Cell and Molecular Chapter 14 PDF
Document Details
Uploaded by SubsidizedBamboo6131
Texas A&M International University
Tags
Summary
This document is Chapter 14 of a cellular and molecular biology textbook. It details the work of Gregor Mendel and his experiments on pea plants to demonstrate principles of inheritance.
Full Transcript
Chapter 14 Mendel and the Gene Idea Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to offspring? The “blending” hypothesis is the idea that genetic material from the two parents blends together (l...
Chapter 14 Mendel and the Gene Idea Overview: Drawing from the Deck of Genes What genetic principles account for the passing of traits from parents to offspring? The “blending” hypothesis is the idea that genetic material from the two parents blends together (like blue and yellow paint blend to make green) Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The “particulate” hypothesis is the idea that parents pass on discrete heritable units (genes) Mendel documented a particulate mechanism through his experiments with garden peas Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-1 Concept 14.1: Mendel used the scientific approach to identify two laws of inheritance Mendel discovered the basic principles of heredity by breeding garden peas in carefully planned experiments Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Mendel’s Experimental, Quantitative Approach Advantages of pea plants for genetic study: – There are many varieties with distinct heritable features, or characters (such as flower color); character variants (such as purple or white flowers) are called traits – Mating of plants can be controlled – Each pea plant has sperm-producing organs (stamens) and egg-producing organs (carpels) – Cross-pollination (fertilization between different plants) can be achieved by dusting one plant with pollen from another Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-2 TECHNIQUE 1 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First 5 filial gener- ation offspring (F1) Mendel chose to track only those characters that varied in an either-or manner He also used varieties that were true- breeding (plants that produce offspring of the same variety when they self-pollinate) Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings In a typical experiment, Mendel mated two contrasting, true-breeding varieties, a process called hybridization The true-breeding parents are the P generation The hybrid offspring of the P generation are called the F1 generation When F1 individuals self-pollinate, the F2 generation is produced Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The Law of Segregation When Mendel crossed contrasting, true- breeding white and purple flowered pea plants, all of the F1 hybrids were purple When Mendel crossed the F1 hybrids, many of the F2 plants had purple flowers, but some had white Mendel discovered a ratio of about three to one, purple to white flowers, in the F2 generation Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-3-3 EXPERIMENT P Generation (true-breeding parents) Purple White flowers flowers F1 Generation (hybrids) All plants had purple flowers F2 Generation 705 purple-flowered 224 white-flowered plants plants Mendel reasoned that only the purple flower factor was affecting flower color in the F1 hybrids Mendel called the purple flower color a dominant trait and the white flower color a recessive trait Mendel observed the same pattern of inheritance in six other pea plant characters, each represented by two traits What Mendel called a “heritable factor” is what we now call a gene Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Table 14-1 Mendel’s Model Mendel developed a hypothesis to explain the 3:1 inheritance pattern he observed in F2 offspring Four related concepts make up this model These concepts can be related to what we now know about genes and chromosomes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The first concept is that alternative versions of genes account for variations in inherited characters For example, the gene for flower color in pea plants exists in two versions, one for purple flowers and the other for white flowers These alternative versions of a gene are now called alleles Each gene resides at a specific locus on a specific chromosome Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-4 Allele for purple flowers Homologous Locus for flower-color gene pair of chromosomes Allele for white flowers The second concept is that for each character an organism inherits two alleles, one from each parent Mendel made this deduction without knowing about the role of chromosomes The two alleles at a locus on a chromosome may be identical, as in the true-breeding plants of Mendel’s P generation Alternatively, the two alleles at a locus may differ, as in the F1 hybrids Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The third concept is that if the two alleles at a locus differ, then one (the dominant allele) determines the organism’s appearance, and the other (the recessive allele) has no noticeable effect on appearance In the flower-color example, the F1 plants had purple flowers because the allele for that trait is dominant Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The fourth concept, now known as the law of segregation, states that the two alleles for a heritable character separate (segregate) during gamete formation and end up in different gametes Thus, an egg or a sperm gets only one of the two alleles that are present in the somatic cells of an organism This segregation of alleles corresponds to the distribution of homologous chromosomes to different gametes in meiosis Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Mendel’s segregation model accounts for the 3:1 ratio he observed in the F2 generation of his numerous crosses The possible combinations of sperm and egg can be shown using a Punnett square, a diagram for predicting the results of a genetic cross between individuals of known genetic makeup A capital letter represents a dominant allele, and a lowercase letter represents a recessive allele Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-5-3 P Generation Appearance: Purple flowers White flowers Genetic makeup: PP pp Gametes: P p F1 Generation Appearance: Purple flowers Genetic makeup: Pp Gametes: 1 /2 P 1 /2 p Sperm F2 Generation P p P PP Pp Eggs p Pp pp 3 1 Useful Genetic Vocabulary An organism with two identical alleles for a character is said to be homozygous for the gene controlling that character An organism that has two different alleles for a gene is said to be heterozygous for the gene controlling that character Unlike homozygotes, heterozygotes are not true-breeding Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Because of the different effects of dominant and recessive alleles, an organism’s traits do not always reveal its genetic composition Therefore, we distinguish between an organism’s phenotype, or physical appearance, and its genotype, or genetic makeup In the example of flower color in pea plants, PP and Pp plants have the same phenotype (purple) but different genotypes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-6 Phenotype Genotype Purple PP 1 (homozygous) 3 Purple Pp (heterozygous) 2 Purple Pp (heterozygous) White pp 1 1 (homozygous) Ratio 3:1 Ratio 1:2:1 The Testcross How can we tell the genotype of an individual with the dominant phenotype? Such an individual must have one dominant allele, but the individual could be either homozygous dominant or heterozygous The answer is to carry out a testcross: breeding the mystery individual with a homozygous recessive individual If any offspring display the recessive phenotype, the mystery parent must be heterozygous Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-7 TECHNIQUE Dominant phenotype, Recessive phenotype, unknown genotype: known genotype: PP or Pp? pp Predictions If PP If Pp or Sperm Sperm p p p p P P Pp Pp Pp Pp Eggs Eggs P p Pp Pp pp pp RESULTS or All offspring purple 1/2 offspring purple and 1/ offspring white 2 The Law of Independent Assortment Mendel derived the law of segregation by following a single character The F1 offspring produced in this cross were monohybrids, individuals that are heterozygous for one character A cross between such heterozygotes is called a monohybrid cross Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Mendel identified his second law of inheritance by following two characters at the same time Crossing two true-breeding parents differing in two characters produces dihybrids in the F1 generation, heterozygous for both characters A dihybrid cross, a cross between F1 dihybrids, can determine whether two characters are transmitted to offspring as a package or independently Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-8 EXPERIMENT P Generation YYRR yyrr Gametes YR yr F1 Generation YyRr Hypothesis of Hypothesis of Predictions dependent independent assortment assortment or Sperm Predicted /4 yR 1/4 yr 1 /4 YR 1 /4 Yr 1 offspring of Sperm F2 generation 1 /2 YR 1/2 yr 1 /4 YR YYRR YYRr YyRR YyRr 1 /2 YR YYRR YyRr 1 /4 Yr Eggs YYRr YYrr Yyrr YyRr 1 /2 yr Eggs YyRr yyrr 1 /4 yR YyRR YyRr yyRR yyRr 3 /4 1 /4 1 /4 yr Phenotypic ratio 3:1 YyRr Yyrr yyRr yyrr 9 /16 3 /16 3 /16 1 /16 Phenotypic ratio 9:3:3:1 RESULTS 315 108 101 32 Phenotypic ratio approximately 9:3:3:1 Using a dihybrid cross, Mendel developed the law of independent assortment The law of independent assortment states that each pair of alleles segregates independently of each other pair of alleles during gamete formation Strictly speaking, this law applies only to genes on different, nonhomologous chromosomes Genes located near each other on the same chromosome tend to be inherited together Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Concept 14.2: The laws of probability govern Mendelian inheritance Mendel’s laws of segregation and independent assortment reflect the rules of probability When tossing a coin, the outcome of one toss has no impact on the outcome of the next toss In the same way, the alleles of one gene segregate into gametes independently of another gene’s alleles Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The Multiplication and Addition Rules Applied to Monohybrid Crosses The multiplication rule states that the probability that two or more independent events will occur together is the product of their individual probabilities Probability in an F1 monohybrid cross can be determined using the multiplication rule Segregation in a heterozygous plant is like flipping 1 a coin: Each gamete has a 2 chance of carrying 1 the dominant allele and a 2 chance of carrying the recessive allele Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-9 Rr Rr Segregation of Segregation of alleles into eggs alleles into sperm Sperm /2 1 R 1 /2 r R R 1 /2 R R r /4 1 1 /4 Eggs r r 1 /2 r R r /4 1 1 /4 The rule of addition states that the probability that any one of two or more exclusive events will occur is calculated by adding together their individual probabilities The rule of addition can be used to figure out the probability that an F2 plant from a monohybrid cross will be heterozygous rather than homozygous Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Solving Complex Genetics Problems with the Rules of Probability We can apply the multiplication and addition rules to predict the outcome of crosses involving multiple characters A dihybrid or other multicharacter cross is equivalent to two or more independent monohybrid crosses occurring simultaneously In calculating the chances for various genotypes, each character is considered separately, and then the individual probabilities are multiplied together Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-UN1 Concept 14.3: Inheritance patterns are often more complex than predicted by simple Mendelian genetics The relationship between genotype and phenotype is rarely as simple as in the pea plant characters Mendel studied Many heritable characters are not determined by only one gene with two alleles However, the basic principles of segregation and independent assortment apply even to more complex patterns of inheritance Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Extending Mendelian Genetics for a Single Gene Inheritance of characters by a single gene may deviate from simple Mendelian patterns in the following situations: – When alleles are not completely dominant or recessive – When a gene has more than two alleles – When a gene produces multiple phenotypes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Degrees of Dominance Complete dominance occurs when phenotypes of the heterozygote and dominant homozygote are identical In incomplete dominance, the phenotype of F1 hybrids is somewhere between the phenotypes of the two parental varieties In codominance, two dominant alleles affect the phenotype in separate, distinguishable ways Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-10-3 P Generation Red White CRCR CW CW Gametes CR CW Pink F1 Generation CRCW Gametes 1/2 CR /2 C W 1 Sperm /2 C R 1 /2 C W 1 F2 Generation /2 C R 1 CRCR CRCW Eggs /2 C W 1 CRCW CW CW The Relation Between Dominance and Phenotype A dominant allele does not subdue a recessive allele; alleles don’t interact Alleles are simply variations in a gene’s nucleotide sequence For any character, dominance/recessiveness relationships of alleles depend on the level at which we examine the phenotype Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Tay-Sachs disease is fatal; a dysfunctional enzyme causes an accumulation of lipids in the brain – At the organismal level, the allele is recessive – At the biochemical level, the phenotype (i.e., the enzyme activity level) is incompletely dominant – At the molecular level, the alleles are codominant Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Frequency of Dominant Alleles Dominant alleles are not necessarily more common in populations than recessive alleles For example, one baby out of 400 in the United States is born with extra fingers or toes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The allele for this unusual trait is dominant to the allele for the more common trait of five digits per appendage In this example, the recessive allele is far more prevalent than the population’s dominant allele Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Multiple Alleles Most genes exist in populations in more than two allelic forms For example, the four phenotypes of the ABO blood group in humans are determined by three alleles for the enzyme (I) that attaches A or B carbohydrates to red blood cells: IA, IB, and i. The enzyme encoded by the IA allele adds the A carbohydrate, whereas the enzyme encoded by the IB allele adds the B carbohydrate; the enzyme encoded by the i allele adds neither Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-11 Allele Carbohydrate IA A IB B i none (a) The three alleles for the ABO blood groups and their associated carbohydrates Red blood cell Phenotype Genotype appearance (blood group) IAIA or IA i A IBIB or IB i B I AI B AB ii O (b) Blood group genotypes and phenotypes Pleiotropy Most genes have multiple phenotypic effects, a property called pleiotropy For example, pleiotropic alleles are responsible for the multiple symptoms of certain hereditary diseases, such as cystic fibrosis and sickle-cell disease Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Extending Mendelian Genetics for Two or More Genes Some traits may be determined by two or more genes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Epistasis In epistasis, a gene at one locus alters the phenotypic expression of a gene at a second locus For example, in mice and many other mammals, coat color depends on two genes One gene determines the pigment color (with alleles B for black and b for brown) The other gene (with alleles C for color and c for no color) determines whether the pigment will be deposited in the hair Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-12 BbCc BbCc Sperm /4 1 BC 1 /4 bC /4 1 Bc /4 1 bc Eggs 1 /4 BC BBCC BbCC BBCc BbCc /4 1 bC BbCC bbCC BbCc bbCc /4 1 Bc BBCc BbCc BBcc Bbcc /4 1 bc BbCc bbCc Bbcc bbcc 9 : 3 : 4 Polygenic Inheritance Quantitative characters are those that vary in the population along a continuum Quantitative variation usually indicates polygenic inheritance, an additive effect of two or more genes on a single phenotype Skin color in humans is an example of polygenic inheritance Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-13 AaBbCc AaBbCc Sperm 1 /8 1 /8 1 /8 1 /8 1 /8 1 /8 1 /8 1 /8 1 /8 1 /8 1 /8 1 /8 Eggs 1 /8 1 /8 1 /8 1 /8 Phenotypes: 1 /64 6 /64 15 /64 20 /64 15 /64 6 /64 1 /64 Number of dark-skin alleles: 0 1 2 3 4 5 6 Nature and Nurture: The Environmental Impact on Phenotype Another departure from Mendelian genetics arises when the phenotype for a character depends on environment as well as genotype The norm of reaction is the phenotypic range of a genotype influenced by the environment For example, hydrangea flowers of the same genotype range from blue-violet to pink, depending on soil acidity Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-14 Norms of reaction are generally broadest for polygenic characters Such characters are called multifactorial because genetic and environmental factors collectively influence phenotype Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Integrating a Mendelian View of Heredity and Variation An organism’s phenotype includes its physical appearance, internal anatomy, physiology, and behavior An organism’s phenotype reflects its overall genotype and unique environmental history Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Concept 14.4: Many human traits follow Mendelian patterns of inheritance Humans are not good subjects for genetic research – Generation time is too long – Parents produce relatively few offspring – Breeding experiments are unacceptable However, basic Mendelian genetics endures as the foundation of human Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Pedigree Analysis A pedigree is a family tree that describes the interrelationships of parents and children across generations Inheritance patterns of particular traits can be traced and described using pedigrees Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-15a Key Male Affected Mating male Offspring, in Female Affected birth order female (first-born on left) Fig. 14-15b 1st generation (grandparents) Ww ww ww Ww 2nd generation (parents, aunts, and uncles) Ww ww ww Ww Ww ww 3rd generation (two sisters) WW ww or Ww Widow’s peak No widow’s peak (a) Is a widow’s peak a dominant or recessive trait? Fig. 14-15c 1st generation (grandparents) Ff Ff ff Ff 2nd generation (parents, aunts, and uncles) FF or Ff ff ff Ff Ff ff 3rd generation (two sisters) ff FF or Ff Attached earlobe Free earlobe (b) Is an attached earlobe a dominant or recessive trait? Pedigrees can also be used to make predictions about future offspring We can use the multiplication and addition rules to predict the probability of specific phenotypes Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Recessively Inherited Disorders Many genetic disorders are inherited in a recessive manner Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings The Behavior of Recessive Alleles Recessively inherited disorders show up only in individuals homozygous for the allele Carriers are heterozygous individuals who carry the recessive allele but are phenotypically normal (i.e., pigmented) Albinism is a recessive condition characterized by a lack of pigmentation in skin and hair Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-16 Parents Normal Normal Aa Aa Sperm A a Eggs Aa AA A Normal Normal (carrier) Aa Normal aa a Albino (carrier) If a recessive allele that causes a disease is rare, then the chance of two carriers meeting and mating is low Consanguineous matings (i.e., matings between close relatives) increase the chance of mating between two carriers of the same rare allele Most societies and cultures have laws or taboos against marriages between close relatives Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Cystic Fibrosis Cystic fibrosis is the most common lethal genetic disease in the United States,striking one out of every 2,500 people of European descent The cystic fibrosis allele results in defective or absent chloride transport channels in plasma membranes Symptoms include mucus buildup in some internal organs and abnormal absorption of nutrients in the small intestine Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Sickle-Cell Disease Sickle-cell disease affects one out of 400 African-Americans The disease is caused by the substitution of a single amino acid in the hemoglobin protein in red blood cells Symptoms include physical weakness, pain, organ damage, and even paralysis Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Dominantly Inherited Disorders Some human disorders are caused by dominant alleles Dominant alleles that cause a lethal disease are rare and arise by mutation Achondroplasia is a form of dwarfism caused by a rare dominant allele Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-17 Parents Dwarf Normal Dd dd Sperm D d Eggs Dd dd d Dwarf Normal Dd dd d Normal Dwarf Huntington’s Disease Huntington’s disease is a degenerative disease of the nervous system The disease has no obvious phenotypic effects until the individual is about 35 to 40 years of age Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Multifactorial Disorders Many diseases, such as heart disease and cancer, have both genetic and environmental components Little is understood about the genetic contribution to most multifactorial diseases Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Genetic Testing and Counseling Genetic counselors can provide information to prospective parents concerned about a family history for a specific disease Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Counseling Based on Mendelian Genetics and Probability Rules Using family histories, genetic counselors help couples determine the odds that their children will have genetic disorders Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Tests for Identifying Carriers For a growing number of diseases, tests are available that identify carriers and help define the odds more accurately Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fetal Testing In amniocentesis, the liquid that bathes the fetus is removed and tested In chorionic villus sampling (CVS), a sample of the placenta is removed and tested Other techniques, such as ultrasound and fetoscopy, allow fetal health to be assessed visually in utero Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-18 Amniotic fluid withdrawn Fetus Centrifugation Fetus Suction tube inserted Placenta through Placenta Chorionic Uterus Cervix villi cervix Fluid Bio- Fetal Several chemical cells hours tests Fetal Several cells hours Several weeks Several Several weeks Karyotyping hours (a) Amniocentesis (b) Chorionic villus sampling (CVS) Newborn Screening Some genetic disorders can be detected at birth by simple tests that are now routinely performed in most hospitals in the United States Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Fig. 14-UN2 Degree of dominance Description Example Complete dominance Heterozygous phenotype of one allele same as that of homo- PP Pp zygous dominant Incomplete dominance Heterozygous phenotype of either allele intermediate between the two homozygous phenotypes CRCR CRCW CWCW Codominance Heterozygotes: Both phenotypes expressed IAIB Multiple alleles In the whole population, ABO blood group alleles some genes have more than two alleles IA , I B , i Pleiotropy One gene is able to Sickle-cell disease affect multiple phenotypic characters Fig. 14-UN3 Relationship among genes Description Example Epistasis One gene affects BbCc BbCc the expression of another BC bC Bc bc BC bC Bc bc 9 :3 :4 Polygenic A single phenotypic inheritance character is AaBbCc AaBbCc affected by two or more genes Fig. 14-UN4