Fake Image Detection Project Report PDF

Summary

This project report details the Fake Image Detection project completed by Jasmeen Kaur, Ritika, and Jeetesh Saini at Jaypee University of Information Technology in India during 2024. The report discusses the methodology used for detecting deepfakes in images and the challenges faced in the project.

Full Transcript

‭FAKE IMAGE DETECTION‬ ‭A major project report submitted in partial fulfillment of the‬ ‭requirement for the award of degree of‬ ‭Bachelor of Technology‬ ‭in‬ ‭Computer Science & Engineering‬...

‭FAKE IMAGE DETECTION‬ ‭A major project report submitted in partial fulfillment of the‬ ‭requirement for the award of degree of‬ ‭Bachelor of Technology‬ ‭in‬ ‭Computer Science & Engineering‬ ‭Submitted by‬ ‭Jasmeen Kaur (211429), Ritika (211432),‬ ‭Jeetesh Saini (211436)‬ ‭Under the guidance & supervision of‬ ‭Dr. Ekta Gandotra‬ ‭Department of Computer Science & Engineering and‬ ‭Information Technology‬ ‭Jaypee University of Information Technology,‬ ‭Waknaghat, Solan - 173234 (India)‬ ‭December 2024‬ ‭vii‬ ‭SUPERVISOR’S CERTIFICATE‬ ‭This‬ ‭is‬ ‭to‬ ‭certify‬ ‭that‬ ‭the‬ ‭major‬ ‭project‬ ‭report‬ ‭entitled ‭‘‬ Fake‬ ‭Image‬ ‭Detection’‬‭,‬ ‭submitted‬ ‭in‬ ‭partial‬ ‭fulfillment‬ ‭of‬ ‭the‬ ‭requirements‬ ‭for‬ ‭the‬ ‭award‬ ‭of‬ ‭the‬ ‭degree‬ ‭of‬ ‭Bachelor‬‭of‬‭Technology‬‭in‬‭Computer‬‭Science‬‭&‬‭Engineering‬‭,‬‭in‬‭the‬‭Department‬‭of‬ ‭Computer‬ ‭Science‬ ‭&‬ ‭Engineering‬ ‭and‬ ‭Information‬‭Technology,‬‭Jaypee‬‭University‬‭of‬ ‭Information‬‭Technology,‬‭Waknaghat,‬‭is‬‭a‬‭bona‬‭fide‬‭project‬‭work‬‭carried‬‭out‬‭under‬‭my‬ ‭supervision during the period from July 2024 to December 2024.‬ ‭I‬‭have‬‭personally‬‭supervised‬‭the‬‭research‬‭work‬‭and‬‭confirm‬‭that‬‭it‬‭meets‬‭the‬‭standards‬ ‭required‬ ‭for‬ ‭submission.‬ ‭The‬ ‭project‬ ‭work‬ ‭has‬ ‭been‬ ‭conducted‬ ‭in‬ ‭accordance‬ ‭with‬ ‭ethical‬ ‭guidelines,‬ ‭and‬ ‭the‬ ‭matter‬ ‭embodied‬ ‭in‬ ‭the‬ ‭report‬ ‭has‬ ‭not‬ ‭been‬ ‭submitted‬ ‭elsewhere for the award of any other degree or diploma.‬ ‭Supervisor Name: Dr. Ekta Gandotra‬ ‭Date: 30 November2024‬ ‭Designation:Associate Professor‬ ‭Place: JUIT,Solan‬ ‭Department: Dept. of CSE & IT‬ ‭i‬ ‭CANDIDATE’S DECLARATION‬ ‭We‬ ‭hereby‬ ‭declare‬ ‭that‬ ‭the‬ ‭work‬ ‭presented‬ ‭in‬ ‭this‬ ‭report‬ ‭entitled‬ ‭‘Fake‬ ‭Image‬ ‭Detection’‬ ‭in‬ ‭partial‬ ‭fulfillment‬ ‭of‬ ‭the‬ ‭requirements‬ ‭for‬ ‭the‬ ‭award‬ ‭of‬ ‭the‬ ‭degree‬ ‭of‬ ‭Bachelor‬ ‭of‬ ‭Technology‬ ‭in‬ ‭Computer‬ ‭Science‬ ‭&‬ ‭Engineering‬ ‭submitted‬ ‭in‬ ‭the‬ ‭Department‬‭of‬‭Computer‬‭Science‬‭&‬‭Engineering‬‭and‬‭Information‬‭Technology‬‭,‬‭Jaypee‬ ‭University‬ ‭of‬ ‭Information‬ ‭Technology,‬ ‭Waknaghat‬ ‭is‬ ‭an‬ ‭authentic‬‭record‬‭of‬‭my‬‭own‬ ‭work‬ ‭carried‬ ‭out‬ ‭over‬ ‭a‬ ‭period‬ ‭from‬ ‭July‬ ‭2024‬ ‭to‬ ‭December‬ ‭2024‬ ‭under‬ ‭the‬ ‭supervision of‬‭Dr Ekta Gandotra‬‭.‬ ‭We‬‭further‬‭declare‬‭that‬‭the‬‭matter‬‭embodied‬‭in‬‭this‬‭report‬‭has‬‭not‬‭been‬‭submitted‬‭for‬ ‭the award of any other degree or diploma at any other university or institution.‬ ‭Name:‬‭Jasmeen‬‭Kaur‬ ‭Name:‬‭Ritika‬ ‭Name:‬ ‭Jeetesh‬ ‭Saini‬ ‭Roll‬‭No.:‬‭211429‬ ‭Roll‬‭No.:‬‭211432‬ ‭Roll‬‭No.:211436‬ ‭Date:‬ ‭01/12/24‬ ‭Date:01/12/24‬ ‭Date: 01/12/24‬ ‭This‬‭is‬‭to‬‭certify‬‭that‬‭the‬‭above‬‭statement‬‭made‬‭by‬‭the‬‭candidates‬‭is‬‭true‬‭to‬‭the‬‭best‬‭of‬ ‭my knowledge.‬ ‭Supervisor Name: Dr. Ekta Gandotra‬ ‭Date: 30 November2024‬ ‭Designation:Associate Professor‬ ‭Place: JUIT,Solan‬ ‭Department: Dept. of CSE & IT‬ ‭ii‬ ‭ACKNOWLEDGEMENT‬ ‭We‬ ‭would‬ ‭like‬ ‭to‬ ‭express‬ ‭our‬ ‭deepest‬ ‭gratitude‬ ‭to‬ ‭everyone‬ ‭who‬ ‭contributed‬ ‭to‬ ‭the‬ ‭successful completion of our major project,‬‭“Fake‬‭Image Detection”.‬ ‭First‬‭and‬‭foremost,‬‭we‬‭are‬‭thankful‬‭to‬‭our‬‭esteemed‬‭institution‬‭and‬‭Dr.‬‭Ekta‬‭Gandotra‬ ‭for‬ ‭providing‬ ‭us‬ ‭with‬ ‭the‬ ‭guidance,‬ ‭resources,‬ ‭and‬ ‭encouragement‬ ‭needed‬ ‭to‬ ‭pursue‬ ‭this‬ ‭innovative‬ ‭endeavour.‬ ‭We‬ ‭are‬ ‭particularly‬ ‭indebted‬ ‭to‬ ‭our‬ ‭project‬ ‭guide,‬ ‭whose‬ ‭expertise,‬‭mentorship,‬‭and‬‭continuous‬‭support‬‭were‬‭invaluable‬‭throughout‬‭the‬‭project.‬ ‭We‬ ‭extend‬ ‭our‬ ‭sincere‬ ‭thanks‬ ‭to‬ ‭our‬ ‭classmates,‬ ‭friends,‬ ‭and‬ ‭family‬ ‭for‬ ‭their‬ ‭unwavering‬ ‭support,‬ ‭patience,‬ ‭and‬ ‭encouragement‬ ‭during‬ ‭the‬ ‭development‬ ‭of‬ ‭this‬ ‭project.‬ ‭Their‬ ‭belief‬ ‭in‬‭our‬‭vision‬‭motivated‬‭us‬‭to‬‭overcome‬‭challenges‬‭and‬‭deliver‬‭a‬ ‭meaningful solution.‬ ‭Lastly,‬ ‭we‬ ‭are‬ ‭grateful‬ ‭to‬ ‭all‬ ‭the‬ ‭researchers‬ ‭and‬ ‭developers‬ ‭in‬ ‭the‬ ‭field‬ ‭of‬ ‭artificial‬ ‭intelligence,‬ ‭biometric‬ ‭systems,‬ ‭and‬ ‭software‬ ‭development‬ ‭whose‬ ‭work‬‭inspired‬‭and‬ ‭guided‬ ‭our‬ ‭project.‬ ‭This‬ ‭project‬ ‭is‬ ‭a‬ ‭testament‬ ‭to‬ ‭the‬ ‭collective‬ ‭efforts‬ ‭and‬ ‭shared‬ ‭vision‬ ‭of‬ ‭improving‬ ‭the‬ ‭lives‬ ‭of‬ ‭missing‬ ‭individuals‬ ‭and‬ ‭their‬ ‭families‬ ‭through‬ ‭technology.‬ ‭We‬ ‭hope‬ ‭our‬ ‭project‬ ‭contributes‬ ‭positively‬ ‭to‬ ‭this‬ ‭cause‬ ‭and‬ ‭inspires‬ ‭further‬ ‭advancements in this field.‬ ‭Jasmeen Kaur (211429)‬ ‭Ritika (211432)‬ ‭Jeetesh Saini (211436‬ ‭iii‬ ‭TABLE OF CONTENT‬ ‭CERTIFICATE …………............................................................................................ i‬ ‭CANDIDATE DECLARATION …………................................................................ ii‬ ‭ACKNOWLEDGEMENT........................................................................................ iii‬ ‭LIST OF TABLES...................................................................................................... v‬ ‭LIST OF FIGURES................................................................................................... vi‬ ‭LIST OF ABBREVIATIONS.................................................................................. vii‬ ‭ABSTRACT.............................................................................................................. viii‬ ‭CHAPTER 1: INTRODUCTION.............................................................................. 1‬ ‭1.1 INTRODUCTION..................................................................................... 1‬ ‭1.2 PROBLEM STATEMENT....................................................................... 2‬ ‭1.3 OBJECTIVES........................................................................................... 2‬ ‭1.4 MOTIVATON............................................................................................ 2‬ ‭1.5 ORGANISATION OF PROJECT REPORT......................................... 3‬ ‭CHAPTER 2: LITERATURE REVIEW.................................................................. 5‬ ‭2.1 OVERVIEW OF RELEVANT LITERATURE...................................... 5‬ ‭2.2 KEY GAPS.............................................................................................. 12‬ ‭CHAPTER 3: SYSTEM DEVELOPMENT........................................................... 14‬ ‭3.1 REQUIREMENTS AND ANALYSIS................................................... 14‬ ‭3.2 PROJECT DESIGN AND ARCHITECTURE.................................... 15‬ ‭3.3 DATA PREPARATION............................................................................20‬ ‭3.4 IMPLEMENTATION............................................................................. 20‬ ‭3.5 KEY CHALLENGES............................................................................. 26‬ ‭CHAPTER 4: TESTING.......................................................................................... 28‬ ‭4.1 TESTING STRATEGY.......................................................................... 28‬ ‭4.2 TEST CASES AND OUTCOMES…...................................................... 29‬ ‭CHAPTER 5: RESULTS AND EVALUATION..................................................... 31‬ ‭iv‬ ‭5.1 RESULTS ……………............................................................................. 31‬ ‭CHAPTER 6: CONCLUSION AND FUTURE SCOPE....................................... 39‬ ‭6.1 CONCLUSION........................................................................................ 39‬ ‭6.2 FUTURE SCOPE.................................................................................... 39‬ ‭REFERENCES.......................................................................................................... 41‬ ‭iv‬ ‭LIST OF TABLES‬ ‭S. No‬ ‭Title‬ ‭Page No.‬ ‭1‬ ‭Overview of relevant literature‬ ‭6‬ ‭2‬ ‭Models Performance comparison on Yonsei Dataset‬ ‭26‬ ‭3‬ ‭Models Performance comparison on NVIDIA‬ ‭27‬ ‭Flickr Dataset‬ ‭v‬ ‭LIST OF FIGURES‬ ‭S. No.‬ ‭Title of Figures‬ ‭Page No.‬ ‭1‬ ‭Workflow Diagram‬ ‭14‬ ‭2‬ ‭Project Architecture Diagram‬ ‭16‬ ‭3‬ ‭Resnet50 Model‬ ‭20‬ ‭4‬ ‭XceptionNet Model‬ ‭21‬ ‭5‬ ‭DenseNet121 Model‬ ‭21‬ ‭6‬ ‭VGG16 Model‬ ‭22‬ ‭7‬ ‭Models Performance Comparison on Yonsei Dataset‬ ‭27‬ ‭8‬ ‭ odels Performance Comparison on NVIDIA Flickr‬ M ‭29‬ ‭Dataset‬ ‭9‬ ‭Confusion Matrix of DenseNet‬ ‭30‬ ‭10‬ ‭Confusion Matrix of Resnet101‬ ‭31‬ ‭11‬ ‭Confusion Matrix of XceptionNet‬ ‭32‬ ‭vi‬ ‭LIST OF ABBREVIATIONS, SYMBOLS OR‬ ‭NOMENCLATURE‬ ‭Abbreviation‬ ‭Full Form‬ ‭AI‬ ‭Artificial Intelligence‬ ‭API‬ ‭Application Programming Interface‬ ‭AUC‬ ‭Area Under Curve‬ ‭CNN‬ ‭Convolutional Neural Network‬ ‭CUDA‬ ‭Compute Unified Device Architecture‬ ‭GAN‬ ‭Generative Adversarial Network‬ ‭GPU‬ ‭Graphics Processing Unit‬ ‭LIME‬ ‭Local Interpretable Model-agnostic Explanations‬ ‭LR‬ ‭Learning Rate‬ ‭ML‬ ‭Machine Learning‬ ‭ReLU‬ ‭Rectified Linear Unit‬ ‭ROC‬ ‭Receiver Operating Characteristic‬ ‭SGD‬ ‭Stochastic Gradient Descent‬ ‭SHAP‬ ‭SHapley Additive exPlanations‬ ‭vii‬ ‭ABSTRACT‬ ‭The‬ ‭proliferation‬ ‭of‬ ‭deepfake‬ ‭technology‬ ‭has‬ ‭raised‬ ‭significant‬ ‭concerns‬ ‭across‬ ‭various‬ ‭sectors,‬ ‭including‬ ‭media,‬ ‭politics,‬ ‭and‬ ‭cybersecurity.‬ ‭Deepfakes,‬‭created‬‭using‬‭Generative‬ ‭Adversarial‬ ‭Networks‬ ‭(GANs)‬ ‭and‬ ‭other‬ ‭machine‬‭learning‬‭techniques,‬‭are‬‭highly‬‭realistic‬ ‭fake‬‭images‬‭or‬‭videos‬‭that‬‭manipulate‬‭real-world‬‭content‬‭to‬‭depict‬‭events‬‭or‬‭statements‬‭that‬ ‭never‬ ‭occurred.‬ ‭While‬ ‭this‬ ‭technology‬ ‭has‬ ‭legitimate‬ ‭applications‬ ‭in‬ ‭entertainment‬ ‭and‬ ‭creative‬ ‭fields,‬ ‭its‬ ‭misuse‬ ‭has‬ ‭been‬ ‭alarming.‬ ‭Deepfakes‬ ‭have‬ ‭been‬ ‭used‬ ‭to‬ ‭spread‬ ‭misinformation,‬ ‭impersonate‬ ‭public‬ ‭figures,‬ ‭and‬ ‭commit‬ ‭fraud,‬ ‭making‬ ‭it‬ ‭difficult‬ ‭for‬ ‭individuals‬ ‭and‬ ‭institutions‬ ‭to‬ ‭trust‬ ‭the‬ ‭authenticity‬ ‭of‬ ‭digital‬ ‭media.‬ ‭High-profile‬ ‭cases,‬ ‭such‬ ‭as‬ ‭fabricated‬ ‭videos‬‭involving‬‭Rashmika‬‭Mandanna,‬‭Prime‬‭Minister‬‭Narendra‬‭Modi,‬ ‭and Mark Zuckerberg, have demonstrated the societal and political dangers of deepfakes.‬ ‭The‬‭NVIDIA‬‭Flickr‬‭dataset‬‭showed‬‭superior‬‭performance‬‭compared‬‭to‬‭the‬‭Yonsei‬‭dataset,‬ ‭particularly‬ ‭in‬ ‭terms‬ ‭of‬ ‭model‬ ‭accuracy.‬ ‭The‬ ‭top‬ ‭2‬ ‭models,‬ ‭VGG16‬ ‭and‬ ‭DenseNet121,‬ ‭achieved‬‭impressive‬‭accuracy‬‭rates‬‭of‬‭up‬‭to‬‭95%,‬‭significantly‬‭outperforming‬‭other‬‭models‬ ‭tested‬ ‭on‬ ‭the‬ ‭same‬ ‭dataset.‬ ‭These‬ ‭results‬ ‭highlight‬ ‭the‬ ‭robustness‬ ‭of‬ ‭these‬ ‭models‬ ‭in‬ ‭detecting‬‭deep‬‭fake‬‭images,‬‭even‬‭in‬‭challenging‬‭conditions.‬‭However,‬‭achieving‬‭such‬‭high‬ ‭accuracy‬‭came‬‭at‬‭the‬‭cost‬‭of‬‭increased‬‭training‬‭times,‬‭which‬‭ranged‬‭from‬‭minutes‬‭to‬‭hours‬ ‭depending‬ ‭on‬‭the‬‭model.‬‭Despite‬‭the‬‭longer‬‭training‬‭durations,‬‭the‬‭models‬‭demonstrated‬‭a‬ ‭clear‬‭advantage‬‭in‬‭terms‬‭of‬‭accuracy,‬‭making‬‭them‬‭more‬‭reliable‬‭for‬‭real-world‬‭applications‬ ‭where‬ ‭precision‬ ‭is‬ ‭critical.‬ ‭This‬ ‭further‬ ‭underscores‬ ‭the‬ ‭importance‬ ‭of‬ ‭selecting‬ ‭the‬ ‭right‬ ‭dataset and model for deepfake detection tasks.‬ ‭The‬ ‭primary‬ ‭objective‬ ‭is‬ ‭to‬ ‭create‬ ‭a‬ ‭solution‬ ‭that‬ ‭can‬ ‭be‬ ‭integrated‬ ‭into‬ ‭real-world‬ ‭applications,‬ ‭such‬ ‭as‬ ‭cybersecurity,‬ ‭social‬ ‭media‬ ‭monitoring,‬ ‭and‬ ‭media‬ ‭forensics,‬ ‭where‬ ‭image‬ ‭authenticity‬‭is‬‭critical.‬‭Our‬‭detection‬‭system‬‭aims‬‭to‬‭not‬‭only‬‭prevent‬‭the‬‭misuse‬‭of‬ ‭deep‬‭fakes‬‭but‬‭also‬‭enhance‬‭public‬‭trust‬‭in‬‭digital‬‭content‬‭by‬‭providing‬‭a‬‭tool‬‭to‬‭verify‬‭the‬ ‭authenticity‬ ‭of‬ ‭images.‬ ‭This‬ ‭project‬ ‭will‬ ‭contribute‬ ‭to‬ ‭ongoing‬ ‭efforts‬ ‭to‬ ‭combat‬ ‭disinformation and protect against cybercrime in the digital age.‬ ‭viii‬ ‭CHAPTER 1: INTRODUCTION‬ ‭1.1 INTRODUCTION‬ ‭In‬ ‭recent‬ ‭years,‬ ‭the‬ ‭proliferation‬ ‭of‬ ‭fake‬ ‭images,‬ ‭particularly‬ ‭those‬ ‭generated‬ ‭using‬ ‭Generative‬ ‭Adversarial‬ ‭Networks‬ ‭(GANs),‬ ‭has‬ ‭become‬ ‭a‬‭significant‬‭concern‬‭in‬‭both‬ ‭the‬‭digital‬‭and‬‭physical‬‭worlds.‬‭These‬‭AI-generated‬‭images,‬‭often‬‭referred‬‭to‬‭as‬‭deep‬ ‭fakes,‬ ‭are‬ ‭becoming‬ ‭increasingly‬ ‭realistic,‬ ‭making‬ ‭it‬ ‭difficult‬ ‭to‬ ‭distinguish‬‭between‬ ‭real‬‭and‬‭manipulated‬‭media.‬‭While‬‭deepfake‬‭technology‬‭has‬‭opened‬‭new‬‭possibilities‬ ‭in‬ ‭creative‬ ‭industries,‬ ‭it‬ ‭has‬ ‭also‬ ‭been‬ ‭weaponized‬ ‭to‬ ‭tarnish‬ ‭reputations,‬ ‭spread‬ ‭misinformation, and conduct cybercrimes.‬ ‭Several‬‭real-world‬‭cases‬‭demonstrate‬‭the‬‭destructive‬‭power‬‭of‬‭deepfakes.‬‭For‬‭instance,‬ ‭a‬‭deep‬‭fake‬‭video‬‭of‬‭Indian‬‭actress‬‭Rashmika‬‭Mandanna‬‭was‬‭circulated,‬‭showing‬‭her‬ ‭in‬ ‭a‬ ‭compromising‬ ‭situation,‬ ‭which‬ ‭harmed‬ ‭her‬ ‭reputation‬ ‭and‬ ‭caused‬ ‭distress.‬ ‭Similarly,‬ ‭Prime‬‭Minister‬‭Narendra‬‭Modi‬‭has‬‭been‬‭a‬‭target‬‭of‬‭deepfakes,‬‭with‬‭videos‬ ‭falsely‬ ‭attributing‬ ‭harmful‬ ‭speeches‬ ‭or‬ ‭actions‬ ‭to‬ ‭him,‬ ‭which‬ ‭could‬ ‭have‬ ‭significant‬ ‭political‬ ‭and‬ ‭social‬ ‭consequences.‬ ‭In‬ ‭another‬ ‭case,‬ ‭Mark‬ ‭Zuckerberg,‬ ‭the‬ ‭CEO‬ ‭of‬ ‭Facebook,‬‭was‬‭featured‬‭in‬‭a‬‭deepfake‬‭video‬‭where‬‭he‬‭appeared‬‭to‬‭make‬‭controversial‬ ‭statements‬ ‭about‬ ‭controlling‬ ‭people's‬ ‭data,‬ ‭sparking‬ ‭concerns‬ ‭over‬ ‭how‬ ‭easily‬ ‭powerful figures can be manipulated.‬ ‭The‬ ‭rise‬ ‭of‬ ‭social‬ ‭media‬ ‭and‬ ‭image-sharing‬ ‭platforms‬ ‭has‬ ‭accelerated‬ ‭the‬ ‭spread‬ ‭of‬ ‭such‬ ‭fake‬ ‭content,‬ ‭raising‬ ‭questions‬ ‭about‬ ‭the‬ ‭authenticity‬ ‭of‬ ‭visual‬ ‭information‬ ‭online.‬ ‭In‬ ‭this‬ ‭project,‬ ‭we‬ ‭aim‬ ‭to‬ ‭develop‬ ‭a‬‭reliable‬‭system‬‭for‬‭fake‬‭image‬‭detection‬ ‭that can effectively identify deepfake content.‬ ‭By‬ ‭leveraging‬ ‭cutting-edge‬ ‭machine‬ ‭learning‬ ‭models‬ ‭and‬‭image‬‭analysis‬‭techniques,‬ ‭our‬ ‭goal‬ ‭is‬ ‭to‬ ‭create‬ ‭a‬ ‭tool‬ ‭that‬ ‭helps‬ ‭individuals‬ ‭and‬ ‭organizations‬ ‭differentiate‬ ‭between‬‭real‬‭and‬‭manipulated‬‭images.‬‭This‬‭will‬‭help‬‭mitigate‬‭the‬‭societal‬‭and‬‭ethical‬ ‭consequences‬ ‭posed‬ ‭by‬ ‭the‬ ‭widespread‬ ‭use‬ ‭of‬‭deepfake‬‭technology,‬‭ensuring‬‭a‬‭more‬ ‭secure digital environment.‬ ‭1‬ ‭1.2 PROBLEM STATEMENT‬ ‭The‬ ‭increasing‬ ‭sophistication‬ ‭of‬ ‭deepfake‬ ‭technology,‬ ‭especially‬ ‭through‬‭GANs,‬‭has‬ ‭made‬ ‭it‬ ‭difficult‬ ‭to‬ ‭distinguish‬ ‭real‬ ‭images‬ ‭from‬ ‭manipulated‬ ‭ones.‬ ‭Deepfakes‬ ‭are‬ ‭being‬ ‭used‬ ‭for‬ ‭malicious‬ ‭purposes,‬ ‭such‬ ‭as‬ ‭spreading‬ ‭disinformation,‬ ‭causing‬ ‭reputational‬ ‭harm,‬ ‭and‬ ‭enabling‬ ‭cybercrime.‬ ‭Current‬ ‭detection‬ ‭systems‬ ‭struggle‬ ‭to‬ ‭keep‬ ‭up‬ ‭with‬ ‭advancements‬ ‭in‬ ‭fake‬ ‭image‬ ‭generation,‬ ‭creating‬ ‭a‬ ‭gap‬ ‭in‬ ‭reliable‬ ‭identification‬ ‭of‬ ‭fraudulent‬ ‭content.‬ ‭This‬ ‭project‬ ‭aims‬‭to‬‭develop‬‭a‬‭machine‬‭learning‬ ‭system‬‭using‬‭GAN‬‭models‬‭to‬‭detect‬‭fake‬‭images,‬‭safeguarding‬‭digital‬‭media‬‭integrity‬ ‭and addressing social, ethical, and security risks.‬ ‭1.3 OBJECTIVE‬ ‭The‬‭primary‬‭objective‬‭of‬‭our‬‭project‬‭is‬‭to‬‭develop‬‭an‬‭advanced‬‭fake‬‭image‬‭detection‬ ‭system‬‭that‬‭can‬‭distinguish‬‭real‬‭images‬‭from‬‭deepfakes‬‭with‬‭high‬‭accuracy.‬‭Our‬‭focus‬ ‭is‬‭on‬‭creating‬‭a‬‭system‬‭that‬‭is‬‭not‬‭only‬‭effective‬‭but‬‭also‬‭adaptable‬‭to‬‭various‬‭deepfake‬ ‭generation‬‭techniques.‬‭To‬‭achieve‬‭this,‬‭we‬‭aim‬‭to‬‭incorporate‬‭state-of-the-art‬‭machine‬ ‭learning‬‭algorithms,‬‭particularly‬‭Convolutional‬‭Neural‬‭Networks‬‭(CNNs)‬‭,‬‭which‬‭are‬ ‭known‬ ‭for‬ ‭their‬ ‭ability‬ ‭to‬ ‭extract‬ ‭deep‬ ‭features‬ ‭from‬ ‭images.‬ ‭By‬ ‭applying‬ ‭this‬ ‭technology,‬ ‭we‬ ‭hope‬ ‭to‬ ‭build‬ ‭a‬ ‭robust‬ ‭model‬ ‭capable‬ ‭of‬ ‭analyzing‬ ‭images‬ ‭and‬ ‭identifying‬ ‭manipulations‬ ‭introduced‬ ‭by‬ ‭GAN-based‬ ‭deepfake‬ ‭models.‬ ‭Another‬ ‭key‬ ‭objective‬ ‭is‬ ‭to‬ ‭make‬ ‭the‬ ‭detection‬ ‭system‬ ‭user-friendly‬ ‭and‬ ‭applicable‬ ‭to‬ ‭real-world‬ ‭scenarios‬‭such‬‭as‬‭media‬‭forensics,‬‭social‬‭media‬‭platforms,‬‭and‬‭cybersecurity.‬‭With‬‭the‬ ‭increasing‬‭use‬‭of‬‭deepfake‬‭technology‬‭in‬‭online‬‭disinformation‬‭campaigns,‬‭our‬‭project‬ ‭seeks‬ ‭to‬ ‭provide‬ ‭a‬ ‭practical‬ ‭solution‬ ‭that‬ ‭can‬ ‭be‬ ‭integrated‬ ‭into‬‭various‬‭platforms‬‭to‬ ‭ensure media authenticity.‬ ‭1.4 MOTIVATION OF THE PROJECT‬ ‭The‬ ‭motivation‬ ‭behind‬ ‭this‬‭project‬‭stems‬‭from‬‭the‬‭growing‬‭threat‬‭posed‬‭by‬‭deepfake‬ ‭technology,‬‭which‬‭is‬‭increasingly‬‭being‬‭used‬‭for‬‭malicious‬‭purposes.‬‭Deepfakes‬‭have‬ ‭been‬ ‭weaponized‬ ‭to‬ ‭tarnish‬ ‭reputations‬‭,‬ ‭particularly‬ ‭those‬ ‭of‬ ‭public‬ ‭figures,‬ ‭by‬ ‭creating‬ ‭fake‬ ‭videos‬ ‭and‬ ‭images‬ ‭that‬ ‭depict‬ ‭them‬ ‭in‬‭compromising‬‭situations.‬‭These‬ ‭manipulated‬ ‭media‬ ‭have‬ ‭far-reaching‬ ‭implications,‬ ‭from‬ ‭damaging‬ ‭personal‬ ‭reputations to influencing political outcomes.‬ ‭2‬ ‭Additionally,‬ ‭cybersecurity‬ ‭crimes‬ ‭involving‬ ‭deepfakes‬ ‭have‬ ‭seen‬ ‭a‬ ‭rise,‬ ‭with‬ ‭criminals‬ ‭using‬ ‭fake‬ ‭identities‬ ‭for‬ ‭fraud,‬ ‭impersonation,‬ ‭and‬ ‭data‬ ‭theft.‬ ‭The‬ ‭danger‬ ‭extends‬ ‭beyond‬ ‭social‬ ‭media‬ ‭into‬ ‭sectors‬ ‭such‬ ‭as‬ ‭finance,‬ ‭national‬ ‭security,‬ ‭and‬ ‭journalism, where misinformation can have serious consequences.‬ ‭Our‬ ‭project‬ ‭is‬ ‭driven‬ ‭by‬ ‭the‬ ‭need‬ ‭to‬ ‭address‬ ‭this‬ ‭growing‬ ‭concern‬ ‭by‬ ‭providing‬ ‭a‬ ‭reliable,‬ ‭efficient,‬ ‭and‬ ‭easy-to-use‬ ‭detection‬ ‭system‬ ‭that‬ ‭can‬ ‭be‬ ‭employed‬ ‭by‬ ‭individuals‬ ‭and‬ ‭institutions‬ ‭alike.‬ ‭By‬ ‭developing‬ ‭tools‬ ‭that‬ ‭can‬ ‭effectively‬ ‭combat‬ ‭deepfakes,‬ ‭we‬ ‭hope‬ ‭to‬ ‭contribute‬ ‭to‬ ‭a‬ ‭safer‬ ‭and‬ ‭more‬ ‭secure‬ ‭digital‬ ‭environment,‬ ‭ensuring that people can trust the images they see online.‬ ‭1.5 ORGANIZATION OF PROJECT REPORT‬ ‭This‬‭project‬‭report‬‭is‬‭systematically‬‭organized‬‭into‬‭six‬‭chapters‬‭to‬‭provide‬‭a‬‭structured‬ ‭and‬‭detailed‬‭account‬‭of‬‭the‬‭work‬‭undertaken,‬‭from‬‭inception‬‭to‬‭conclusion.‬‭The‬‭report‬ ‭is organized as follows:‬ ‭Chapter 1: Introduction‬ ‭This‬‭chapter‬‭lays‬‭the‬‭foundation‬‭of‬‭the‬‭project‬‭by‬‭presenting‬‭the‬‭background,‬‭problem‬ ‭statement,‬‭objectives,‬‭and‬‭the‬‭significance‬‭and‬‭motivation‬‭for‬‭undertaking‬‭this‬‭work.‬‭It‬ ‭concludes with an outline of the project report’s organization.‬ ‭Chapter 2: Literature Survey‬ ‭This‬‭chapter‬‭provides‬‭an‬‭in-depth‬‭review‬‭of‬‭the‬‭existing‬‭literature,‬‭focusing‬‭on‬‭recent‬ ‭advancements‬ ‭over‬ ‭the‬ ‭past‬ ‭five‬ ‭years.‬ ‭It‬ ‭identifies‬ ‭key‬ ‭gaps‬ ‭and‬ ‭limitations‬ ‭in‬ ‭the‬ ‭current state of knowledge that the project aims to address.‬ ‭Chapter 3: System Development‬ ‭This‬‭chapter‬‭discusses‬‭the‬‭complete‬‭development‬‭process‬‭of‬‭the‬‭system,‬‭starting‬‭from‬ ‭requirement‬ ‭analysis‬ ‭to‬ ‭implementation.‬ ‭It‬ ‭includes‬ ‭technical‬ ‭details‬ ‭such‬ ‭as‬ ‭project‬ ‭design,‬ ‭data‬ ‭preparation,‬ ‭implementation‬ ‭techniques,‬ ‭and‬ ‭challenges‬ ‭faced‬ ‭during‬ ‭development.‬ ‭3‬ ‭Chapter 4: Testing‬ ‭This‬ ‭chapter‬ ‭outlines‬ ‭the‬ ‭testing‬ ‭strategy‬ ‭employed‬ ‭to‬ ‭ensure‬ ‭system‬ ‭reliability,‬ ‭followed by test cases and their respective outcomes.‬ ‭Chapter 5: Results and Evaluation‬ ‭This‬ ‭chapter‬ ‭presents‬ ‭the‬ ‭results‬ ‭obtained‬ ‭from‬ ‭the‬ ‭project‬ ‭and‬ ‭evaluates‬ ‭their‬ ‭significance. It includes a comparative analysis with existing solutions (if applicable).‬ ‭Chapter 6: Conclusions and Future Scope‬ ‭The‬ ‭concluding‬ ‭chapter‬ ‭summarizes‬ ‭the‬‭project‬‭findings,‬‭highlights‬‭its‬‭contributions,‬ ‭and‬‭identifies‬‭its‬‭limitations.‬‭It‬‭also‬‭outlines‬‭the‬‭potential‬‭directions‬‭for‬‭future‬‭research‬ ‭and development.‬ ‭4‬ ‭CHAPTER 2: LITERATURE SURVEY‬ ‭2.1 OVERVIEW OF RELEVANT LITERATURE‬ ‭CNNs‬ ‭were‬ ‭utilized‬ ‭to‬ ‭detect‬ ‭fake‬ ‭images,‬ ‭demonstrating‬ ‭good‬ ‭accuracy‬ ‭but‬ ‭highlighting‬ ‭the‬ ‭need‬ ‭for‬ ‭scalable‬ ‭methods‬ ‭to‬ ‭handle‬ ‭larger‬ ‭datasets‬ ‭effectively‬ ‭.‬ ‭Similarly,‬ ‭ELA‬ ‭combined‬ ‭with‬ ‭deep‬ ‭learning‬ ‭models‬‭like‬‭ResNet18‬‭and‬‭GoogLeNet‬ ‭achieved‬ ‭an‬ ‭accuracy‬ ‭of‬ ‭89.5%‬ ‭in‬ ‭deepfake‬ ‭detection,‬ ‭although‬ ‭it‬ ‭struggled‬ ‭with‬ ‭low-quality‬ ‭or‬ ‭compressed‬ ‭images‬‭.‬‭GANs‬‭and‬‭deep‬‭convolutional‬‭models‬‭proved‬ ‭effective‬ ‭for‬ ‭detecting‬ ‭deepfakes‬ ‭on‬ ‭social‬ ‭media‬ ‭platforms,‬ ‭but‬ ‭issues‬ ‭like‬ ‭mode‬ ‭collapse‬ ‭and‬ ‭limited‬ ‭datasets‬ ‭posed‬ ‭challenges‬ ‭.‬ ‭An‬ ‭improved‬ ‭Dense‬ ‭CNN‬ ‭architecture‬ ‭attained‬ ‭98.33%-99.33%‬ ‭accuracy‬ ‭but‬ ‭faced‬ ‭limitations‬‭when‬‭applied‬‭to‬ ‭cross-domain datasets.‬ ‭Hybrid‬‭approaches,‬‭such‬‭as‬‭combining‬‭VGG16‬‭and‬‭CNN,‬‭achieved‬‭95%‬‭accuracy‬‭and‬ ‭94%‬‭precision‬‭in‬‭fake‬‭image‬‭detection‬‭but‬‭encountered‬‭computational‬‭complexity‬‭as‬‭a‬ ‭bottleneck‬ ‭.‬ ‭GANs‬ ‭were‬ ‭leveraged‬ ‭for‬ ‭high-quality‬ ‭facial‬ ‭image‬ ‭generation,‬ ‭highlighting‬ ‭their‬ ‭efficiency‬ ‭but‬ ‭exposing‬ ‭gaps‬ ‭in‬ ‭face‬ ‭realism‬ ‭and‬ ‭dataset‬ ‭size‬ ‭.‬ ‭Using‬‭GANs‬‭and‬‭the‬‭CelebA‬‭dataset,‬‭researchers‬‭generated‬‭realistic‬‭faces,‬‭but‬‭the‬‭lack‬ ‭of‬ ‭diversity‬ ‭and‬ ‭dependency‬ ‭on‬ ‭dataset‬ ‭quality‬ ‭were‬ ‭major‬ ‭drawbacks‬ ‭.‬ ‭Comparative‬ ‭studies‬ ‭with‬‭CNN‬‭models,‬‭such‬‭as‬‭VGGFace,‬‭reached‬‭99%‬‭accuracy‬‭in‬ ‭detecting‬ ‭manipulated‬ ‭images‬ ‭but‬ ‭noted‬ ‭limitations‬ ‭in‬ ‭adapting‬ ‭to‬ ‭varying‬ ‭deepfake‬ ‭generation techniques.‬ ‭A‬ ‭GAN-based‬ ‭model‬ ‭coupled‬ ‭with‬ ‭Random‬ ‭Forest‬ ‭addressed‬ ‭imbalanced‬ ‭intrusion‬ ‭detection‬‭datasets,‬‭showing‬‭improved‬‭rare‬‭attack‬‭detection‬‭but‬‭facing‬‭overfitting‬‭risks‬ ‭and‬ ‭scalability‬ ‭concerns‬ ‭.‬ ‭DCT‬ ‭anomaly‬ ‭detection‬ ‭in‬ ‭GAN-generated‬ ‭images‬ ‭achieved‬ ‭99.9%‬ ‭accuracy‬ ‭but‬ ‭lacked‬ ‭robustness‬ ‭in‬ ‭noisy‬ ‭environments‬ ‭.‬ ‭Generalizable‬ ‭properties‬‭of‬‭fake‬‭images‬‭were‬‭studied‬‭using‬‭patch-level‬‭classification,‬ ‭emphasizing‬‭the‬‭need‬‭for‬‭standardized‬‭preprocessing‬‭techniques‬‭to‬‭enhance‬‭detection‬ ‭accuracy‬ ‭.‬ ‭Surveys‬ ‭on‬ ‭deepfake‬ ‭detection‬ ‭methods‬ ‭provided‬ ‭comprehensive‬ ‭overviews‬‭of‬‭techniques‬‭but‬‭highlighted‬‭gaps‬‭in‬‭real-time‬‭detection‬‭and‬‭handling‬‭new‬ ‭manipulation techniques.‬ ‭5‬ ‭Pairwise‬ ‭learning‬ ‭methods‬ ‭improved‬ ‭accuracy‬ ‭in‬ ‭detecting‬ ‭manipulated‬ ‭images‬ ‭but‬ ‭were‬ ‭limited‬ ‭to‬ ‭static‬ ‭image‬ ‭analysis,‬ ‭excluding‬ ‭videos‬ ‭.‬ ‭Histogram-based‬ ‭techniques‬ ‭effectively‬ ‭detected‬ ‭fake‬‭colorized‬‭images‬‭but‬‭struggled‬‭against‬‭advanced‬ ‭manipulation‬ ‭methods‬ ‭.‬ ‭GANs‬ ‭facilitated‬ ‭high-fidelity‬ ‭image‬ ‭generation‬ ‭and‬ ‭enhanced‬ ‭deepfake‬ ‭detection‬ ‭capabilities‬ ‭but‬ ‭revealed‬ ‭issues‬ ‭such‬ ‭as‬ ‭dependency‬‭on‬ ‭training‬ ‭data‬ ‭and‬ ‭risks‬ ‭of‬ ‭misuse‬ ‭.‬ ‭CNN‬ ‭architecture‬ ‭studies‬ ‭highlighted‬ ‭their‬ ‭foundational‬ ‭role‬ ‭in‬ ‭image‬ ‭recognition‬ ‭but‬ ‭lacked‬ ‭coverage‬ ‭of‬‭advanced‬‭models‬‭and‬ ‭computational complexities.‬ ‭6‬ ‭Table 1 : Overview of relevant literature‬ ‭ uthor &‬ A J‭ ournal/‬ ‭ ools/‬ T ‭ ey‬ K ‭ imitations‬ L ‭Paper‬ ‭Conference‬ ‭Techniqu‬ ‭Findings/‬ ‭/‬ ‭Title‬ ‭(Year)‬ ‭es/‬ ‭Results‬ ‭Gaps‬ ‭[Citation]‬ ‭Dataset‬ ‭Identified‬ ‭1‬ ‭ adde‬ ‭Kumar‬ M ‭ ational‬ ‭Conference‬ N ‭ onvolutional‬ C ‭Identifies‬ ‭ acks‬ L ‭-‬ ‭Identifying‬ ‭on‬ ‭Advanced‬ ‭Trends‬ ‭Neural‬ f‭ ake‬ ‭images‬ ‭exploratio‬ ‭Fake‬ ‭Images‬ ‭in‬ ‭Computer‬ ‭Science‬ ‭Networks‬ ‭using‬ ‭CNNs,‬ ‭n‬ ‭of‬ ‭Using‬ ‭CNN‬ ‭and‬ ‭Information‬ ‭(CNNs),‬‭Deep‬ ‭explores‬ ‭the‬ ‭alternative‬ ‭‬ ‭Technology (2024)‬ ‭Learning.‬ ‭accuracy‬ ‭of‬ ‭detection‬ ‭CNN‬ ‭models‬ ‭methods‬ ‭in‬ ‭detecting‬ ‭and‬ ‭manipulated‬ ‭scalability‬ ‭media‬ ‭for‬ ‭large‬ ‭datasets‬ ‭2‬ ‭.‬ R ‭ rticle‬‭published‬ A ‭ esNet18,‬ R ‭ 9.5%‬ 8 ‭ ensitive‬‭to‬ S ‭Rafique‬‭et‬ ‭on‬ ‭Scientific‬ ‭GoogLeNet,‬ ‭accuracy‬ ‭low-quality‬ ‭al.,‬ ‭"Deep‬ ‭Reports‬ ‭Squeeze‬ ‭Net,‬ ‭and‬ ‭Fake‬ ‭(2023)‬ ‭ELA,‬ ‭KNN‬ ‭compressed‬ ‭Detection‬ ‭and SVM‬ ‭images‬ ‭and‬ ‭Dataset:‬ ‭Classificat‬ ‭Publicly‬ ‭ion‬ ‭Using‬ ‭available‬ ‭Error-Lev‬ ‭deepfake‬ ‭el‬ ‭detection‬ ‭Analysis‬ ‭dataset‬ ‭by‬ ‭and‬ ‭Deep‬ ‭Yonsei‬ ‭Learning,‬ ‭University‬ ‭" ‬ ‭3‬ ‭.‬ ‭Preeti,‬ P I‭ nternational‬ ‭ ANs‬ G ‭ chieved‬ A ‭ ode‬ M ‭M.‬ ‭Conference‬ ‭on‬ ‭with‬ ‭Inception‬ ‭Score‬ ‭collapse‬ ‭Kumar,‬ ‭Machine‬ ‭Deep‬ ‭IS=‬ ‭1.074‬ ‭and‬ ‭and‬ ‭and‬ ‭H.‬ ‭K.‬ ‭Learning‬ ‭and‬ ‭Convolut‬ ‭Fréchet‬ ‭convergenc‬ ‭Sharma,‬ ‭Data‬ ‭ional‬ ‭Inception‬ ‭e‬ ‭issues‬ ‭"A‬ ‭Engineering‬ ‭Models‬ ‭Distance‬ ‭FID‬‭=‬ ‭with‬ ‭GAN;‬ ‭GAN-Bas‬ ‭(2023)‬ ‭Dataset:‬ ‭49.3‬ ‭small‬ ‭ed‬ ‭Model‬ ‭CelebA-‬ ‭datasets‬ ‭of‬ ‭HQ‬ ‭and‬ ‭pose‬ ‭Deepfake‬ ‭FFHQ‬ ‭challenges.‬ ‭Detection‬ ‭dataset.‬ ‭in‬ ‭Social‬ ‭Media,"‬ ‭‬ ‭7‬ ‭ uthor &‬ A J‭ ournal/‬ ‭ ools/‬ T ‭ ey‬ K ‭ imitations‬ L ‭Paper‬ ‭Conference‬ ‭Techniqu‬ ‭Findings/‬ ‭/‬ ‭Title‬ ‭(Year)‬ ‭es/‬ ‭Results‬ ‭Gaps‬ ‭[Citation]‬ ‭Dataset‬ ‭Identified‬ ‭4‬ ‭.‬ ‭Patel‬ ‭et‬ ‭al.,‬ ‭IEEE Access (2023)‬ Y ‭ -CNN‬ D ‭Achieved‬ ‭ imited‬ L ‭"An‬ ‭Improved‬ ‭Dataset:‬ a‭ ccuracy‬ ‭in‬ ‭the‬ ‭performanc‬ ‭Dense‬ ‭CNN‬ ‭Utilises‬ ‭range‬ ‭of‬ ‭e‬ ‭on‬ ‭Architecture‬ ‭images‬ ‭from‬ ‭98.33%-99.33%‬ ‭cross-doma‬ ‭for‬ ‭Deepfake‬ ‭multiple‬ ‭in datasets.‬ ‭Image‬ ‭sources‬ ‭for‬ ‭Detection," ‬ ‭training.‬ ‭5‬ ‭.‬ ‭Munir‬ K ‭ pplied‬ A ‭Sciences‬ D ‭ eep‬ ‭ chieved‬ A ‭ omputational‬ C ‭et‬ ‭al.,‬ ‭"A‬ ‭(2022)‬ ‭Learning‬ ‭95%‬ ‭complexity‬ ‭Novel‬ ‭(Hybrid‬ ‭precision‬ ‭and‬ ‭Deep‬ ‭of‬ ‭94%‬ ‭Learning‬ ‭VGG16‬ ‭accuracy‬ ‭in‬ ‭Approach‬ ‭and‬ ‭deepfake‬ ‭for‬ ‭CNN)‬ ‭detection‬ ‭Deepfake‬ ‭Dataset:Photos‬ ‭Image‬ ‭hopped‬ ‭real‬ ‭Detection‬ ‭and‬ ‭fake‬ ‭faces‬ ‭" ‬ ‭dataset‬ ‭6‬ ‭D.‬ ‭Koli‬ ‭et‬ I‭ nternational‬ ‭Journal‬ G‭ ANs,‬ ‭ fficientl‬ E ‭ imited‬ L a‭ l.,‬ ‭For‬ ‭Multidisciplinary‬ ‭Deep‬ ‭y‬ ‭dataset‬ ‭"Explorin‬ ‭Research (2022)‬ ‭Learning‬ ‭generated‬ ‭usage‬ ‭and‬ ‭g‬ ‭Dataset:‬ ‭high-qual‬ ‭improveme‬ ‭Generativ‬ ‭N/A‬ ‭ity‬ ‭facial‬ ‭nt‬ ‭needed‬ ‭e‬ ‭images‬ ‭in‬ ‭face‬ ‭Adversari‬ ‭using‬ ‭realism‬ ‭al‬ ‭GANs.‬ ‭Networks‬ ‭for‬ ‭Face‬ ‭Generatio‬ ‭n" ‬ ‭7‬ ‭ ake‬ ‭Face‬ F I‭ nternational‬ ‭ AN‬ G ‭ enerate‬ G ‭ imited‬ L ‭Generator‬ ‭Journal‬ ‭of‬ ‭Dataset:‬ ‭d‬ ‭realistic‬ ‭diversity‬ ‭in‬ ‭:‬ ‭Advanced‬ ‭CelebA.‬ ‭human‬ ‭generated‬ ‭Generatin‬ ‭Computer‬ ‭faces‬ ‭faces;‬ ‭g‬ ‭Fake‬ ‭Science‬ ‭and‬ ‭with‬ ‭high‬ ‭dependency‬ ‭Human‬ ‭Applications‬ ‭quality‬ ‭on‬ ‭the‬ ‭Faces‬ ‭(IJACSA)‬ ‭quality‬ ‭of‬ ‭using‬ ‭(2022)‬ ‭the dataset.‬ ‭GAN. ‬ ‭8‬ ‭ uthor &‬ A J‭ ournal/‬ ‭ ools/‬ T ‭ ey‬ K ‭ imitations‬ L ‭Paper‬ ‭Conference‬ ‭Techniqu‬ ‭Findings/‬ ‭/‬ ‭Title‬ ‭(Year)‬ ‭es/‬ ‭Results‬ ‭Gaps‬ ‭[Citation]‬ ‭Dataset‬ ‭Identified‬ ‭8‬ ‭.‬ H ‭S.‬ ‭ omputational‬ C ‭ NNs,‬ C ‭ chieved‬ A ‭ ay‬ ‭not‬ M ‭Shad‬ ‭et‬ ‭Intelligence‬ ‭and‬ ‭specifically‬‭the‬ ‭99%‬ ‭address‬ ‭all‬ ‭al.,‬ ‭Neuroscience‬ ‭VGGFace‬ ‭accuracy‬ ‭variations‬ ‭"Compara‬ ‭(2021)‬ ‭model‬ ‭in‬ ‭deepfake‬ ‭tive‬ ‭Dataset:‬ ‭techniques;‬ ‭Analysis‬ ‭Kaggle‬ ‭reliant‬ ‭on‬ ‭of‬ ‭dataset‬ ‭the‬‭selected‬ ‭Deepfake‬ ‭(70,000‬ ‭datasets.‬ ‭Image‬ ‭images‬ ‭from‬ ‭Detection‬ ‭Flickr‬ ‭and‬ ‭Method‬ ‭70,000‬ ‭Using‬ ‭images‬ ‭Convoluti‬ ‭produced‬ ‭by‬ ‭onal‬ ‭StyleGAN)‬ ‭Neural‬ ‭Network"‬ ‭‬ ‭9.‬ ‭J.‬ ‭Lee‬ ‭and‬ ‭K.‬ ‭ ersonal‬ P ‭and‬ ‭ AN,‬ G ‭ chieved‬ A ‭Overfitting‬ ‭ ark,‬ P ‭Ubiquitous‬ ‭Random‬ ‭improved‬ r‭ isk‬ ‭in‬ ‭"GAN-based‬ ‭Computing‬ ‭Forest‬ ‭classification‬ ‭GAN,‬ ‭Imbalanced‬ ‭(2021)‬ ‭Dataset:‬ ‭performance‬ ‭needs‬ ‭Data‬ ‭Intrusion‬ ‭CICIDS‬‭2017‬ ‭of rare attacks.‬ ‭further‬ ‭Detection‬ ‭dataset‬ ‭optimizatio‬ ‭System".‬ ‭n‬ ‭for‬ ‭larger‬ ‭datasets‬ 1‭ 0‬ O ‭.‬ ‭Giudice‬ ‭et‬ ‭arXiv (2021)‬ ‭ AN‬ ‭Specific‬ A G ‭ chieved‬ ‭ equires‬ R ‭.‬ ‭al.,‬ ‭"Fighting‬ ‭Frequencies‬ ‭99.9%‬ ‭additional‬ ‭Deepfakes‬ ‭by‬ ‭(GSF),‬ ‭accuracy.‬ ‭robustness‬ ‭Detecting‬ ‭GAN‬ ‭Discrete‬ ‭in‬ ‭noisy‬ ‭DCT‬ ‭Cosine‬ ‭scenarios‬ ‭Anomalies"‬ ‭Transform‬ ‭‬ ‭(DCT)‬ ‭Dataset:‬ ‭CelebA,‬ ‭FFHQ,‬ ‭Deepfak‬ ‭e‬ ‭datasets‬ ‭9‬ ‭ uthor &‬ A J‭ ournal/‬ ‭ ools/‬ T ‭ ey‬ K ‭ imitations‬ L ‭Paper‬ ‭Conference‬ ‭Techniqu‬ ‭Findings/‬ ‭/‬ ‭Title‬ ‭(Year)‬ ‭es/‬ ‭Results‬ ‭Gaps‬ ‭[Citation]‬ ‭Dataset‬ ‭Identified‬ ‭11.‬ L ‭.‬ ‭Chai‬ ‭et‬ ‭al.,‬ ‭ uropean‬ E ‭ AN‬ ‭models‬ G ‭ ffective‬ E ‭ ifferences‬ D ‭"What‬ ‭Makes‬ ‭Conference‬ ‭on‬ ‭(ProGAN,‬ ‭detection‬ ‭of‬ ‭in‬ ‭Fake‬ ‭Images‬ ‭Computer‬‭Vision‬ ‭StyleGAN,‬ ‭fake‬ ‭images‬ ‭preprocessi‬ ‭Detectable?‬ ‭(ECCV) (2020)‬ ‭Glow,‬ ‭etc.),‬ ‭through‬ ‭ng‬ ‭Understanding‬ ‭CNNs‬ ‭patch-level‬ ‭pipelines‬ ‭Properties‬ ‭That‬ ‭Dataset:‬ ‭classification.‬ ‭can‬ ‭affect‬ ‭Generalize,"‬ ‭CelebA-‬ ‭accuracy‬ ‭if‬ ‭‬ ‭HQ,‬ ‭not‬ ‭FFHQ,‬ ‭properly‬ ‭and‬ ‭mitigated.‬ ‭others.‬ ‭12.‬ R ‭ uben‬ ‭arXiv (2020)‬ ‭ eep‬ D ‭ omprehensiv‬ C ‭ imited‬ L ‭Tolosana,‬ ‭Learning,‬ ‭e‬ ‭survey‬ ‭of‬ ‭focus‬ ‭on‬ ‭Ruben‬ ‭GANs,‬ ‭Face‬ ‭deepfake‬ ‭real-time‬ ‭Vera-Rodriguez‬ ‭Manipulation‬ ‭techniques‬‭and‬ ‭detection‬ ‭,‬ ‭Julian‬ ‭Fierrez,‬ ‭Detection‬ ‭detection‬ ‭and‬ ‭Javier‬ ‭methods,‬ ‭emerging‬ ‭Ortega-Garcia‬ ‭-‬ ‭covering‬ ‭techniques‬ ‭DeepFakes‬ ‭and‬ ‭state-of-the-art‬ ‭for‬ ‭Beyond:‬ ‭A‬ ‭detection‬ ‭improved‬ ‭Survey‬ ‭of‬ ‭Face‬ ‭models‬ ‭fake‬ ‭Manipulation‬ ‭generation‬ ‭and‬ ‭Fake‬ ‭Detection. ‬ 1‭ 3‬ C ‭ hih-Chu‬ ‭ pplied‬ A ‭ airwise‬ P ‭ roposes‬ P ‭ ocuses‬ F ‭.‬ ‭ng‬ ‭Hsu,‬ ‭Sciences (2020)‬ ‭Learning,‬ ‭a‬ ‭on‬ ‭Yi-Xiu‬ ‭Deep‬ ‭pairwise‬ ‭image-bas‬ ‭Zhuang,‬ ‭Learning,‬ ‭learning‬ ‭ed‬ ‭Chia-Yen‬ ‭Image‬ ‭method‬‭to‬ ‭deepfakes,‬ ‭Lee‬ ‭-‬ ‭Manipulation‬ ‭improve‬ ‭lacks‬ ‭Deep‬ ‭the‬ ‭exploratio‬ ‭Fake‬ ‭detection‬ ‭n‬ ‭of‬ ‭video‬ ‭Image‬ ‭accuracy‬ ‭deepfake‬ ‭Detection‬ ‭of‬ ‭detection‬ ‭Based‬ ‭on‬ ‭deepfake‬ ‭techniques‬ ‭Pairwise‬ ‭images‬ ‭Learning‬ ‭‬ ‭10‬ ‭ uthor &‬ A J‭ ournal/‬ ‭ ools/‬ T ‭ ey‬ K ‭ imitations‬ L ‭Paper‬ ‭Conference‬ ‭Techniqu‬ ‭Findings/‬ ‭/‬ ‭Title‬ ‭(Year)‬ ‭es/‬ ‭Results‬ ‭Gaps‬ ‭[Citation]‬ ‭Dataset‬ ‭Identified‬ ‭14.‬ Y ‭.‬ ‭Guo‬ ‭et‬ ‭IEEE‬ ‭ CID-HIST‬ F ‭ igh‬ H ‭ educed‬ R ‭al.,‬ ‭"Fake‬ ‭ ransactions‬ ‭on‬ T ‭(Histogram-b‬ ‭accuracy‬ ‭accuracy‬ ‭Colorized‬ ‭Image‬ ‭ased)‬ ‭&‬ ‭in‬ ‭with‬ ‭more‬ ‭Image‬ ‭Processing‬ ‭FCID-FE‬ ‭detecting‬ ‭advanced‬ ‭Detection,‬ ‭(2018)‬ ‭(Feature‬ ‭fake‬ ‭colorization‬ ‭" ‬ ‭Extraction‬ ‭in‬ ‭colourize‬ ‭methods‬ ‭LAB‬ ‭space)‬ ‭d images‬ ‭detection‬ ‭methods‬ ‭Dataset:‬ ‭Images‬ ‭generated‬ ‭by‬ ‭state-of-the-ar‬ ‭t‬ ‭colorization‬ ‭techniques‬ ‭15.‬ S ‭ mith,‬ ‭J.‬ ‭ ature‬ ‭Scientific‬ N ‭ AN‬ G ‭ chieved‬ A ‭ ensitivity‬ S ‭(2018).‬ ‭Reports (2018)‬ ‭Dataset;‬ ‭high‬ ‭to‬ ‭training‬ ‭Deep‬ ‭CelebA,‬ ‭fidelity‬ ‭in‬ ‭data‬ ‭Fakes”‬ ‭FFHQ,‬ ‭image‬ ‭quality;‬ ‭using‬ ‭and‬‭other‬ ‭generatio‬ ‭potential‬ ‭Generativ‬ ‭datasets‬ ‭n‬ ‭and‬ ‭for misuse.‬ ‭e‬ ‭for‬ ‭face‬ ‭improved‬ ‭Adversari‬ ‭generatio‬ ‭detection‬ ‭al‬ ‭n‬ ‭methods‬ ‭Networks‬ ‭(GAN).‬ ‭Unpublish‬ ‭ed‬ ‭conferenc‬ ‭e‬ ‭presentati‬ ‭on,‬ ‭University‬ ‭of‬ ‭California‬ ‭San‬ ‭Diego.‬ ‭‬ ‭11‬ ‭ uthor &‬ A J‭ ournal/‬ ‭ ools/‬ T ‭ ey‬ K ‭ imitations‬ L ‭Paper‬ ‭Conference‬ ‭Techniqu‬ ‭Findings/‬ ‭/‬ ‭Title‬ ‭(Year)‬ ‭es/‬ ‭Results‬ ‭Gaps‬ ‭[Citation]‬ ‭Dataset‬ ‭Identified‬ 1‭ 6‬ K ‭ eiron‬ ‭ npublished‬ ‭but‬ U ‭ onvolut‬ C ‭ etailed‬ D ‭ imited‬ L ‭.‬ ‭Teilo‬ ‭available‬ ‭ional‬ ‭explanati‬ ‭coverage‬ ‭O'Shea‬ ‭-‬ ‭online(2015)‬ ‭Neural‬ ‭on‬ ‭of‬ ‭of‬ ‭An‬ ‭Network‬ ‭CNNs,‬ ‭advanced‬ ‭Introducti‬ ‭s‬ ‭layers‬ ‭CNN‬ ‭on‬ ‭to‬ ‭(CNNs),‬ ‭(convolut‬ ‭architectur‬ ‭Convoluti‬ ‭Filters,‬ ‭ional,‬ ‭es‬ ‭(e.g.,‬ ‭onal‬ ‭Image‬ ‭pooling,‬ ‭ResNet,‬ ‭Neural‬ ‭Recognit‬ ‭and‬ ‭fully‬ ‭Inception)‬ ‭Networks‬ ‭ion‬ ‭connected‬ ‭.‬ ‭Does‬‭not‬ ‭‬ ‭Tasks‬ ‭),‬ ‭and‬ ‭address‬ ‭applicatio‬ ‭computati‬ ‭ns‬ ‭in‬ ‭onal‬ ‭image‬ ‭complexiti‬ ‭processin‬ ‭es‬ ‭or‬ ‭g‬ ‭and‬ ‭alternative‬ ‭object‬ ‭techniques‬ ‭detection‬ ‭like‬ ‭RNNs.‬ ‭2.2 KEY GAPS IN LITERATURE‬ ‭1.‬ ‭Existing models for fake image detection face challenges with high‬ c‭ omputational resource demands, which hinder their efficiency and real-time‬ ‭application. Training and inference times are often long, reducing their‬ ‭practicality in dynamic scenarios, and models struggle to adapt to evolving‬ ‭deepfake techniques, leading to decreased accuracy.‬ ‭2.‬ ‭Models trained on specific datasets have limited effectiveness when applied to‬ d‭ iverse or unseen images, highlighting the need for better generalization to‬ ‭improve cross-dataset and real-world applicability.‬ ‭3.‬ ‭Current systems often ignore multimodal cues such as audio or text, but‬ i‭ncorporating these features could enhance detection robustness by providing a‬ ‭richer context.‬ ‭4.‬ ‭Many models operate as "black boxes," offering little transparency into their‬ d‭ ecision-making, and improving explainability would increase trust, especially‬ ‭in sensitive applications.‬ ‭12‬ ‭5.‬ ‭Ethical concerns, including the reinforcement of biases in training data and‬ p‭ redictions, as well as the need to minimize false positives and negatives, are‬ ‭crucial for ensuring fairness and reliability in areas like law enforcement and‬ ‭journalism.‬ ‭13‬ ‭CHAPTER 3: SYSTEM DEVELOPMENT‬ ‭3.1 REQUIREMENTS AND ANALYSIS‬ ‭Effective‬ ‭system‬ ‭development‬ ‭begins‬ ‭with‬ ‭identifying‬ ‭and‬ ‭analyzing‬ ‭key‬ ‭requirements.‬ ‭This‬ ‭section‬ ‭outlines‬ ‭the‬ ‭tools,‬ ‭technologies,‬ ‭and‬ ‭processes‬ ‭utilized‬ ‭to‬ ‭support‬ ‭the‬ ‭project,‬ ‭ensuring‬ ‭alignment‬ ‭with‬ ‭the‬ ‭objectives‬ ‭of‬ ‭creating‬ ‭a‬ ‭robust‬ ‭deepfake detection system.‬ ‭3.1.1 SYSTEM REQUIREMENTS‬ ‭Hardware Requirements‬ ‭‬ ‭NVIDIA‬ ‭GPU‬ ‭with‬ ‭CUDA‬ ‭Toolkit:‬ ‭Crucial‬ ‭for‬ ‭accelerating‬ ‭the‬ ‭training‬ ‭of‬ ‭convolutional neural networks (CNNs) used in deep face detection.‬ ‭Software Requirements‬ ‭‬ ‭Python‬ ‭Environment:‬ ‭Managed‬ ‭via‬ ‭Anaconda‬ ‭for‬ ‭simplified‬ ‭package‬ ‭management and seamless dependency resolution.‬ ‭‬ ‭Jupyter‬ ‭Notebook:‬ ‭Facilitates‬ ‭model‬ ‭experimentation‬ ‭and‬ ‭visualizing‬‭training‬ ‭results interactively.‬ ‭‬ ‭Google‬ ‭Colab:‬ ‭Provides‬ ‭additional‬ ‭GPU‬ ‭support‬ ‭and‬ ‭enables‬ ‭collaborative‬ ‭development.‬ ‭Libraries and Frameworks‬ ‭‬ ‭TensorFlow/Keras: For implementing and training CNN models.‬ ‭‬ ‭OpenCV: Handles image processing and preprocessing tasks.‬ ‭‬ ‭Pandas‬ ‭and‬ ‭NumPy:‬ ‭Essential‬ ‭for‬ ‭efficient‬ ‭data‬ ‭manipulation‬ ‭and‬ ‭numerical‬ ‭computations.‬ ‭3.1.2 KEY FUNCTIONAL REQUIREMENTS‬ ‭‬ ‭The‬ ‭system‬ ‭must‬ ‭preprocess‬ ‭datasets‬ ‭that‬ ‭include‬ ‭both‬ ‭real‬ ‭and‬ ‭deepfake‬ ‭images to prepare them for model training and evaluation.‬ ‭14‬ ‭‬ ‭The‬ ‭system‬ ‭should‬ ‭train‬ ‭and‬ ‭compare‬ ‭different‬ ‭convolutional‬ ‭neural‬‭network‬ ‭(CNN)‬ ‭architectures,‬ ‭such‬ ‭as‬ ‭EfficientNet‬ ‭B0,‬ ‭B2,‬ ‭and‬ ‭B4,‬ ‭to‬ ‭identify‬ ‭the‬ ‭model that achieves optimal accuracy.‬ ‭‬ ‭The‬ ‭system‬ ‭must‬ ‭provide‬ ‭detailed‬ ‭performance‬ ‭metrics,‬ ‭including‬ ‭training‬ ‭time, accuracy, and loss, for each model during the evaluation phase.‬ ‭3.1.3 KEY NON-FUNCTIONAL REQUIREMENTS‬ ‭‬ ‭The system should be scalable, capable of handling large datasets and adapting‬ ‭to future advancements in deepfake generation technologies without‬ ‭compromising performance.‬ ‭‬ ‭The system should ensure robustness, maintaining high detection accuracy‬ ‭even in the presence of low-quality, noisy, or compressed images.‬ ‭‬ ‭It should be efficient in terms of computational resource usage, minimizing the‬ ‭time required for training and inference while maintaining accuracy.‬ ‭‬ ‭The system should offer ease of integration with other tools and platforms for‬ ‭seamless development, experimentation, and deployment.‬ ‭‬ ‭The system must be secure, protecting sensitive data during the data collection,‬ ‭preprocessing, and model evaluation phases.‬ ‭3.2 PROJECT DESIGN AND ARCHITECTURE‬ ‭The‬ ‭project‬ ‭architecture‬ ‭and‬ ‭design‬ ‭are‬ ‭an‬ ‭important‬‭part‬‭to‬‭ensure‬‭the‬‭scalability‬‭of‬ ‭the‬‭project,‬‭its‬‭efficiency‬‭and‬‭robustness‬‭as‬‭well.‬‭This‬‭section‬‭aims‬‭to‬‭outline‬‭the‬‭main‬ ‭components‬ ‭of‬‭the‬‭project’s‬‭architecture,‬‭its‬‭design‬‭considerations‬‭and‬‭the‬‭workflows‬ ‭that show its functionality.‬ ‭3.2.1 OVERVIEW OF PROJECT ARCHITECTURE‬ ‭This‬ ‭project‬ ‭makes‬‭efficient‬‭use‬‭of‬‭modern‬‭tools‬‭and‬‭technologies‬‭in‬‭order‬‭to‬‭build‬‭a‬ ‭system‬ ‭that‬ ‭can‬ ‭detect‬ ‭fake‬ ‭images‬ ‭effectively‬ ‭and‬ ‭efficiently.‬ ‭The‬ ‭architecture‬ ‭also‬ ‭includes‬ ‭the‬ ‭components‬ ‭for‬ ‭data‬ ‭preprocessing,‬ ‭model‬ ‭training,‬ ‭evaluation‬ ‭and‬ ‭deployment.‬ ‭15‬ ‭Key elements of the architecture include:‬ ‭‬ ‭Data Pipeline:‬ ‭○‬ ‭Integration‬‭with‬‭and‬‭collection‬‭of‬‭datasets‬‭containing‬‭both‬‭real‬‭and‬‭fake‬ ‭images.‬ ‭○‬ ‭Use‬ ‭of‬ ‭preprocessing‬ ‭tools‬ ‭like‬ ‭Python‬ ‭libraries‬ ‭(e.g.,‬ ‭OpenCV,‬ ‭NumPy) to standardize and augment data.‬ ‭‬ ‭Model Training Environment:‬ ‭○‬ ‭TensorFlow‬ ‭framework‬ ‭used‬ ‭for‬ ‭developing‬ ‭Convolutional‬ ‭Neural‬ ‭Network (CNN) models. ‬ ‭○‬ ‭NVIDIA GPUs with CUDA Toolkit, for accelerated training. ‬ ‭○‬ ‭Various‬ ‭platforms‬ ‭like‬ ‭Anaconda‬ ‭Navigator,‬ ‭Jupyter‬ ‭Notebook‬ ‭and‬ ‭Google Colab for experimentation. ‬ ‭‬ ‭Evaluation Metrics:‬ ‭○‬ ‭Metrics‬ ‭accuracy,‬ ‭precision,‬ ‭recall,‬ ‭and‬ ‭F1-score‬ ‭to‬ ‭validate‬ ‭model‬ ‭performance.‬ ‭3.2.2 WORKFLOW DIAGRAM‬ ‭The‬‭workflow‬‭illustrates‬‭the‬‭end-to-end‬‭process‬‭of‬‭the‬‭system,‬‭from‬‭data‬‭acquisition‬‭to‬ ‭comparative analysis of those models. Key steps include:‬ ‭1.‬ ‭Data Collection:‬‭Gather datasets of real and fake‬‭images.‬ ‭2.‬ ‭Data‬ ‭Preprocessing:‬ ‭Clean,‬ ‭augment,‬ ‭and‬ ‭split‬‭data‬‭into‬‭training,‬‭validation,‬ ‭and test sets.‬ ‭3.‬ ‭Model‬ ‭Training:‬ ‭Train‬ ‭CNN‬ ‭models,‬ ‭such‬ ‭as‬ ‭ResNet101‬ ‭and‬ ‭EfficientNet,‬ ‭using optimized hyperparameters.‬ ‭4.‬ ‭Evaluation:‬‭Test model accuracy and analyze performance‬‭metrics.‬ ‭Figure‬‭1‬‭explains‬‭workflow‬‭of‬‭the‬‭system‬‭and‬‭outlines‬‭the‬‭complete‬‭process‬‭from‬‭data‬ ‭acquisition‬ ‭to‬ ‭model‬ ‭evaluation.‬ ‭It‬ ‭begins‬ ‭with‬ ‭data‬ ‭collection,‬ ‭where‬ ‭datasets‬ ‭containing‬ ‭both‬ ‭real‬ ‭and‬ ‭fake‬ ‭images‬ ‭are‬ ‭gathered.‬ ‭This‬ ‭data‬ ‭is‬ ‭then‬ ‭preprocessed,‬ ‭involving‬ ‭steps‬ ‭like‬ ‭cleaning,‬ ‭augmenting,‬ ‭and‬ ‭splitting‬ ‭the‬ ‭data‬ ‭into‬ ‭training,‬ ‭validation,‬ ‭and‬ ‭test‬‭sets‬‭to‬‭ensure‬‭proper‬‭model‬‭training‬‭and‬‭generalization.‬‭Once‬‭the‬ ‭data‬ ‭is‬ ‭prepared,‬ ‭the‬‭system‬‭proceeds‬‭to‬‭model‬‭training,‬‭where‬‭Convolutional‬‭Neural‬ ‭Network‬ ‭Model‬ ‭GAN‬‭is‬‭trained‬‭using‬‭optimized‬‭hyperparameters‬‭to‬‭achieve‬‭the‬‭best‬ ‭16‬ ‭performance.‬‭Finally,‬‭the‬‭model‬‭undergoes‬‭evaluation,‬‭where‬‭its‬‭accuracy‬‭is‬‭tested‬‭and‬ ‭various‬‭performance‬‭metrics,‬‭including‬‭precision,‬‭recall,‬‭and‬‭F1-score,‬‭are‬‭analyzed‬‭to‬ ‭assess the model's ability to detect deep fake images effectively.‬ ‭Figure 1 : Workflow Diagram‬ ‭3.2.3 DESIGN CONSIDERATIONS‬ ‭To‬‭ensure‬‭an‬‭efficient‬‭and‬‭effective‬‭system,‬‭the‬‭following‬‭design‬‭considerations‬‭were‬ ‭prioritized:‬ ‭‬ ‭Modular‬ ‭Design:‬ ‭The‬ ‭architecture‬ ‭is‬‭divided‬‭into‬‭modular‬‭components‬‭(e.g.,‬ ‭preprocessing,‬ ‭training,‬ ‭evaluation)‬ ‭to‬ ‭allow‬ ‭independent‬ ‭updates‬ ‭and‬ ‭scalability as we move ahead with its implementation.‬ ‭‬ ‭Performance‬ ‭Optimization:‬ ‭Use‬ ‭of‬ ‭GPUs‬ ‭and‬ ‭parallel‬ ‭processing‬‭to‬‭reduce‬ ‭training time and improve inference speed.‬ ‭‬ ‭User-Friendly‬ ‭Interface:‬ ‭Integration‬ ‭with‬ ‭tools‬ ‭like‬ ‭Jupyter‬ ‭Notebook‬ ‭for‬ ‭easy interaction and visualization of results.‬ ‭‬ ‭Error‬ ‭Handling:‬ ‭Incorporating‬ ‭mechanisms‬ ‭to‬ ‭handle‬ ‭corrupted‬ ‭data,‬ ‭failed‬ ‭training runs, and other potential issues.‬ ‭3.2.4 PROJECT ARCHITECTURE DIAGRAM‬ ‭17‬ ‭The‬‭project‬‭architecture‬‭diagram‬‭provides‬‭a‬‭high-level‬‭view‬‭of‬‭the‬‭system‬‭components‬ ‭and their interactions:‬ ‭‬ ‭Data‬ ‭Input‬ ‭and‬ ‭Splitting‬ ‭Layer:‬ ‭Handles‬ ‭data‬ ‭ingestion,‬ ‭preprocessing‬‭and‬ ‭its splitting into test train and validation data.‬ ‭‬ ‭Training‬ ‭Layer:‬ ‭Includes‬ ‭the‬ ‭GAN‬ ‭Architecture‬ ‭that‬ ‭further‬ ‭consists‬ ‭of‬ ‭a‬ ‭generator‬ ‭using‬ ‭StyleGan‬ ‭or‬ ‭ProGan‬ ‭and‬ ‭a‬ ‭CNN‬ ‭models‬ ‭based‬‭discriminator‬ ‭with‬ ‭the‬ ‭necessary‬ ‭computational‬ ‭environment‬ ‭(e.g.,‬ ‭NVIDIA‬ ‭GPU,‬ ‭Intel‬ ‭GPU, CUDA Toolkit).‬ ‭‬ ‭Evaluation‬ ‭Layer:‬ ‭Provides‬ ‭metrics‬ ‭and‬ ‭insights‬ ‭to‬ ‭validate‬ ‭model‬ ‭performance.‬ ‭Figure‬ ‭2‬ ‭illustrates‬ ‭the‬ ‭project‬ ‭architecture‬ ‭and‬ ‭workflow‬ ‭for‬ ‭deep‬ ‭fake‬ ‭image‬ ‭detection.‬ ‭It‬ ‭begins‬ ‭with‬ ‭Data‬ ‭Collection,‬‭where‬‭datasets‬‭of‬‭real‬‭and‬‭fake‬‭images‬‭are‬ ‭gathered.‬ ‭The‬ ‭collected‬ ‭data‬ ‭then‬‭undergoes‬‭Data‬‭Preprocessing,‬‭including‬‭steps‬‭like‬ ‭resizing,‬ ‭formatting,‬ ‭and‬ ‭image‬ ‭enhancement‬ ‭to‬ ‭ensure‬ ‭consistency‬ ‭and‬ ‭improve‬‭the‬ ‭quality‬ ‭of‬ ‭the‬ ‭data.‬ ‭Next,‬ ‭the‬ ‭data‬ ‭is‬ ‭Split‬ ‭into‬ ‭training‬ ‭and‬ ‭testing‬ ‭sets,‬ ‭with‬ ‭70%‬ ‭allocated‬‭for‬‭training‬‭and‬‭30%‬‭for‬‭testing.‬‭The‬‭GAN‬‭Architecture‬‭plays‬‭a‬‭crucial‬‭role‬ ‭in‬‭this‬‭system,‬‭where‬‭Resampling‬‭techniques‬‭are‬‭used‬‭to‬‭handle‬‭imbalanced‬‭data.‬‭The‬ ‭data‬ ‭is‬‭Categorized‬‭into‬‭two‬‭primary‬‭classes:‬‭Rare‬‭Class‬‭and‬‭Other‬‭Classes,‬‭allowing‬ ‭for‬ ‭targeted‬ ‭training‬ ‭strategies.‬ ‭The‬ ‭GAN‬ ‭Generator‬ ‭(e.g.,‬ ‭StyleGan‬ ‭or‬ ‭ProGan)‬ ‭generates‬ ‭synthetic‬ ‭data,‬ ‭which‬ ‭is‬ ‭then‬ ‭Resampled‬ ‭for‬ ‭training‬ ‭purposes.‬‭In‬‭parallel,‬ ‭Model‬ ‭Training‬ ‭takes‬ ‭place‬ ‭using‬ ‭CNN-based‬ ‭architectures‬ ‭to‬ ‭train‬ ‭the‬ ‭GAN‬ ‭Discriminator‬ ‭for‬ ‭effective‬ ‭fake‬ ‭image‬ ‭detection.‬ ‭Finally,‬ ‭the‬ ‭system‬ ‭undergoes‬ ‭Testing‬ ‭Using‬ ‭Evaluation‬ ‭Metrics,‬ ‭where‬ ‭the‬ ‭model’s‬ ‭performance‬ ‭is‬ ‭evaluated,‬ ‭and‬ ‭Result Analysis helps determine the success and efficiency of the system.‬ ‭18‬ ‭Figure 2 : Project Architecture Diagram‬ ‭3.2.5 KEY TECHNOLOGIES USED‬ ‭The‬ ‭following‬ ‭tools‬ ‭and‬ ‭technologies‬ ‭were‬ ‭essential‬ ‭in‬ ‭designing‬ ‭and‬ ‭implementing‬ ‭the system:‬ ‭‬ ‭Hardware:‬ ‭○‬ ‭NVIDIA‬ ‭GPUs‬ ‭with‬ ‭CUDA‬ ‭Toolkit,‬ ‭INTEL‬ ‭GPU‬ ‭for‬ ‭accelerated‬ ‭model training.‬ ‭‬ ‭Software:‬ ‭○‬ ‭Kaggle for dataset exploration and existing model explorations.‬ ‭○‬ ‭Python-based libraries for data processing (NumPy, Pandas, OpenCV).‬ ‭○‬ ‭Machine learning frameworks like TensorFlow and Keras.‬ ‭○‬ ‭Jupyter‬ ‭Notebook‬ ‭and‬ ‭Google‬ ‭Colab‬ ‭for‬ ‭development‬ ‭and‬ ‭experimentation..‬ ‭19‬ ‭3.3 DATA PREPARATION‬ ‭3.3.1 DATA PIPELINE‬ ‭The‬ ‭data‬ ‭pipeline‬ ‭ensures‬ ‭a‬ ‭streamlined‬ ‭process‬ ‭for‬ ‭preparing‬ ‭input‬ ‭data‬ ‭for‬ ‭model‬ ‭training and evaluation.‬ ‭Data Collection‬ ‭‬ ‭Dataset Used:‬ ‭○‬ ‭Yonsei‬‭Fake‬‭and‬‭Real‬‭Image‬‭Dataset:‬‭Contains‬‭2041‬‭images‬‭(960‬‭fake‬ ‭and 1081 real). ‬ ‭○‬ ‭NVIDIA‬ ‭Flickr‬ ‭Dataset‬ ‭subset:‬ ‭Comprises‬ ‭140k‬ ‭images‬‭(70k‬‭real‬‭and‬ ‭70k fake generated by StyleGAN). ‬ ‭‬ ‭Dataset Split:‬ ‭○‬ ‭Yonsei Dataset:‬‭Splitted using code into 80% training‬‭and 20% testing.‬ ‭○‬ ‭NVIDIA‬ ‭Flickr‬ ‭Dataset:‬ ‭Pre-splitted‬ ‭on‬ ‭kaggle‬ ‭into‬ ‭50k‬ ‭images‬ ‭for‬ ‭training (real and fake each), 10k for validation, and 10k for testing.‬ ‭Data Preprocessing‬ ‭Preprocessing ensures consistent and high-quality input to the CNN models:‬ ‭‬ ‭Resizing:‬ ‭Images‬ ‭were‬ ‭resized‬ ‭to‬ ‭150x150‬ ‭or‬ ‭224x224‬ ‭pixels,‬ ‭depending‬ ‭on‬ ‭the model requirements.‬ ‭‬ ‭Normalization:‬‭Pixel values were normalized to the‬‭range [0, 1].‬ ‭‬ ‭Data‬ ‭Augmentation:‬ ‭Techniques‬ ‭like‬ ‭horizontal‬ ‭flipping,‬ ‭zoom,‬ ‭shear,‬ ‭and‬ ‭rotation were applied to increase dataset diversity.‬ ‭‬ ‭Libraries Used:‬‭OpenCV, NumPy, TensorFlow/Keras utilities.‬ ‭3.4 IMPLEMENTATION‬ ‭The‬‭current‬‭implementation‬‭phase‬‭of‬‭the‬‭project‬‭involved‬‭translating‬‭the‬‭architectural‬ ‭blueprint‬ ‭into‬ ‭a‬ ‭functional‬ ‭system.‬ ‭The‬ ‭system‬‭was‬‭built‬‭to‬‭detect‬‭fake‬‭images‬‭using‬ ‭GANs.‬ ‭20‬ ‭Till‬ ‭now‬ ‭we‬ ‭have‬ ‭explored‬ ‭various‬ ‭CNN‬ ‭models‬ ‭and‬ ‭their‬ ‭behaviours‬ ‭in‬ ‭order‬ ‭to‬ ‭develop‬‭an‬‭efficient‬‭hybrid‬‭using‬‭those‬‭models‬‭to‬‭work‬‭as‬‭GAN‬‭discriminator‬‭later‬‭in‬ ‭the‬ ‭project‬ ‭development.‬ ‭This‬ ‭chapter‬ ‭provides‬ ‭an‬ ‭in-depth‬ ‭description‬ ‭of‬ ‭the‬ ‭implementation done so far.‬ ‭3.4.1 MODEL IMPLEMENTATION‬ ‭3.4.1.1 Implementation Algorithm‬ ‭Step 1: Data Preparation‬ ‭‬ ‭Load‬‭datasets,‬‭such‬‭as‬‭the‬‭Yonsei‬‭dataset‬‭and‬‭NVIDIA‬‭Flickr‬‭dataset,‬‭ensuring‬ ‭proper organization into directories (e.g., train/real, train/fake).‬ ‭‬ ‭Preprocess images using libraries like OpenCV or TensorFlow utilities:‬ ‭○‬ ‭Resize‬ ‭images‬ ‭to‬ ‭required‬ ‭dimensions‬ ‭(e.g.,‬ ‭150x150‬ ‭or‬ ‭224x224‬ ‭pixels).‬ ‭○‬ ‭Normalize pixel values to the range [0, 1].‬ ‭○‬ ‭Augment‬ ‭data‬ ‭with‬ ‭techniques‬ ‭like‬ ‭flipping,‬ ‭zooming,‬ ‭rotation,‬ ‭and‬ ‭cropping to enhance diversity.‬ ‭Step 2: Dataset Splitting‬ ‭‬ ‭Split datasets into training, validation, and test sets. For example:‬ ‭○‬ ‭Yonsei Dataset: 80% training, 20% testing.‬ ‭○‬ ‭NVIDIA‬ ‭Flickr‬ ‭Dataset:‬ ‭50k‬ ‭images‬ ‭for‬ ‭training,‬ ‭10k‬ ‭for‬ ‭validation,‬ ‭and 10k for testing.‬ ‭Step 3: Model Initialization‬ ‭‬ ‭Load pre-trained CNN architectures.‬ ‭○‬ ‭Use weights="imagenet" to leverage pre-trained weights.‬ ‭○‬ ‭Exclude‬ ‭the‬ ‭top‬ ‭classification‬ ‭layer‬ ‭(include_top=False)‬ ‭to‬ ‭allow‬ ‭customization.‬ ‭Step 4: Custom Layer Design‬ ‭‬ ‭Add custom layers to the base model for binary classification:‬ ‭○‬ ‭Apply GlobalAveragePooling2D() to reduce spatial dimensions.‬ ‭21‬ ‭○‬ ‭Add fully connected dense layers with ReLU activation.‬ ‭○‬ ‭Incorporate dropout layers (e.g., 0.3) to prevent overfitting.‬ ‭○‬ ‭Use‬ ‭a‬ ‭final‬ ‭dense‬ ‭layer‬ ‭with‬ ‭sigmoid‬ ‭activation‬ ‭for‬ ‭binary‬ ‭classification.‬ ‭Step 5: Model Compilation‬ ‭‬ ‭Compile the model with appropriate loss functions and optimizers:‬ ‭○‬ ‭Use binary_crossentropy for binary classification tasks.‬ ‭○‬ ‭Choose optimizers like Adam or SGD with learning rate scheduling.‬ ‭○‬ ‭Define metrics such as accuracy for evaluation.‬ ‭Step 6: Training Configuration‬ ‭‬ ‭Configure training parameters:‬ ‭○‬ ‭Set batch sizes (e.g., 16 or 32) and epoch count (e.g., 10-25).‬ ‭○‬ ‭Incorporate‬ ‭callbacks‬ ‭like‬ ‭EarlyStopping,‬ ‭ModelCheckpoint,‬ ‭and‬ ‭ReduceLROnPlateau‬‭to‬‭enhance‬‭training‬‭efficiency‬‭and‬‭to‬‭mainly‬‭save‬ ‭the training state of the model or weights avoiding overfitting.‬ ‭Step 7: Model Training‬ ‭‬ ‭Train the model using the fit method:‬ ‭○‬ ‭Provide training and validation datasets.‬ ‭○‬ ‭Monitor training and validation accuracy/loss at each epoch.‬ ‭○‬ ‭Use‬ ‭GPU‬ ‭acceleration‬ ‭(e.g.,‬ ‭NVIDIA‬ ‭CUDA‬ ‭Toolkit)‬ ‭to‬ ‭reduce‬ ‭training time.‬ ‭Step 8: Model Evaluation‬ ‭‬ ‭Evaluate the trained model on the test set:‬ ‭○‬ ‭Calculate metrics such as accuracy, precision, recall, and F1-score.‬ ‭○‬ ‭Generate‬ ‭confusion‬ ‭matrices‬ ‭and‬ ‭ROC-AUC‬ ‭curves‬ ‭for‬ ‭detailed‬ ‭analysis.‬ ‭22‬ ‭This‬ ‭algorithm‬ ‭provides‬ ‭a‬ ‭structured‬ ‭approach,‬ ‭ensuring‬ ‭that‬ ‭every‬ ‭stage‬ ‭of‬ ‭implementation‬ ‭is‬ ‭well-documented‬ ‭and‬ ‭efficient.The‬ ‭project‬ ‭explored‬ ‭various‬ ‭CNN‬ ‭architectures to achieve high performance in detecting fake images.‬ ‭3.4.1.2 Convolutional Neural Networks (CNNs) Used‬ ‭1.‬ ‭ResNet50 and ResNet101 :‬ ‭○‬ ‭Architecture:‬ ‭A‬ ‭50-layer‬ ‭and‬ ‭101-layer‬ ‭deep‬ ‭residual‬ ‭networks‬ ‭respectively.‬ ‭○‬ ‭Key‬ ‭Features:‬ ‭Solves‬ ‭vanishing‬ ‭gradient‬ ‭issues‬ ‭using‬ ‭skip‬ ‭connections.‬ ‭○‬ ‭Implementation Details:‬ ‭‬ ‭Optimizer: SGD with learning rate decay as shown in fig.3.‬ ‭‬ ‭Loss Function: Binary Cross-Entropy.‬ ‭‬ ‭Results:‬ ‭Achieved‬ ‭64.11%‬ ‭accuracy‬ ‭on‬ ‭the‬ ‭Yonsei‬ ‭dataset‬‭and‬ ‭over 62%‬‭on the NVIDIA Flickr dataset. ‬ ‭Figure 3: Resent 50 model‬ ‭2.‬ ‭EfficientNetB2 to B4:‬ ‭○‬ ‭Architecture:‬ ‭A‬ ‭lightweight‬ ‭and‬ ‭scalable‬ ‭CNN‬ ‭optimized‬ ‭for‬ ‭computational efficiency.‬ ‭○‬ ‭Key‬ ‭Features:‬ ‭Usage‬ ‭of‬ ‭compound‬ ‭scaling‬ ‭methods(Width‬ ‭scaling‬ ‭+‬ ‭Depth scaling + Resolution scaling).‬ ‭23‬ ‭○‬ ‭Implementation Details:‬ ‭‬ ‭Optimizer:‬‭Adam‬‭with‬‭early‬‭stopping‬‭and‬‭ReduceLROnPlateau‬ ‭callbacks.‬ ‭‬ ‭Loss Function: Binary Cross-Entropy.‬ ‭‬ ‭Results:‬ ‭Lower‬ ‭performance‬‭(~50%)‬‭on‬‭initial‬‭trials‬‭with‬‭plans‬ ‭to test EfficientNetB4 for improvement, improved to 50%‬‭‬ ‭3.‬ ‭XceptionNet:‬ ‭○‬ ‭Architecture:‬ ‭A‬ ‭deep‬ ‭learning‬ ‭model‬ ‭leveraging‬ ‭depthwise‬‭separable‬ ‭convolutions for efficient computation.‬ ‭○‬ ‭Key‬ ‭Features:‬ ‭Improves‬ ‭upon‬ ‭Inception‬ ‭architecture‬ ‭by‬ ‭using‬ ‭fewer‬ ‭parameters and achieving better performance on complex tasks.‬ ‭○‬ ‭Implementation Details:‬ ‭‬ ‭Optimizer: Adam.‬ ‭‬ ‭Loss Function: Categorical Cross-Entropy as shown in fig. 4.‬ ‭‬ ‭Results:‬ ‭Achieved‬ ‭73%‬ ‭accuracy,‬ ‭highlighting‬ ‭room‬ ‭for‬ ‭optimization in training. ‬ ‭Figure 4: Xception model‬ ‭4.‬ ‭DenseNet121:‬ ‭○‬ ‭Architecture:‬ ‭A‬ ‭densely‬ ‭connected‬ ‭neural‬ ‭network‬‭promoting‬‭feature‬ ‭reuse as shown in fig.5.‬ ‭○‬ ‭Key‬ ‭Features:‬ ‭Utilizes‬ ‭dense‬ ‭connection‬ ‭between‬ ‭layers‬ ‭in‬ ‭order‬ ‭to‬ ‭improve feature reuse.‬ ‭○‬ ‭Implementation Details:‬ ‭‬ ‭Techniques:‬ ‭Early‬ ‭stopping,‬ ‭ReduceLROnPlateau,‬ ‭and‬ ‭batch‬ ‭normalization.‬ ‭24‬ ‭‬ ‭Results:‬ ‭Achieved‬ ‭an‬ ‭accuracy‬‭of‬‭92%‬‭on‬‭the‬‭NVIDIA‬‭dataset‬ ‭with robust generalization. ‬ ‭Figure 5: DenseNet121 model‬ ‭5.‬ ‭VGG16:‬ ‭○‬ ‭Architecture:‬ ‭A‬ ‭classic‬ ‭deep‬ ‭learning‬ ‭architecture‬ ‭with‬ ‭16‬ ‭layers‬ ‭pre-trained on ImageNet.‬ ‭○‬ ‭Key‬ ‭Features:‬ ‭Known‬ ‭for‬ ‭its‬ ‭deep‬ ‭convolutional‬ ‭layers,‬ ‭uses‬ ‭3x3‬ ‭filters and max pooling.‬ ‭○‬ ‭Implementation Details:‬ ‭‬ ‭Added‬ ‭fully‬ ‭connected‬ ‭layers‬ ‭with‬ ‭ReLU‬ ‭activation‬ ‭and‬ ‭batch‬ ‭normalization as shown in fig. 6.‬ ‭‬ ‭Optimizer: Adam with a learning rate of 0.0001.‬ ‭‬ ‭Loss Function: Categorical Cross-Entropy.‬ ‭‬ ‭Results:‬ ‭Achieved‬ ‭95%‬ ‭ROC-AUC‬ ‭on‬ ‭the‬ ‭NVIDIA‬ ‭dataset.‬ ‭‬ ‭25‬ ‭Figure 6: Vgg16 model‬ ‭3.4.2 EVALUATION METRICS USED‬ ‭‬ ‭Accuracy:‬‭Correctly classified images divided by the‬‭total number of images.‬ ‭‬ ‭Precision:‬‭Fraction of true positives among predicted‬‭positives.‬ ‭‬ ‭Recall:‬‭Fraction of true positives among actual positives.‬ ‭‬ ‭F1-Score:‬‭Harmonic means of precision and recall.‬ ‭‬ ‭Training Time:‬‭Time required to train models on each‬‭dataset.‬ ‭3.5 KEY CHALLENGES‬ ‭‬ ‭Training‬ ‭Time:‬ ‭Training‬ ‭larger‬ ‭datasets‬ ‭such‬ ‭as‬ ‭the‬ ‭NVIDIA‬ ‭Flickr‬ ‭dataset‬ ‭required‬ ‭significant‬ ‭computational‬ ‭resources,‬ ‭with‬ ‭models‬ ‭like‬ ‭DenseNet121‬ ‭taking‬ ‭over‬ ‭4‬‭hours‬‭to‬‭train.‬‭This‬‭necessitated‬‭the‬‭use‬‭of‬‭NVIDIA‬‭GPUs‬‭with‬ ‭CUDA Toolkit for acceleration.‬ ‭‬ ‭Efficiency‬‭on‬‭Smaller‬‭Datasets:‬‭The‬‭Yonsei‬‭dataset,‬‭being‬‭smaller‬‭in‬‭size,‬‭led‬ ‭to‬ ‭less‬ ‭efficient‬ ‭model‬ ‭performance‬ ‭due‬ ‭to‬ ‭overfitting‬ ‭and‬ ‭limited‬ ‭generalizability.‬ ‭Techniques‬ ‭like‬ ‭data‬ ‭augmentation‬ ‭and‬ ‭regularization‬ ‭were‬ ‭employed to improve outcomes.‬ ‭‬ ‭High‬‭GPU‬‭System‬‭Requirements:‬‭Training‬‭deep‬‭learning‬‭models‬‭effectively‬

Use Quizgecko on...
Browser
Browser