FIITJEE JEE (Advanced) 2023 Past Paper PDF - Part 1 - Paper 2
Document Details
Uploaded by HighSpiritedCloisonnism
Kazakh Ablai Khan University of International Relations and World Languages
2023
FIITJEE
Tags
Summary
This FIITJEE past paper is for JEE (Advanced) 2023, part 1, paper 2. The test date was 20-11-2022 and covers physics problems. It includes formulas and solutions.
Full Transcript
FIITJEE ALL INDIA TEST SERIES JEE (Advanced)-2023 PART TEST – I PA...
FIITJEE ALL INDIA TEST SERIES JEE (Advanced)-2023 PART TEST – I PAPER –2 TEST DATE: 20-11-2022 ANSWERS, HINTS & SOLUTIONS Physics PART – I Section – A 1. D Sol. = I (about ICOR) 2 4 1 m 2 N1 ICOR mg m 5 2 12 2 COM 6g N2 5 3g acm 2 5 mg N2 maCM cos mg acm 3mg 4 mg N2 5 5 13mg N2 25 2. A Sol. t cons tant F cos N = F sin t F v mdv Fcos t N mg dt N F sin 0 T mdv F cos t sin t mg dt 0 0 mg F T sin t cos t 0 mgT f = N Also T 2 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 2 F sin cos mgT 2 2 F 1 mg 2 mg F. 2(1 ) 3. B Sol. F.B.D. of rod F1 N1 0 0 (about pivot) mg f1 N1 …(i) F2 O 2 mg F.B.D. of cylinder N1 O C 0 f1 f1R f2R y f2 C f1 f2 …(ii) mg (say f) Also 0 0 x N2 N1 mg N2 N2 N1 mg 3mg N2 …(iii) 2 x 0 (on the cylinder) F f 1 cos N2 sin 3mgsin f 2 1 cos Also f1 max f2max N1 N2 3mgsin mg f N1 2 1 cos 2 3 sin 1 cos 4. A Sol. F.B.D. of block is as shown ( 90°) N N = F sin + mg cos Fcos f = F cos – mg sin for No sliding f N 1 mgsin +f Fcos mgsin F sin mgcos 3 sin mg cos cos sin Fsin + mgcos 3 F 3 sin cos 0 ( no sliding even when F ) 3 tan 3 60 For > 90° N F sin mgcos FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 3 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 f mgsin F cos f N 120 Range [60°, 120°] 5. A, B, D Sol. Applying WET on bead from A to B W N + W F = K m u O F R x R x v 2 u2 R+x conservative 2 P 4Fx Fx v 2 u2 u0 2 N+F x m m mv 2 v Also N F R R–x m 4Fx m N u2 F u2 u20 F R m R m m 4Fx N 2 1 u02 F 2 1 F R R m N F 4 2 1 1 N F 1 4 1 2 ˆi 6. A, D Sol. As PA + PB = 10 = Constant Y The bead will move along the elliptical path in vertical plane. Such that 2a = 10 and 2ae = 8 a = 5, b = 3 A B Equation of ellipse is x x2 y2 1 5 2 3 2 P 3/2 2 r0 1 y 3 at 0, 3 ( y = 0, y = ) y 25 25 r0 3 m 2 3 2T0 cos mg r0 2g cos 5 T0 T0 31 mg T0 . v 2g 30 mg 7. A, C Sol. Angular momentum of system is conserved about the axis passing through the pivots Li (Just before collision) = L f (Just after collision) 2 mv0R = mR2 5m R2 5 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 4 v0 3R Now, applying conservation of mechanical energy after the collision 1 2 3R mR2 5m R2 2 mgR 5mg 2 5 8 mR2 v2 7mgR 3 02 2 9R 8 21R 7g Also v 0 2gh h 8 12R 8. A, D Sol. For u to be minimum, it just grazes the cylinder at two points as shown. From COME mu2 mv 2 v mgh 2 2 u2 v 2 2gh 2 2 u0 u v 2gR 1 cos h v 0 2Rsin sin 2 Rg Also 2R sin v 2 v2 …(2) g cos From (1) and (2) 1 u2 Rg 2 2cos cos d 2 1 For u min. d u 0 cos 2 = 45 u02 Rg 2 2 2 Also ucos v cos tan2 0 [3 2 2] 9. A, D Sol. Just after the jump by the frog. 5v0 (w.r.t. to A) According to COLM of (A + frog) (4v 0 – v) m – mv = 0 v = 2v 0 37° K A B V Now consider the motion of blocks in their v0 A C.M. v0 COM frame. m m t=0 At any time t 2K 2K 2k vBC vB v CM v 0 cos t , m vB v CM v 0 cos t vB v0 v 0 cos t FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 5 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 Also the frog is in projectile motion from ground frame 3v0 3v 2v 12v02 6v 0 R 2 0 0 T g g g g 2v0 R Also frog land on B T Then 0 vB dt R 0 T 0 R v 0 cos t 1 dt 0 v 0 R v 0 T 0 sin T 12v 20 6v 20 m 2K 6v 0 0 v0 sin g g 2K m g 6v02 2 0 3 . g 10. B, C dm Sol. F mg v 0 also m = y dt dy F yg v0 dt = yg v 02 dE Heat loss per unit time = Fv 0 dt d 1 y yg v 20 v 0 y v 20 yg dt 2 2 v 30 ygv 0 v03 ygv 0 2 v 30 . 2 Section – B 11. 2 Sol. Observing the motion in COM frame. Then system will look like v/2 v/2 v/2 v/2 v/2 Just before the collision Just after the collision After the collision, ring starts sliding and then starts pure rolling on wedge as shown. R = 2v (pure rolling) FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 6 Applying COAM of ring in centre of mass frame (after the collision) v about point P on wedge 2 v 2 mR mR mRv mR v 2 P v v mR 3mRv v 2 6 v Therefore the velocity of wedge is (in centre of mass frame) when pure rolling starts after the 6 first collision. Then they again collides and ring again starts pure rolling on wedge and velocity of v nd wedge is (in centre of mass frame) after 2 collision. 18 The process goes on and there will be infinite collisions and finally wedge comes at rest in centre of mass frame. v Velocity of wedge = (in ground frame) 2 12. 5 Sol. v u gt g v u also s v ave t t 2 t v u gt …(i) u 2s v v u …(ii) s t t=0 Squaring and multiplying v.v u.u 2u.v v.v u.u 2u.v 4g2s2 2 s 100 2u.v 100 2u.v 4g2 s is max. when u.v 0 u v 100 smax 5m 2 10 13. 6 Sol. If it strike again at same point, then the horizontal component of their velocities are same after the first collision. v0cos v2 v0 v1 v1 v0sin Just before collision Just after collision As e = 1 vsep = vapp v2cos = v0sin FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 7 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 3 v 2 v 0 tan 40 = 30 m/s 4 2v 2 t0 = 6 sec. g 14. 9 Sol. Tmax T1 v Tmin = T2 mu2 T1 mg …(1) l T2 + mg 2 mv l v T2 mg …(2) l From COME (of pendulum + earth system) 1 1 T mu2 mv 2 mg(2l) 2 2 l mg u2 v 2 4gl …(3) T1 T1 also 2 …(4) T2 u from (1), (2) (3) and (4) mg u 11gl , v 7 gl v 9gl , mv 2 T 9mg K=9 l 15. 2 Sol. V0 2R/3 P V R/3 C.O.M. Applying COLM v mv0 m 2m v v 0 3 Applying COAM about point P 2R MR2 v R mv0 2m 0 mR2 3 2 3 2v R 0 3 R 2 v FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 8 16. 3 3 /2 2v 0 cos Sol. T 2 h v0 gcos 2 t=0 2v t=T 0 4cos2 3 g 2 /2 Also Rsin = V0sin2T /2 Rsin 2v 2 R sin 0 2sin cos 2 1 cos 3 gcos(/2) g As v02 2gh R h 8 cos 2cos 1 h 0 2cos2 cos 0 cos 2cos 1 0 1 cos 2 K = 3. 3 2nd Method: v0 [90 (/2)] /2 2 90 180 2 3 90 90– 2 Now > 0 v0 < 60° /2 max radian 3 /2 17. 6 Sol. Applying impulse momentum theorem. N v0/2 3 Ndt mv 0 2 30° 30° v0 Ndt m 2 v 30° 30° v0 v v 0 1 3 2 f = N v03/2 Just before the impact Also v 02 2gH and FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 9 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 2gH 2 2gh 1 3 4 1 3 l v 1 h Also a 2 3 30° 30° 2 1 H 1 Just after the impact h 1 1 2 4 2 a = g/2 [1 + 3 ] H 6 4h 18. 8 Sol. In equilibrium, the centre of mass of the system must lies on the vertical line passing through hinge. XCM = 0 O L 2R m1 m2 0 2 x L2 2R R 2 R L = 2R m2 m1 2R m2R YCM L m1 m2 m1 y L2 R2 4 L 4, 2 L R 22 = 8. FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 10 Chemistry PART – II Section – A 19. A Sol. PCl5 PCl3 g Cl2 g Dd , n=2 n 1 d D 1 d D Thus, 1 will linearly increases with increase of . d 20. A So Ho Sol. nK R R o S 8R 21. B 2x 2x 2x 16x Sol. Change in potential energy 2x 2x 8 8 8 14x 7x 8 4 22. A 2.303 100 Sol. K 298 log t1/2 50 2.303 100 K 308 log t1/2 25 K 298 log 2 1 0.5 K 308 log 4 2 23. A, B Sol. Possible transition 3 2 and 4 2 36 3 2 5R 16 4 2 3R 24. A, B, C Sol. Molecular mass of A 2B4 100 2A 4B 2A 4B 100, 5 given 2A A 10 A 10,B 20, 1: 2 B 20 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 11 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 A 2B4 g A 2 g 2B2 g 1 2 At 10 min. V.D. = 25 Molecular mass = 50 100 50 1 2 1 1 %B2 by mole 100 50% 2 2 1 %A 2 by mole 100 25% 4 At t = 20 min. 100 40 1 2 0.75 d A 2B 4 0.5 0.25 0.25 dt 10 10 d A 2 0.75 0.50 0.25 dt 10 10 Ratio of rate = 1 : 1 25. A, C, D Sol. 2HI H2 I2 At equilibrium 4 2x x 3y x 2N2 6H2 4NH3 At equilibrium 4.25 2y x 3y 4y Given x = 1.0 M 4y = 0.5 M 5 Using these value K C1 32 45 K C2 6 5 32 K C2 125 26. B, C, D Sol. SO2 1 p p 1 p d SO3 1 p p 2 p d XeO 4 4 p d ClO3 2 p d FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 12 27. A, B, D Sol. H H C C nodal plane H H Equitorial plane F F Axial H F H F C S C S H F F H F F Axial plane Equitorial Axial More stable form due Less stable due to more to bent rule. nodal repulsion. Its nodal plane lies in axial. plane lies in equitorial 28. C, D Sol. AlCl3 n has (3C – 4e) bond not (3C – 2e) B2H6 Two (3C – 2e) bond H H H H H B B Al H H H H H H H H H B B B Be H H H H H H 6-(3C-2e) bond 4-(3C-2e) bond Section – B 29. 5 Sol. x = 9, y = 3, z = 2 In one electron system all orbitals of a shell are degenerate (same energy level). In case of many electron system different orbitals of a shell are non-degenarate. Hence, in second excited state only three p-orbitals (2p) are degenerate. H-atom 1s 2s 2p 3s 3p 3d n=1 n=2 n=3 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 13 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 H-ion 1s 1s 2s 2p 1s 2s 2p Ground state 1st excited state 2nd excited state 30. 6 Sol. (i) Borax NaBO2 B 2 O3 (ii) Borax NH4 Cl BN B2 O3 NaCl H2 O (iii) Borax HCl H3 BO3 (iv) Borax H2 O Na B OH 4 H3 BO3 (v) 3B2 H6 6NH3 2B3 N3 H6 12H2 THF (vi) B3 N3 H3 Cl3 3LiBH4 B3 N3H6 3LiCl 3BH3 (vii) LiH B 2 H6 2LiBH4 sp3 (viii) K 3 AlF6 BF3 3KBF4 AlF3 sp3 Except (vii) and (viii) all options can give sp2 hybridised Boron centre as one of the product. 31. 6 2 Sol. Lone pair in TeBr6 , IF2 , SNF3 and XeF3 are 1, 2, 0 and 3 respectively. Hence, x = 6. Diamagnetic species are Li2 , C2 , O22 , K 2 O, N2 O 4 , B3 N3 H6. Note: Be2 does not exist so we can’t say it is paramagnetic or diamagnetic species. Hence, y = 6. xy 6. 2 32. 4 Sol. In container (I) In container (II) 2SO2 g O2 g 2SO3 g KMnO4 will oxidized only SO2 2x1 x1 0 Moles of O.A. Moles of R.A. 2x1 2a x1 a 2a 2 5 0.2 4 Moles of SO 2 Total moles nT 3x1 a 2 5 x1 a 1 x1 Given a Mole of SO2 equilibrium 2 3x1 a 4 3 2 2SO3 g 2SO2 g O2 g 2a 20 10 2x1 2x1 x1 nT 1 1 y KP 2 atm 2x1 = 2 2x1 2a x1 a 20 20 20 x1 1.0 nT nT FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 14 2 y 80 2 1 Value of 4 x 20 5 5 1 x KC 2 mol / 8 80 5 33. 6 Sol. a = 4 i, iv, vi, vii b = 2 ii, ix v and viii forms M.O. d = 2 iii, x a2 b2 2d 24 6 4 4 34. 9 Sol. I, II, III and IV are correct due to bent rule and V is incorrect. Correct order in case of V is II > III > IV > I = V. x=4 y=1 2x + y = 9 35. 8 3 5.8 Sol. K SP of Mg OH 2 is 10 3 .4 4 1012 58 2 Mg OH 2 s Mg 2OH x 0.01 2x x 0.01 4x 2 4 10 12 4x 2 0.01 4 1012 x 105 mole / Mg2 in container II 1.0 105 NH4 For basic buffer pOH pK b log 4 NH OH pOH 5 log5 = 5.70 OH 2 106 4 1012 Mg2 4 1012 1.0 M 1.6 10 20 Al3 2 103 M 8 1018 x 105 y 1.0 z 2 103 yz 200 Value of 8. 25x 25 36. 5 Sol. Statement 4, 11 and 12 are incorrect and other statements are correct. x = 9, y = 3. FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 15 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 Mathematics PART – III Section – A 37. A 1 tan1 x Sol. By differentiating, f x 2 f x 0 1 x 1 x2 1 f x 1 tan1 x 2e tan x 38. A a f x f x dx g a 3 Sol. ; f(x) = 2x + 6x – 8 1 3 f x 1 101 g x 5 dx 2 ln 22 2 39. D 2 x 2 2x cot x ex Sol. e sin x ln sin x dx 2 ex Let = t ln t dt t ln t 1 c sin x 40. B Sol. x2 + y2 – ax = 0 x2 + 2xyy – y2 = 0 2xy 2xy Orthogonal curve : x 2 y2 0 ; y 2 y x y2 y P By solving, x 2 y 2 c Passing through (1, 1) so x 2 + y2 = 2y For shortest distance, Q = (1, 0) Q D = PQ – r = 2 1 41. A, B, D Sol. f(x) = f(x)(tan x – 1)(tan3 x – tan2 x + 3 tan x + 1) g(x) = tan3 x – tan2 x + 3 tan x + 1 = 0 has exactly one root in x , which lies in 2 2 x , 0 4 So, f(x) = 0 at x and k where k , 0 4 4 42. A, C Sol. f x f 1 x x y -1 -1 y = f (x) (x, f (x)) 1 (f(x), x) y = f(x) (x, f(x)) x 1 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 16 43. A, B 1 Sol. fg = fg + fg by solving g x e x 2 g(x) is discontinuous at one point at x = 2 44. B, D Sol. Graph of y = f(x) 2 x –1 0 1 45. A, D 3/ 4 1 2 cos t 3 sin t Sol. f x x 2 dt 0 cos t 2 cos t 2 3 2x ; x0 1 2 x 3 f x x 3u du f x x ; 0x3 0 3 2 3 x2 ; x3 46. B, C x2 x 1 1 f(x) Sol. ,3 x R x2 x 1 3 Maxima at x = –1 and minima at x = 1 2 x –1 1 2 Section – B 47. 1 Sol. 6x f x 4x 2 2f x dx 2x dx fx dx 1 c 3f x 2x x f x 2 2 x2 f x 2 x2 f x 2 2 x f x 2 Substitute f x 4x 3f x 48. 2 16 4 4 Sol. 2 8 x 4 x 4 dx 3 0 4 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com 17 AITS-PT-I (Paper-2)-PCM(Sol.)-JEE(Advanced)/2023 49. 5 n n2 mr 1 1 n n2 r 1 Sol. lim 2 2 m lim 2 = lim 2 2 2 2 dx r 1 n r n2 k 2 m r 1 n r 0 n x n n k 1 m 1 n n r tan1 x 2 = lim 2 2 tan1 dx n r 1 n r n 0 1 x2 32 50. 7 x 2 1 x 2 9 |f(|x|)| Sol. f x x R – {–3, 1} x 1 x 3 Graph of y = |f(|x|)| Discontinuity at x = 1 Non-differentiable at x = 0, 1, 3 –3 –1 1 3 51. 8 4 4 4 /8 dx dx 1 1 Sol. I I 2 2 dx 64 2 dx 0 2 sin 4x 0 2 sin 4x 0 4 sin 4x 0 4 sin 4x /8 3 /8 2 128 1 I 64 dx ; 3x = t I dt 7 cos8x 3 8t 0 0 7 cos 3 52. 4 Sol. f(x) = k(x + 1)2(x – 1)2(x – 5)2 + 4 f(2) = 81k + 4 = 85 k = 1 f(x) = (x + 1)2(x – 1)2(x – 5)2 + 4 f(x) = 2(x + 1)(x – 1)(x – 5)(3x2 – 10x – 1) 10 x 2 9 19 lim 2 3 x 10 x 5x 6 4 3 53. 4 1 2022 1 x 2022 2021 1 2023 1 x 2023 2021 1 1 x x 1 Sol. lim 2021 x 0 2022 x 2021 = 2021 = 43 47 number of divisors = 2 2 = 4 54. 2 y2 3 1 Sol. Area = 2 y dy 4 3 1 FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com