🎧 New: AI-Generated Podcasts Turn your study notes into engaging audio conversations. Learn more

Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...

Full Transcript

What is Organic Chemistry? A branch of chemistry dedicated to the study of the structures, synthesis and reactions of carbon-containing compounds. Organic molecules are called hydrocarbons and contain carbon bonded to hydrogen (as well as other elements). Functional groups A func...

What is Organic Chemistry? A branch of chemistry dedicated to the study of the structures, synthesis and reactions of carbon-containing compounds. Organic molecules are called hydrocarbons and contain carbon bonded to hydrogen (as well as other elements). Functional groups A functional group is a specific group of atoms within a molecule that is responsible for a characteristic of that molecule. Many biologically active molecules contain one or more functional groups. The major functional groups found in biological molecules are: Hydroxyl, Methyl, Carboxyl, Carbonyl, Amino and Phosphate. Functional Groups http://jwblackboard.com/organic- chemistry-functional-groups-pdf What is the R? R represents the rest of the hydrocarbon chain Example: for alcohols R OH Rest of carbon chain Functional group Functional Groups: Methyl Methyl group: the smallest hydrocarbon functional group (-CH3). Methylation is a common process in biology, and is involved in regulation of gene expression, protein function and RNA metabolism. Important in fatty acid chains, insoluble in water. Functional Groups: Hydroxyl Hydroxyl group: characteristic component of bases, phenols, alcohols, carboxylic and sulfonic acids, and amphoteric compounds (-OH) Ethanol (EtOH) Hydroxyl group Hydroxyl groups are very common in biological molecules. Hydroxyl groups appear on carbohydrates, on the R-groups of some amino acids, and on nucleic acids. Alcohol is an example of a molecule that contains a hydroxyl group Functional Groups: Carbonyl Carbonyl group: composed of a carbon atom double-bonded to an oxygen atom (C=O).   On an end In the middle Functional Groups: Carboxyl Carboxyl group: a set of four atoms bonded together and present in carboxylic acids, including amino acids (-COOH). Carbon atom is attached to an oxygen atom by a double bond and to a hydroxyl group (OH) by a single bond. Functional Groups: Amino Amino group: consists of one atom of nitrogen attached by covalent bonds two atoms of hydrogen, leaving a lone valence electron on the nitrogen which is available for bonding to another atom (–NH2). Found in all amines and amino acids. Functional Groups: Sulfhydryl group: a sulfur atom and a hydrogen atom (-SH). Being the sulfur analogue of an alcohol group (-OH), this functional group is referred to either as a thiol group or a sulfhydryl group or mercaptans Smelly** Functional Groups: Phosphate Phosphate group: one of three components of a nucleotide (-PO4). Provide a source of energy for cells to do work (ATP). Presence or absence often regulates protein action. Monomers and Polymers Oligomers - a few monomers joined together (less than 50). Condensation Reaction Also called dehydration synthesis. Reaction where two substances are joined and a water molecule is lost. Campbell, N. and J Reece. Biology (Custom Ed) 2005 Hydrolysis Reaction Opposite of condensation reaction. Water is added to a substance resulting in its decomposition. Campbell, N. and J Reece. Biology (Custom Ed) 2005 Organic Molecules The four major classes of organic molecules Carbohydrates Proteins Lipids Nucleic Acids Carbohydrates composed of “carbon hydrates” ratio of one carbon molecule to one water molecule (CH2O)n. “Saccharide” is a handy synonym for carbohydrate, because it can be preceded with a prefix that indicates the size of the molecule (mono-, di-, tri- poly-). Carbohydrates Monosaccharides (glucose, fructose) Single sugars (one molecule) Disaccharides (lactose, sucrose) Combination of two monosaccharides Polysaccharides Composed of several sugars Can be many of the same monosaccharide or mixture of different ones Carbohydrates http://cdavies.wordpress.com/2009/01/27/simple-sugars-fructose-glucose-and-sucrose/ Two Families of Carbohydrates Aldoses (monosaccharide, or simple sugar) Have a carbonyl at one end of chain Ketoses (monosaccharide, or simple sugar) Have a carbonyl anywhere else in the chain. further classified as 2-ketoses, 3-ketoses, etc. according to the position of the carbonyl. 2-ketoses are the most common: if unspecified, a ketose is a 2-ketose. Depending on carbon number, a monosaccharide can be a: Triose (3C) Tetrose (4C) Pentose (5C) Hexose (6C) http://www.hammiverse.com/lectures/5/images/1-2.png Starch vs. Cellulose Why can we digest starch but not cellulose? Cellulose has beta glycosidic linkages and we do not have the proper glycoside hydrolases to break this linkage. http://www.vivo.colostate.edu/hbooks/pathphys/digestion/basics/foodchem.html Polysaccharides Complex carbohydrates. Made up of chains of monosaccharides that are linked together by glycosidic bonds. Ideal storage molecules for energy. Large and insoluble in water. Fold into compact shapes. Easily convert to sugars when needed. http://www.nutrientsreview.com/wp-content/uploads/2014/08/Polysaccharides-structure.jpg Polysaccharides: Glycogen Glycogen: branched polysaccharide found in nearly all animal cells and in certain protozoa and algae. Mainly stored in the liver and muscles of humans and other vertebrates. Main form of stored carbohydrate in the body, acting as a reservoir of glucose. http://www.chemistryland.com/ElementarySchool/BuildingBlocks/BuildingOrganic.htm Polysaccharide: Cellulose Fully permeable to water and solutes Ideal for allowing water and solutes into and out of the cell. Most abundant organic compound on Earth. About 33% of all plant matter and more than 50% of total organic carbon on planet http://www.nature.com/news/2001/010115/full/news010118-3.html Polysaccharide: Chitin Chitin: unbranched polysaccharide, similar in structure to cellulose. Instead of (-OH), chains have (–NH-CO-CH3). Primarily found in the cuticles of arthropods, with smaller amounts being found in sponges, mollusks and annelids. Also in the cell walls of most fungi and in some http://www.swicofil.com/products/055chitosan.html green algae.

Use Quizgecko on...
Browser
Browser