Cauchy Problem and Wave Equations PDF

Summary

This document discusses the Cauchy problem and wave equations, presenting solutions to various initial value problems using d'Alembert's method. The document delves into solving wave equations with different boundary conditions, including homogeneous and non-homogeneous cases.

Full Transcript

# The Cauchy Problem and Wave Equations ## Homogeneous Wave Equations - Vibrations of an Infinite String: - Let $c^2u_{xx} = 0, x \in R, t > 0$ - $u(x,0) = f(x), x \in R$ - $u_t(x,0) = g(x), x \in R$ $Solution$ - $ u(x,t) = \frac{1}{2}[f(x+ct)+f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x...

# The Cauchy Problem and Wave Equations ## Homogeneous Wave Equations - Vibrations of an Infinite String: - Let $c^2u_{xx} = 0, x \in R, t > 0$ - $u(x,0) = f(x), x \in R$ - $u_t(x,0) = g(x), x \in R$ $Solution$ - $ u(x,t) = \frac{1}{2}[f(x+ct)+f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$ - $ = \frac{1}{2}[f(x+ct)+f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$ ### Find the solution of the initial value problem: - $ u_{tt} - c^2 u_{xx} = 0, x \in R, t > 0$ - $ u(x, 0) = 0, u_t(x,0) = 1$ $Sol$ - Using d' Alembert's Solution of the given Cauchy problem. - $u_{tt} - c^2u_{xx} = 0, x \in R, t > 0$ - $u(x,0) = f(x), x \in R$ - $u_t(x,0) = g(x), x \in R$ $u(x,t) = \frac{1}{2}[f(x+ct)+f(x-ct)] + \frac{1}{2c}\int_{x-ct}^{x+ct} g(z)dz$ Where f(x)=0 & g(x)=1 - $ u(x,t) = f(0) + \frac{ct - x}{c} \int_{x-ct}^{x + ct} 1dz$ - $ = \frac{1}{c} \int_{x-ct}^{x+ct} (ct-x)dz$ - $ = \frac{1}{c} \int_{x-ct}^{x+ct} (x+ct) - (x-ct)dz$ - $ = \frac{1}{c} \int_{x-ct}^{x+ct} 2ct dt = t$ ## Initial Boundary Value Problems ### Find the solution of the initial value problem: - $u_{tt} - c^2u_{xx} = 0, u(x,0) = sin(x), u_t(x,0) = 2x^2$ - $f(x) = sin(x)$ - $g(x) = 2x^2$ ### The Solution of given Initial-Value Problem using d' Alembert's Solution - $u(x,t) = \frac{1}{2}[f(x+ct)+f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct}g(z)dz$ - $u(x,t) = \frac{1}{2}[sin(x+ct)+ sin(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} 2z^2 dz$ - $u(x,t) = \frac{1}{2}[sin(x+ct) +sin(x-ct)] + \frac{1}{3c}[(x+ct)^3 - (x-ct)^3]$ - $u(x,t) = \frac{1}{2} [sin(x+ct) +sin(x-ct)] + \frac{1}{3c} [6x^2ct + 6ct^3]$ - $u(x,t) = sin(x)cos(ct) + x^2t + \frac{1}{3}ct^3$ ### Find the solution of the initial value problem: - $u_{tt} - c^2u_{xx} = 0, u(x,0) = log(1+x^2), u_t(x,0) = 2x$ - $f(x) = log(1+x^2)$ - $g(x) = 2x$ ### The Solution of the given problem: - $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$ In this case, we have: - $f(x) = log(1+x^2), g(x)=2x$ $u(x,t) = \frac{1}{2}[log(1+x^2+2xct +c^2t^2)+ log(1+ x^2 -2xct +c^2t^2)] + \frac{1}{2c} \int_{x-ct}^{x+ct}2zdz $ - $u(x,t) = \frac{1}{2}[log(1+x^2+2xct+c^2t^2) +log(1+x^2-2xct+c^2t^2)]+ \frac{1}{c} \int_{x-ct}^{x +ct}(z)dz$ <start_of_image> Problems with Initial Value Problems - How would you solve for the following Cauchy problem? $u_{tt} - c^2u_{xx} = 0, x \in R, t>0, f(x)$ and $u_t(x,0) = g(x)$ for the given conditions? - *(a) c = 3, f(x) = cos(x), g(x) = sin(2x)$ - *(b) c = 7, f(x) = cos(2x), g(x) = x$ - *(c) c = 4, f(x) = cos(x), g(x) = x.e^{-x}$ **Solve each of the following problems using the d'Alembert's Solution.** - $u_{xx} +2u_{xy} - 3u_{yy} = 0$ - $u(x,0) = sin(x), u_y(x,0)=x$ - $u_{tt} - c^2u_{xx}=0, u(x,0) = f(x), u_t(x,0) = g(x), u(0,t) = 0$ - What is the solution of the Initial-Boundary Value Problem obtained using the d' Alembert's Solution? - $u_{tt} - c^2u_{xx} = 0$ - $ u(x,0) = f(x), u_t(x,0) = g(x), u(0,t) = 0$ ### Determine the solution of each of the following initial value problem- - $u_{tt} - 4u_{xx} = 0, u(x,0) = 2x^4, u_t(x,0) = 0, u(0,t) = 0$ **Solution:** $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$, $for x < ct$ Where $c = 2, f(x) = 2x^4, g(x) = 0$ ### Determine the solution of the Initial-boundary value problem - $u_{tt} - 9u_{xx} = 0, u(x,0) = 0 u_t(x,0) = x^3, u_x(0,t) = 0 $ **Solution:** - $u(x,t) = \frac{1}{2}\Big[f(x+3t) + f(x -3t)\Big] + \frac{1}{6} \int_{x-3t}^{x+3t} g(z) dz$, $for x \ge 3t$ Where $c = 3, f(x) = 0, g(x) = x^3$ ### Determine the solution of the Initial-boundary value problem: - $u_{tt} = 4 u_{xx}$ - $u(x,0) = sin(x), u_t(x,0) = 0, u(0,t) = 0$ **Solution:** - $u(x,t) = \frac{1}{2} \Big[f(x+ct) + f(x-ct)\Big] + \frac{1}{2c}\int_{x-ct}^{x+ct} g(z)dz$, $for x \ge ct$ Where c = 2, f(x) = sin(x), g(x)=0 ### Determine the solution of the Initial-boundary value problem: - $ u_{tt} = c^2u_{xx} $ - $u(x,0) = f(x), u_t(x,0) = g(x)$ - $ u(0,t) = 0, t>0$ **Solution:** - $u(x,t) = \frac{1}{2} \Big[f(x+ct) + f(x-ct) \Big] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$ - $u(x,t) = \frac{1}{2} \Big[f(x + ct) - f(ct - x) \Big] + \frac{1}{2c} \int_{ct - x}^{x+ct} g(z) dz$ - $u(x,t) = \frac{1}{2} \Big[f(x +ct) - f(ct-x) \Big] + \frac{1}{2c} \int_{ct - x}^{x+ct} g(z) dz$, $for x \le ct$ ### Determine the solution of the Initial-boundary value problem: - $u_{tt} = c^2u_{xx} $ - $u(x,0) = f(x), u_t(x,0) = g(x), u(0,t) = p(t) $ **Solution:** - $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz + \frac{1}{2c}\int_{x-ct}^{x+ct} p(t-(z/c))dz $, $for x \le ct$ ### Determine the solution to the wave equation governed by the following conditions: - $u_{tt} = c^2u_{xx}, x > 0, t > 0$ - $ u(x,0) = 0, u_t(x,0) = 0, t > 0$ - $u(0,t) = u(t), x>0$ **Solution:** - $u(x,t) = u(t - x/c)H(t-x/c), x>0$ **Where H is the Heaviside unit step function.** ### Explain the Initial Boundary Value Problem with the given conditions - $u_{tt} = c^2u_{xx}, 0 < x \le L$ - $u(x,0) = f(x), 0 \le x \le L$ - $u_t(x,0) = g(x), 0 \le x \le L$ - $u(0,t) = 0, t \ge 0$ **Solution** - The solution of the wave equation are $u(x,t) = \frac{1}{2}[f(x+ct) + f( x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz$ - we have $f(x) = u(x,0) = \Phi(x) + \Psi(x), 0 \le x \le L$ - $g(x) = u_t(x,0) = c \Phi'(x) - c \Psi'(x), 0 \le x \le L$ - $u(0,t) = 0$ - $u(x,t) = \frac{1}{2}[f(x+ct) + f(x - ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz$ ### Find the solution of the Initial boundary value problem: - $u_{tt} = u_{xx}$ - $u(x,0) = sin( \frac{\pi x}{L}), u_t(x,0) = 0$, $0 \le x \le L$ - $u(0,t) = 0, u(L,t) = 0, t \ge 0$ **Solution** - $u(x,t) = \frac{1}{2}\Big[f(x+ct) + f(x - ct) \Big] + \frac{1}{2c} \int_{x-ct}^{x +ct} g(z)dz$ Where $c=1, f(x) = sin(\frac{\pi x}{L}), g(x) = 0$ ### Find the solution of the initial boundary value problem - $u_{tt} = c^2 u_{xx}, 0 < x < \infty , t > 0$. - $u(x,0) = f(x), 0 < x < \infty $ - $u_t(x,0) = 0, 0 < x < \infty$ - $u(0,t) = p(t), t > 0$ **Solution** - $u(x,t) = \frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$ - $u(x,t) = \frac{1}{2} [f(x+ct) + f(ct-x)] + \frac{1}{2c} \int_{ct-x}^{x+ct} g(z)dz + \frac{1}{2c} \int_{ct-x}^{x+ct} p(t-(z/c)) dz$ - $u(x,t) = \frac{1}{2}[f(x+ct) + f(ct - x)] + \frac{1}{2c} \int_{ct-x}^{x+ct} g(z) dz + \frac{1}{2c} \int_{ct-x}^{x+ct}p(t -(z/c))dz$ - $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz$ ### Find the solution of the initial boundary value problem - $u_{tt} = u_{xx}, 0 < x < \infty , t > 0$. - $u(x,0) = 0, 0 < x < \infty$ - $u_t(x,0) = 0, 0 < x < \infty$ - $u(0,t) = p(t), t > 0$ **Solution** - $u(x,t) = p(t-x)H(t-x), x > 0$ **Where H is the Heaviside unit step function** ### Find the solution of the initial boundary value problem: - $u_{tt} = 4u_{xx}, x > 0, t > 0$ - $u(x,0) = sin(x), x > 0$ - $u_t (x,0) = 0, x > 0$ - $u(0,t) = 0, t > 0$ **Solution** - $u(x,t) = \frac{1}{2}\Big[f(x+ct) + f(x-ct) \Big] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz$, $for x > ct$ ### Determine the solution of the initial boundary value problem: - $u_{tt} = c^2 u_{xx}, 0 < x < \infty, t> 0$ - $u(x,0) = f(x), 0 < x < \infty$ - $u_t(x,0) = 0, 0 < x < \infty$ **Solution** - $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)]$, $for x >= ct$ ## Equations with Non-homogeneous Boundary Conditions - $u_{tt} = c^2u_{xx}, x > 0, t > 0$ - $u(x,0) = f(x), x > 0$ - $u_t (x,0) = g(x), x > 0$ - $u(0,t) = p(t), t > 0$ **Solution** $u(x,t) = \frac{1}{2}[f(x+ct)+f(x-ct)] +\frac{1}{2c} \int_{x-ct}^{x+ct} g(z)dz + \frac{1}{2c} \int_{x-ct}^{x+ct} p(t-(z/c)) dz $, $for x \le ct$ ## Explain why the solution to the wave equation is odd. If $f$ and $g$ are extended as odd functions, show that $u(x,t)$ is given by the solution. - $u(x,t) = \frac{1}{2}[f(x+ct)+f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz$, $for x < ct$ When the solution is given by - $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz$, $for x>ct$ and the solution: - $u(x,t) = \frac{1}{2} [f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(z) dz$, $for x < ct$

Use Quizgecko on...
Browser
Browser