FIITJEE JEE (Advanced) 2023 Past Paper PDF - Part 1 - Paper 2

Document Details

HighSpiritedCloisonnism

Uploaded by HighSpiritedCloisonnism

Kazakh Ablai Khan University of International Relations and World Languages

2023

FIITJEE

Tags

JEE (Advanced) physics past paper test series

Summary

This FIITJEE past paper is for JEE (Advanced) 2023, part 1, paper 2. The test date was 20-11-2022 and covers physics problems. It includes formulas and solutions.

Full Transcript

FIITJEE ALL INDIA TEST SERIES JEE (Advanced)-2023 PART TEST – I PA...

FIITJEE ALL INDIA TEST SERIES JEE (Advanced)-2023 PART TEST – I PAPER –2 TEST DATE: 20-11-2022 ANSWERS, HINTS & SOLUTIONS Physics PART – I Section – A 1. D Sol.  = I (about ICOR) 2  4  1  m 2   N1 ICOR mg      m     5  2  12  2    COM 6g N2  5   3g    acm    2 5 mg  N2   maCM  cos  mg acm 3mg  4  mg  N2    5 5 13mg  N2  25 2. A Sol.   t    cons tant  F cos  N = F sin t F v mdv   Fcos t  N  mg   dt N F sin  0 T  mdv   F  cos t   sin t   mg dt 0 0 mg F T   sin t   cos t 0  mgT  f = N  Also T  2 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 2      F  sin   cos     mgT  2 2   F 1     mg 2 mg  F. 2(1   ) 3. B Sol. F.B.D. of rod F1 N1  0  0 (about pivot) mg f1  N1  …(i) F2 O 2 mg F.B.D. of cylinder  N1  O C  0  f1  f1R  f2R y f2 C f1  f2 …(ii)  mg (say f)   Also 0  0 x N2 N1  mg   N2  N2  N1  mg  3mg N2  …(iii) 2  x 0 (on the cylinder) F  f 1  cos    N2 sin  3mgsin   f 2 1  cos   Also f1 max  f2max  N1  N2  3mgsin  mg  f  N1   2 1  cos   2 3 sin   1  cos  4. A Sol. F.B.D. of block is as shown (  90°) N N = F sin  + mg cos  Fcos f = F cos  – mg sin  for No sliding f  N 1 mgsin +f Fcos   mgsin   F sin   mgcos   3 sin  mg  cos   cos    sin    Fsin + mgcos 3 F  3  sin  cos    0 ( no sliding even when F ) 3 tan   3    60 For  > 90° N  F sin   mgcos  FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 3 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 f  mgsin   F cos  f  N    120  Range    [60°, 120°] 5. A, B, D Sol. Applying WET on bead from A to B W N + W F = K m u O  F R  x   R  x     v 2  u2  R+x conservative 2  P 4Fx Fx v 2  u2   u0  2 N+F x m m mv 2 v Also N  F  R R–x m 4Fx  m N  u2   F  u2  u20   F R m  R  m m 4Fx N   2  1 u02  F   2  1 F R  R  m  N  F  4  2  1  1      N  F 1  4 1  2  ˆi    6. A, D Sol. As PA + PB = 10  = Constant Y The bead will move along the elliptical path in vertical plane. Such that 2a = 10  and 2ae = 8  a = 5, b = 3 A B  Equation of ellipse is x x2 y2  1  5 2  3 2 P 3/2 2 r0  1   y     3 at  0, 3  ( y = 0, y = ) y  25 25   r0  3 m 2  3 2T0 cos   mg  r0  2g   cos     5 T0   T0 31 mg T0 . v  2g 30 mg 7. A, C Sol. Angular momentum of system is conserved about the axis passing through the pivots   Li (Just before collision) = L f (Just after collision)  2  mv0R =  mR2   5m  R2    5  FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 4 v0   3R Now, applying conservation of mechanical energy after the collision 1 2  3R  mR2   5m  R2  2  mgR  5mg 2 5  8 mR2 v2 7mgR  3  02  2 9R 8 21R 7g Also v 0  2gh  h   8 12R 8. A, D Sol. For u to be minimum, it just grazes the cylinder at two points as shown. From COME mu2 mv 2 v   mgh 2 2  u2  v 2  2gh   2 2 u0 u  v  2gR 1  cos   h v 0 2Rsin sin 2 Rg Also 2R sin   v 2  v2  …(2) g cos  From (1) and (2)  1  u2  Rg 2  2cos    cos   d 2 1 For u min. d   u  0  cos   2   = 45 u02  Rg 2  2 2  Also ucos   v cos  tan2 0  [3  2 2] 9. A, D Sol. Just after the jump by the frog. 5v0 (w.r.t. to A) According to COLM of (A + frog) (4v 0 – v) m – mv = 0 v = 2v 0 37° K A B V Now consider the motion of blocks in their v0 A C.M. v0 COM frame. m m t=0 At any time t 2K 2K 2k vBC  vB  v CM  v 0 cos  t  ,   m vB  v CM  v 0 cos t vB  v0  v 0 cos t FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 5 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 Also the frog is in projectile motion from ground frame 3v0  3v  2v 12v02  6v 0  R  2 0  0  T    g  g g  g  2v0 R Also frog land on B T Then  0   vB dt  R 0 T  0  R   v 0  cos t  1 dt 0 v  0  R  v 0 T  0 sin T  12v 20 6v 20 m  2K 6v 0   0    v0 sin   g g 2K  m g   6v02  2  0  3   . g   10. B, C dm Sol. F  mg  v 0 also m = y dt dy F  yg  v0  dt = yg  v 02 dE Heat loss per unit time = Fv 0  dt d 1 y   yg  v 20 v 0    y  v 20  yg  dt  2 2 v 30 ygv 0   v03    ygv 0 2 v 30 . 2 Section – B 11. 2 Sol. Observing the motion in COM frame. Then system will look like v/2 v/2   v/2 v/2 v/2 Just before the collision Just after the collision After the collision, ring starts sliding and then starts pure rolling on wedge as shown. R = 2v (pure rolling) FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 6 Applying COAM of ring in centre of mass frame (after the collision) v about point P on wedge  2  v 2 mR    mR   mRv   mR  v  2 P v v mR  3mRv   v   2 6 v Therefore the velocity of wedge is (in centre of mass frame) when pure rolling starts after the 6 first collision. Then they again collides and ring again starts pure rolling on wedge and velocity of v nd wedge is (in centre of mass frame) after 2 collision. 18 The process goes on and there will be infinite collisions and finally wedge comes at rest in centre of mass frame. v  Velocity of wedge = (in ground frame) 2 12. 5   Sol. v  u  gt   g    v u also s   v ave  t   t  2  t     v  u  gt …(i)  u   2s v v u  …(ii) s t t=0 Squaring and multiplying        v.v  u.u  2u.v  v.v  u.u  2u.v   4g2s2   2 s  100  2u.v 100  2u.v  4g2    s is max. when u.v  0  u  v 100  smax   5m 2 10  13. 6 Sol. If it strike again at same point, then the horizontal component of their velocities are same after the first collision. v0cos v2  v0 v1 v1  v0sin  Just before collision Just after collision As e = 1 vsep = vapp v2cos = v0sin FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 7 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 3  v 2  v 0 tan    40  = 30 m/s 4 2v 2 t0  = 6 sec. g 14. 9 Sol. Tmax  T1 v Tmin = T2 mu2 T1  mg  …(1) l T2 + mg 2 mv l v T2  mg  …(2) l From COME (of pendulum + earth system) 1 1 T mu2  mv 2  mg(2l) 2 2 l mg  u2  v 2  4gl …(3) T1 T1 also 2 …(4) T2 u from (1), (2) (3) and (4) mg u  11gl , v  7 gl  v   9gl , mv 2 T  9mg K=9 l 15. 2 Sol.  V0 2R/3 P V R/3 C.O.M. Applying COLM v mv0  m  2m  v v  0 3 Applying COAM about point P 2R  MR2  v R mv0     2m 0  mR2  3    2  3 2v  R  0 3 R  2 v FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 8 16. 3  3  /2 2v 0 cos    Sol. T  2  h   v0 gcos     2 t=0 2v    t=T  0  4cos2    3  g  2  /2 Also Rsin = V0sin2T /2 Rsin 2v 2 R sin   0  2sin  cos   2 1  cos    3  gcos(/2) g As v02  2gh R  h 8 cos   2cos   1  h  0 2cos2   cos   0 cos   2cos   1  0 1 cos   2   K = 3. 3 2nd Method:     v0 [90 (/2)] /2   2     90    180  2 3   90   90– 2  Now  > 0  v0  < 60° /2  max  radian 3 /2 17. 6 Sol. Applying impulse momentum theorem. N v0/2 3  Ndt  mv 0 2 30° 30°  v0   Ndt  m  2  v  30° 30° v0 v  v  0 1  3 2   f = N v03/2 Just before the impact Also v 02  2gH and FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 9 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 2gH 2   2gh 1  3   4  1  3  l v 1 h Also   a 2 3 30° 30° 2  1 H 1 Just after the impact h 1    1    2 4 2 a = g/2 [1 + 3 ] H  6 4h 18. 8 Sol. In equilibrium, the centre of mass of the system must lies on the vertical line passing through hinge.  XCM = 0 O L  2R  m1  m2  0 2    x L2 2R    R  2  R  L = 2R m2 m1  2R   m2R YCM  L m1  m2 m1 y  L2  R2    4  L       4,   2  L  R 22   = 8. FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 10 Chemistry PART – II Section – A 19. A Sol. PCl5  PCl3  g   Cl2  g Dd  , n=2 n  1 d D 1       d D Thus, 1   will linearly increases with increase of  .  d 20. A So Ho Sol. nK   R R o S  8R 21. B 2x 2x 2x  16x Sol. Change in potential energy     2x     2x  8 8 8 14x 7x   8 4 22. A 2.303 100 Sol. K 298  log t1/2 50 2.303 100 K 308  log t1/2 25 K 298 log 2 1    0.5 K 308 log 4 2 23. A, B Sol. Possible transition 3 2 and 4 2 36  3 2  5R 16  4 2  3R 24. A, B, C Sol. Molecular mass of A 2B4  100 2A  4B 2A  4B  100,  5  given  2A A 10 A  10,B  20,   1: 2 B 20 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 11 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 A 2B4  g   A 2  g  2B2  g 1   2 At 10 min. V.D. = 25 Molecular mass = 50 100 50  1  2 1 1  %B2  by mole    100  50% 2 2 1 %A 2  by mole    100  25% 4 At t = 20 min. 100 40  1  2   0.75 d  A 2B 4  0.5  0.25 0.25    dt 10 10 d  A 2  0.75  0.50 0.25    dt 10 10 Ratio of rate = 1 : 1 25. A, C, D Sol. 2HI  H2  I2 At equilibrium 4  2x x  3y x 2N2  6H2  4NH3 At equilibrium 4.25  2y x  3y 4y Given x = 1.0 M 4y = 0.5 M 5 Using these value K C1  32 45 K C2  6 5  32  K C2     125  26. B, C, D Sol. SO2 1 p  p  1 p  d  SO3 1 p  p  2  p  d  XeO 4 4  p  d  ClO3 2  p  d  FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 12 27. A, B, D Sol. H H C C nodal plane H H Equitorial plane F F Axial H F H F C S C S H F F H F F Axial plane Equitorial Axial More stable form due Less stable due to more to bent rule. nodal repulsion. Its nodal plane lies in axial. plane lies in equitorial 28. C, D Sol.  AlCl3 n has (3C – 4e) bond not (3C – 2e) B2H6  Two (3C – 2e) bond H H H H H B B Al H H H H H H H H H B B B Be H H H H H H 6-(3C-2e) bond 4-(3C-2e) bond Section – B 29. 5 Sol. x = 9, y = 3, z = 2 In one electron system all orbitals of a shell are degenerate (same energy level). In case of many electron system different orbitals of a shell are non-degenarate. Hence, in second excited state only three p-orbitals (2p) are degenerate. H-atom 1s 2s 2p 3s 3p 3d n=1 n=2 n=3 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 13 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 H-ion 1s 1s 2s 2p 1s 2s 2p Ground state 1st excited state 2nd excited state 30. 6  Sol. (i) Borax  NaBO2  B 2 O3  (ii) Borax  NH4 Cl  BN  B2 O3  NaCl  H2 O (iii) Borax  HCl  H3 BO3 (iv) Borax  H2 O  Na B  OH 4   H3 BO3  (v) 3B2 H6  6NH3  2B3 N3 H6  12H2 THF (vi) B3 N3 H3 Cl3  3LiBH4  B3 N3H6  3LiCl  3BH3 (vii) LiH  B 2 H6  2LiBH4  sp3 (viii) K 3  AlF6   BF3  3KBF4  AlF3  sp3 Except (vii) and (viii) all options can give sp2 hybridised Boron centre as one of the product. 31. 6 2   Sol. Lone pair in  TeBr6  , IF2  , SNF3 and  XeF3 are 1, 2, 0 and 3 respectively. Hence, x = 6. Diamagnetic species are Li2 , C2 , O22 , K 2 O, N2 O 4 , B3 N3 H6. Note: Be2 does not exist so we can’t say it is paramagnetic or diamagnetic species. Hence, y = 6. xy  6. 2 32. 4 Sol. In container (I) In container (II) 2SO2  g  O2  g  2SO3  g  KMnO4 will oxidized only SO2 2x1 x1 0 Moles of O.A. Moles of R.A.  2x1  2a x1  a 2a 2 5 0.2  4 Moles of SO 2 Total moles nT   3x1  a   2 5 x1  a 1 x1 Given  a Mole of  SO2 equilibrium  2 3x1  a 4 3 2 2SO3  g  2SO2  g   O2  g  2a    20  10  2x1 2x1 x1  nT   1  1 y  KP  2   atm 2x1 = 2  2x1  2a   x1  a   20    20    20  x1  1.0  nT   nT  FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 14 2 y 80  2  1 Value of  4     x 20 5 5 1 x  KC 2  mol /   8 80   5 33. 6 Sol. a = 4 i, iv, vi, vii b = 2 ii, ix v and viii forms  M.O. d = 2 iii, x a2  b2  2d 24  6 4 4 34. 9 Sol. I, II, III and IV are correct due to bent rule and V is incorrect. Correct order in case of V is II > III > IV > I = V. x=4 y=1 2x + y = 9 35. 8 3  5.8  Sol. K SP of Mg  OH 2 is    10 3 .4  4  1012  58  2 Mg  OH 2  s   Mg  2OH x  0.01 2x  x  0.01  4x 2   4  10 12 4x 2  0.01  4  1012 x  105 mole /  Mg2  in container II  1.0  105   NH4    For basic buffer pOH  pK b  log  4  NH OH pOH  5  log5 = 5.70 OH  2  106 4  1012 Mg2     4  1012  1.0 M 1.6  10 20  Al3     2  103 M   8  1018 x  105 y  1.0 z  2  103 yz 200 Value of   8. 25x 25 36. 5 Sol. Statement 4, 11 and 12 are incorrect and other statements are correct. x = 9, y = 3. FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 15 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 Mathematics PART – III Section – A 37. A 1 tan1 x Sol. By differentiating, f   x   2 f  x  0 1 x 1 x2 1 f  x   1  tan1 x  2e tan x 38. A a   f  x   f  x   dx  g  a  3 Sol. ; f(x) = 2x + 6x – 8 1 3 f x 1  101   g  x   5 dx  2 ln  22  2 39. D 2 x 2  2x  cot x   ex  Sol.  e  sin x   ln  sin x  dx 2 ex Let = t   ln  t  dt  t  ln t  1  c sin x 40. B Sol. x2 + y2 – ax = 0  x2 + 2xyy – y2 = 0 2xy 2xy Orthogonal curve : x 2   y2  0 ; y  2 y x  y2 y P By solving, x 2  y 2  c Passing through (1, 1) so x 2 + y2 = 2y For shortest distance, Q = (1, 0) Q D = PQ – r = 2  1 41. A, B, D Sol. f(x) = f(x)(tan x – 1)(tan3 x – tan2 x + 3 tan x + 1)    g(x) = tan3 x – tan2 x + 3 tan x + 1 = 0 has exactly one root in x    ,  which lies in  2 2    x   , 0  4      So, f(x) = 0 at x  and k where k    , 0  4  4  42. A, C Sol. f  x   f 1  x   x y -1 -1 y = f (x) (x, f (x)) 1 (f(x), x) y = f(x) (x, f(x)) x 1 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 16 43. A, B 1  Sol. fg = fg + fg by solving g  x   e x  2 g(x) is discontinuous at one point at x = 2 44. B, D Sol. Graph of y = f(x)  2 x –1 0 1 45. A, D 3/ 4  1  2 cos t  3 sin t Sol. f  x   x  2  dt 0 cos t  2   cos t  2    3  2x ; x0 1  2 x 3 f  x    x  3u du  f  x     x  ; 0x3 0  3 2  3  x2 ; x3  46. B, C x2  x  1  1  f(x) Sol.  ,3  x  R  x2  x  1  3  Maxima at x = –1 and minima at x = 1 2 x –1 1   2 Section – B 47. 1 Sol.  6x f  x   4x 2   2f  x  dx   2x dx   fx dx   1 c   3f  x   2x   x  f  x  2 2  x2  f  x  2  x2  f  x   2 2 x  f  x 2 Substitute f  x   4x  3f  x  48. 2 16  4  4 Sol.  2 8    x  4 x  4  dx  3  0  4 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 17 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 49. 5  n  n2  mr  1  1   n n2 r 1  Sol. lim    2 2  m   lim 2   = lim   2 2  2 2 dx   r 1  n  r  n2  k 2  m     r 1 n  r 0 n  x n n  k 1      m      1  n n  r  tan1 x 2 = lim   2 2 tan1      dx  n  r 1 n  r  n   0 1 x2 32 50. 7  x 2  1  x 2  9  |f(|x|)| Sol. f x  x  R – {–3, 1}  x  1  x  3  Graph of y = |f(|x|)| Discontinuity at x =  1 Non-differentiable at x = 0, 1, 3 –3 –1 1 3 51. 8 4 4 4  /8 dx dx 1 1 Sol. I     I  2 2 dx  64  2 dx 0 2  sin 4x 0 2  sin 4x 0 4  sin 4x 0 4  sin 4x  /8 3  /8 2 128 1 I  64  dx ; 3x = t  I   dt 7  cos8x 3  8t  0 0 7  cos   3 52. 4 Sol. f(x) = k(x + 1)2(x – 1)2(x – 5)2 + 4  f(2) = 81k + 4 = 85  k = 1 f(x) = (x + 1)2(x – 1)2(x – 5)2 + 4  f(x) = 2(x + 1)(x – 1)(x – 5)(3x2 – 10x – 1) 10  x 2  9  19     lim  2  3 x 10  x  5x  6  4 3 53. 4  1   2022 1  x 2022  2021  1 2023 1  x 2023  2021  1  1  x x 1 Sol. lim 2021  x 0 2022 x 2021  = 2021 = 43  47 number of divisors = 2  2 = 4 54. 2  y2  3  1 Sol. Area = 2   y  dy   4  3 1 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com

Use Quizgecko on...
Browser
Browser