Chapter 1 Database Systems PDF

Document Details

BullishNovaculite5497

Uploaded by BullishNovaculite5497

Bulacan Agricultural State College

Carlos Coronel and Steven Morris

Tags

database management systems databases data information systems

Summary

This document is about database systems. It defines data and information, and introduces the importance of database design. The chapter also describes different types of databases and how modern databases developed from file systems.

Full Transcript

Chapter 1 Database Systems Learning Objectives After completing this chapter, you will be able to: Define the difference between data and information Describe what a database is, various types, and why they are valuable assets for decision making Explain the importance of datab...

Chapter 1 Database Systems Learning Objectives After completing this chapter, you will be able to: Define the difference between data and information Describe what a database is, various types, and why they are valuable assets for decision making Explain the importance of database design See how modern databases evolved from file systems Understand flaws in file system data management Outline the main components of the database system Describe the main functions of a database management system (DBMS) 2 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Why Databases? Characteristics of data in today’s world Ubiquitous (i.e., abundant, global, and everywhere) Pervasive (i.e., unescapable, prevalent, and persistent) Databases make data persistent and shareable in a secure way Specialized structures that allow computer-based systems to store, manage, and retrieve data very quickly 3 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Data versus Information Data consists of raw facts Not yet processed to reveal meaning to the end user Building blocks of information Information results from processing raw data to reveal meaning Requires context Bedrock of knowledge Should be accurate, relevant, and timely 4 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Introducing the Database Shared, integrated computer structure that stores data End-user data: raw facts of interest to end user Metadata: data about data, through which the end-user data is integrated and managed - Describes data characteristics and relationships Database management system (DBMS) Collection of programs Manages the database structure Controls access to data stored in the database 5 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Role and Advantages of the DBMS (1 of 2) Database management system (DBMS): intermediary between the user and the database Enables data to be shared Presents the end user with an integrated view of data Provides more efficient and effective data management Improves sharing, security, integration, access, decision-making, productivity, etc. 6 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Role and Advantages of the DBMS (2 of 2) 7 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Types of Databases (1 of 5) Single-user database: supports one user at a time Desktop database: single-user database on a personal computer Multiuser database: supports multiple users at the same time Workgroup databases: supports a small number of users or a specific department Enterprise database: supports many users across many departments 8 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Types of Databases (2 of 5) Classification by location Centralized database: data located at a single site Distributed database: data distributed across different sites Cloud database: created and maintained using cloud data services that provide defined performance measures for the database 9 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Types of Databases (3 of 5) Classification by data type General-purpose database: contains a wide variety of data used in multiple disciplines Discipline-specific database: contains data focused on specific subject areas Operational database: designed to support a company’s day-to-day operations 10 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Types of Databases (4 of 5) Analytical database: stores historical data and business metrics used exclusively for tactical or strategic decision making Data warehouse: stores data in a format optimized for decision support Online analytical processing (OLAP): tools for retrieving, processing, and modeling data from the data warehouse Business intelligence: captures and processes business data to generate information that support decision making 11 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Types of Databases (5 of 5) Databases can be classified to reflect the degree to which the data is structured Unstructured data exists in its original (raw) state Structured data results from formatting - Structure is applied based on type of processing to be performed Semistructured data: processed to some extent Extensible Markup Language (XML) Represents data elements in textual format 12 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Why Database Design Is Important Focuses on design of database structure that will be used to store and manage end-user data Well-designed database: facilitates data management and generates accurate and valuable information Poorly designed database: causes difficult-to-trace errors that may lead to poor decision making 13 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Evolution of File System Data Processing (1 of 3) Manual file systems Accomplished through a system of file folders and filing cabinets Computerized file systems Data processing (DP) specialist created a computer-based system to track data and produce required reports File system redux: modern end-user productivity tools Includes spreadsheet programs such as Microsoft Excel 14 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Evolution of File System Data Processing (2 of 3) Table 1.2 Basic File Terminology TERM DEFINITION Data Raw facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD) sales value. Data has little meaning unless it has been organized in some logical manner. Field A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to define and store data. Record A logically connected set of one or more fields that describes a person, place, or thing. For example, the fields that constitute a record for a customer might consist of the customer’s name, address, phone number, date of birth, credit limit, and unpaid balance. File A collection of related records. For example, a file might contain data about the students currently enrolled at Gigantic University. 15 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Evolution of File System Data Processing (3 of 3) 16 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Problems with File System Data Processing Problems with file systems challenge the types of information that can be created from data as well as information accuracy Lengthy development times Difficulty of getting quick answers Complex system administration Lack of security and limited data sharing Extensive programming 17 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Structural and Data Dependence (1 of 2) Structural dependence Access to a file is dependent on its own structure All file system programs are modified to conform to a new file structure Structural independence File structure is changed without affecting the application’s ability to access the data 18 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Structural and Data Dependence (2 of 2) Data dependence Data access changes when data storage characteristics change Data independence Data storage characteristics are changed without affecting the program’s ability to access the data Practical significance of data dependence is the difference between logical and physical format 19 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Data Redundancy (1 of 2) Unnecessarily storing the same data at different places Islands of information (i.e., scattered data locations) Increases the probability of having different versions of the same data 20 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Data Redundancy (2 of 2) Possible results of uncontrolled data redundancy Poor data security Data inconsistency Data-entry errors Data integrity problems 21 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Data Anomalies Develop when not all of the required changes in the redundant data are made successfully Update anomalies Insertion anomalies Deletion anomalies 22 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Database Systems (1 of 2) Logically related data stored in a single logical data repository Physically distributed among multiple storage facilities DBMS eliminates most of file system’s data inconsistency, data anomaly, data dependence, and structural dependence problems Current generation DBMS software - Stores data structures, relationships between structures, and access paths - Defines, stores, and manages all access paths and components 23 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Database Systems (2 of 2) 24 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. The Database System Environment (1 of 2) Database system: organization of components that define and regulate the collection, storage, management, and use of data within a database environment Hardware Software People Procedures Data 25 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. The Database System Environment (2 of 2) 26 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. DBMS Functions (1 of 3) Data dictionary management Data dictionary: stores definitions of data elements and their relationships Data storage management Performance tuning ensures efficient performance Data transformation and presentation Data is formatted to conform to logical expectations Security management Enforces user security and data privacy 27 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. DBMS Functions (2 of 3) Multiuser access control Sophisticated algorithms ensure that multiple users can access the database concurrently without compromising its integrity Backup and recovery management Enables recovery of the database after a failure Data integrity management Minimizes redundancy and maximizes consistency 28 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. DBMS Functions (3 of 3) Database access languages and application programming interfaces Query language: lets the user specify what must be done without having to specify how Structured Query Language (SQL): de facto query language and data access standard supported by the majority of DBMS vendors Database communication interfaces Accept end-user requests via multiple, different network environments 29 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Managing the Database System: A Shift in Focus Disadvantages of database systems Increased costs Management complexity Maintaining currency Vendor dependence Frequent upgrade/replacement cycles 30 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Preparing for Your Database Professional Career TABLE 1.3 DATABASE CAREER OPPORTUNITIES JOB TITLE DESCRIPTION SAMPLE SKILLS REQUIRED Database Developer Create and maintain database-based Programming, database fundamentals, SQL applications Database Designer Design and maintain databases Systems design, database design, SQL Database Manage and maintain DBMS and Database fundamentals, SQL, vendor courses Administrator databases Database Analyst Develop databases for decision support QL, query optimization, data warehouses reporting Database Architect Design and implementation of database DBMS fundamentals, data modeling, SQL, environments (conceptual, logical, and hardware knowledge, etc. physical) Database Consultant Help companies leverage database Database fundamentals, data modeling, technologies to improve business database design, SQL, DBMS, hardware, processes and achieve specific goals vendor-specific technologies, etc. Database Security Implement security policies for data DBMS fundamentals, database administration, Officer administration SQL, data security technologies, etc. Cloud Computing Design and implement the infrastructure Internet technologies, cloud storage Data Architect for next-generation cloud database technologies, data security, performance tuning, systems large databases, etc. Data Scientist Analyze large amounts of varied data to Data analysis, statistics, advanced mathematics, generate insights, relationships, and SQL, programming, data mining, machine predictable behaviors learning, data visualization 31 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use. Summary Data consists of raw facts and is usually stored in a database Database design defines the database structure - Can be classified according to the number of users, location, as well as data usage and structure Databases evolved from manual and computerized file systems - There are some limitations of file system data management - DBMSs were developed to address the file system’s inherent weaknesses 32 © 2019 Cengage. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed with a certain product or service or otherwise on a password-pr otected website for classroom use.

Use Quizgecko on...
Browser
Browser