most empennage designs consist of a tail cone, fixed aerodynamic surfaces or stabilizers, and movable aerodynamic surfaces. 1-19 Metal wing spar Metal member bonded to sandwich Honeycomb sandwich core Wooden members spanwise and chordwise Glass reinforced plastics sandwich the core Figure 1-39. A wing leading edge formed from honeycomb material bonded to the aluminum spar structure. Figure 1-40. Engine nacelle incorporating the landing gear with the wheel well extending into the wing root. 1-20 Figure 1-42. Various aircraft engine mounts. Figure 1-41. An engine nacelle firewall. The tail cone serves to close and streamline the aft end of most fuselages. The cone is made up of structural members like those of the fuselage; however, cones are usually of lighter construction since they receive less stress than the fuselage. [Figure 1-46] The other components of the typical empennage are of heavier construction than the tail cone. These members include fixed surfaces that help stabilize the aircraft and movable surfaces that help to direct an aircraft during flight. The fixed surfaces are the horizontal stabilizer and vertical stabilizer. The movable surfaces are usually a rudder located at the aft edge of the vertical stabilizer and an elevator located at the aft edge the horizontal stabilizer. [Figure 1-47] The structure of the stabilizers is very similar to that which is used in wing construction. Figure 1-48 shows a typical vertical stabilizer. Notice the use of spars, ribs, stringers, and skin like those found in a wing. They perform the same functions shaping and supporting the stabilizer and transferring stresses. Bending, torsion, and shear created by air loads in flight pass from one structural member to another. Each member absorbs some of the stress and passes the remainder on to the others. Ultimately, the spar transmits any overloads to the fuselage. A horizontal stabilizer is built Figure 1-43. Typical cowling for a horizontally opposed reciprocating engine. the same way. The rudder and elevator are flight control surfaces that are also part of the empennage discussed in the next section of this chapter. Flight Control Surfaces The directional control of a fixed-wing aircraft takes place around the lateral, longitudinal, and vertical axes by means of flight control surfaces designed to create movement about these axes. These control devices are hinged or movable surfaces through which the attitude of an aircraft is controlled during takeoff, flight, and landing. They are usually divided into two major groups: 1) primary or main flight control surfaces and 2) secondary or auxiliary control surfaces. 1-21 Figure 1-44. Orange peel cowling for large radial reciprocating engine. Figure 1-45. Cowling on a transport category turbine engine nacelle. 1-22 Frame Primary Flight Control Surfaces The primary flight control surfaces on a fixed-wing aircraft include: ailerons, elevators, and the rudder. The ailerons are attached to the trailing edge of both wings and when moved, rotate the aircraft around the longitudinal axis. The elevator is attached to the trailing edge of the horizontal stabilizer. When it is moved, it alters aircraft pitch, which is the attitude about the horizontal or lateral axis. The rudder is hinged to the trailing edge of the vertical stabilizer. When the rudder changes position, the aircraft rotates about the vertical axis (yaw). Figure 1-49 shows the primary flight controls of a light aircraft and the movement they create relative to the three axes of flight. Longeron Skin Stringer Bulkhead Figure 1-46. The fuselage terminates at the tail cone with similar but more lightweight construction. Vertical stabilizer Horizontal stabilizer Rudder Trim tabs Elevator Primary control surfaces are usually similar in construction to one another and vary only in size, shape, and methods of attachment. On aluminum light aircraft, their structure is often similar to an all-metal wing. This is appropriate because the primary control surfaces are simply smaller aerodynamic devices. They are typically made from an aluminum alloy structure built around a single spar member or torque tube to which ribs are fitted and a skin is attached. The lightweight ribs are, in many cases, stamped out from flat aluminum sheet stock. Holes in the ribs lighten the assembly. An aluminum skin is attached with rivets. Figure 1-50 illustrates this type of structure, which can be found on the primary control surfaces of light aircraft as well as on medium and heavy aircraft. El ev at La or— (lo tera Pit stangi l ax ch bil tud is ity ina ) l Rudder—Yaw Vertical axis (directional stability) Roll on— Ailer al itudin Long(lateral axis ity) stabil Figure 1-47. Components of a typical empennage. Stringer Rib Spars Figure 1-48. Vertical stabilizer. Primary Control Surface Airplane Movement Axes of Rotation Type of Stability Aileron Roll Longitudinal Lateral Elevator/ Stabilator Pitch Lateral Longitudinal Rudder Yaw Vertical Directional Skin Figure 1-49. Flight control surfaces move the aircraft around the three axes of flight. 1-23 Aileron hinge-pin fitting Actuating horn Spar Lightening hole Figure 1-50. Typical structure of an aluminum flight control surface. Primary control surfaces constructed from composite materials are also commonly used. These are found on many heavy and high-performance aircraft, as well as gliders, home-built, and light-sport aircraft. The weight and strength advantages over traditional construction can be significant. A wide variety of materials and construction techniques are employed. Figure 1-51 shows examples of aircraft that use composite technology on primary flight control surfaces. Note that the control surfaces of fabric-covered aircraft often have fabric-covered surfaces just as aluminum-skinned (light) aircraft typically have all-aluminum control surfaces. There is a critical need for primary control surfaces to be balanced so they do not vibrate or flutter in the wind. Performed to manufacturer’s instructions, balancing usually consists of assuring that the center of gravity of a particular device is at or forward of the hinge point. Failure to properly balance a control surface could lead to catastrophic failure. Figure 1-52 illustrates several aileron configurations with their hinge points well aft of the leading edge. This is a common design feature used to prevent flutter. Ailerons Ailerons are the primary flight control surfaces that move the aircraft about the longitudinal axis. In other words, movement of the ailerons in flight causes the aircraft to roll. Ailerons are usually located on the outboard trailing edge of each of the wings. They are built into the wing and are calculated as part of the wing’s surface area. Figure 1-53 shows aileron locations on various wing tip designs. Ailerons are controlled by a side-to-side motion of the control stick in the flight deck or a rotation of the control yoke. When the aileron on one wing deflects down, the aileron on the opposite wing deflects upward. This amplifies the movement of the aircraft around the longitudinal axis. On the wing on which the aileron trailing edge moves downward, camber is increased, and lift is increased. Conversely, on the other wing, the raised aileron decreases lift. [Figure 1-54] The result is a sensitive response to the control input to roll the aircraft. The pilot’s request for aileron movement and roll are transmitted from the flight deck to the actual control surface in a variety of ways depending on the aircraft. A system of control cables and pulleys, push-pull tubes, hydraulics, electric, or a combination of these can be employed. [Figure 1-55] Figure 1-51. Composite control surfaces and some of the many aircraft that utilize them. Simple, light aircraft usually do not have hydraulic or electric fly-by-wire aileron control. These are found on heavy and high-performance aircraft. Large aircraft and some highperformance aircraft may also have a second set of ailerons located inboard on the trailing edge of the wings. These 1-24 Stop Elevator cables Tether stop Stop Figure 1-52. Aileron hinge locations are very close to but aft of the center of gravity to prevent flutter. To ailerons Note pivots not on center of shaft Figure 1-55. Transferring control surface inputs from the flight deck. Elevator The elevator is the primary flight control surface that moves the aircraft around the horizontal or lateral axis. This causes the nose of the aircraft to pitch up or down. The elevator is hinged to the trailing edge of the horizontal stabilizer and typically spans most or all of its width. It is controlled in the flight deck by pushing or pulling the control stick or yoke forward or aft. Figure 1-53. Aileron location on various wings. Up aileron Down aileron Light aircraft use a system of control cables and pulleys or push-pull tubes to transfer flight deck inputs to the movement of the elevator. High-performance and large aircraft typically employ more complex systems. Hydraulic power is commonly used to move the elevator on these aircraft. On aircraft equipped with fly-by-wire controls, a combination of electrical and hydraulic power is used. Rudder Figure 1-54. Differential aileron control movement. When one aileron is moved down, the aileron on the opposite wing is deflected upward. are part of a complex system of primary and secondary control surfaces used to provide lateral control and stability in flight. At low speeds, the ailerons may be augmented by the use of flaps and spoilers. At high speeds, only inboard aileron deflection is required to roll the aircraft while the other control surfaces are locked out or remain stationary. Figure 1-56 illustrates the location of the typical flight control surfaces found on a transport category aircraft. The rudder is the primary control surface that causes an aircraft to yaw or move about the vertical axis. This provides directional control and thus points the nose of the aircraft in the direction desired. Most aircraft have a single rudder hinged to the trailing edge of the vertical stabilizer. It is controlled by a pair of foot-operated rudder pedals in the flight deck. When the right pedal is pushed forward, it deflects the rudder to the right which moves the nose of the aircraft to the right. The left pedal is rigged to simultaneously move aft. When the left pedal is pushed forward, the nose of the aircraft moves to the left. As with the other primary flight controls, the transfer of the movement of the flight deck controls to the rudder varies with the complexity of the aircraft. Many aircraft incorporate the directional movement of the nose or tail wheel into the rudder control system for ground operation. This allows the operator 1-25 Flight spoilers Outboard aileron Inboard aileron Figure 1-56. Typical flight control surfaces on a transport category aircraft. to steer the aircraft with the rudder pedals during taxi when the airspeed is not high enough for the control surfaces to be effective. Some large aircraft have a split rudder arrangement. This is actually two rudders, one above the other. At low speeds, both rudders deflect in the same direction when the pedals are pushed. At higher speeds, one of the rudders becomes inoperative as the deflection of a single rudder is aerodynamically sufficient to maneuver the aircraft. Dual Purpose Flight Control Surfaces The ailerons, elevators, and rudder are considered conventional primary control surfaces. However, some aircraft are designed with a control surface that may serve a dual purpose. For example, elevons perform the combined functions of the ailerons and the elevator. [Figure 1-57] A movable horizontal tail section, called a stabilator, is a control surface that combines the action of both the horizontal stabilizer and the elevator. [Figure 1-58] Basically, a stabilator is a horizontal stabilizer that can also be rotated about the horizontal axis to affect the pitch of the aircraft. A ruddervator combines the action of the rudder and elevator. [Figure 1-59] This is possible on aircraft with V–tail empennages where the traditional horizontal and vertical stabilizers do not exist. Instead, two stabilizers angle upward and outward from the aft fuselage in a “V” configuration. Each contains a movable ruddervator built into the trailing Elevons Figure 1-57. Elevons. edge. Movement of the ruddervators can alter the movement of the aircraft around the horizontal and/or vertical axis. Additionally, some aircraft are equipped with flaperons. [Figure 1-60] Flaperons are ailerons which can also act as flaps. Flaps are secondary control surfaces on most wings, discussed in the next section of this chapter. Secondary or Auxiliary Control Surfaces There are several secondary or auxiliary flight control surfaces. Their names, locations, and functions of those for most large aircraft are listed in Figure 1-61. Flaps Flaps are found on most aircraft. They are usually inboard 1-26