Ionic Equilibrium PDF

Document Details

RespectfulArgon

Uploaded by RespectfulArgon

Radha Govind University

Tags

ionic equilibrium chemistry acid-base theories electrolytes

Summary

This document covers the topic of ionic equilibrium in chemistry. It discusses different types of electrolytes, acid-base theories, and calculations involving pH.

Full Transcript

# Ionic Equilibrium ## Topics: * Electrolyte * Acid-Base Theories * Ionic Product of Water * Degree of Dissociation (α) * Factors affecting α * pH and pH scale * Measurement of pH * WA, WB, SA, SB, Mixture * Hydrolysis of Salts * Buffer Solutions * Solubility and Solubility Product ## Farada...

# Ionic Equilibrium ## Topics: * Electrolyte * Acid-Base Theories * Ionic Product of Water * Degree of Dissociation (α) * Factors affecting α * pH and pH scale * Measurement of pH * WA, WB, SA, SB, Mixture * Hydrolysis of Salts * Buffer Solutions * Solubility and Solubility Product ## Faraday Classification Faraday classified molecules into two categories: * **Electrolyte:** * In presence of solvent, dissociate (H<sub>2</sub>O) into ions * Eg: HCl, NaOH, NaI, H<sub>2</sub>SO<sub>4</sub> * **Non-Electrolyte:** * Do not give ions in solvent * Eg: Urea (NH<sub>2</sub>)<sub>2</sub>, Glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>) ## Electrolyte ### Electrolyte types: * **Strong Electrolyte:** * Complete dissociation in solvent. * α = 1 or α = 100% * Non-Eqbm bcoz Irreversible. * Eg: HCl, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, NaOH, NaCl, Ba(OH)<sub>2</sub> * **Weak Electrolyte:** * Do not dissociate completely * α < 1 or α < 100% * Eqbm exists bcoz (< 100%, Reversible) * Eg: HCN, HCOOH, Zn(OH)<sub>2</sub>, AgCl, AgBr ## W.E AB(aq) A+(aq) + BCq HCOOH HCOO- + H+ ## SE CD(aq) C+(aq) + D(aq) NaOH (aq) Na+(aq) + OH-(aq) ## Acid- Base Theories ### 1. Arrhenius Theory **(Sour) Acid:** Give H+ in Water **(Bitter) Base:** Give OH- in Water * **Acid:** * H<sub>2</sub>O (aq) H+(aq) + Cl- (aq) * H<sub>2</sub>O + H<sub>2</sub>O H<sub>3</sub>O+ + OH- * **Note:** H+ does not exist independently but combines with H<sub>2</sub>O to form H<sub>3</sub>O+ * **Base:** * BOH(aq) B+(aq) + OH-(aq) * OH- + H<sub>2</sub>O H<sub>3</sub>O<sub>2</sub>- * H+ + H<sub>2</sub>O H<sub>3</sub>O+ * GF → H<sub>2</sub>n+1O<sub>n</sub> * H<sub>3</sub>O<sub>2</sub><sup>-</sup> (H<sub>5</sub>O<sub>2</sub>+ * H<sub>2</sub>O * H<sub>7</sub>O<sub>3</sub> * OH- + H<sub>2</sub>O H<sub>3</sub>O<sub>2</sub>- * GF → H<sub>2</sub>n-1O<sub>n</sub> * H<sub>5</sub>O<sub>3</sub> * H<sub>2</sub>O * H<sub>7</sub>O<sub>4</sub>- ### 2. Bronsted- Lowry Theory * **Acid:** Proton Donors (H+) * **Base:** Proton Acceptor * **Proton Acceptor:** * NH<sub>3</sub> + H<sub>2</sub>O NH<sub>4</sub>+(aq) + OH-(aq) * Base Acid SB * Proton lose (Donor) * **Proton Donor:** * HX + H<sub>2</sub>O X- + H<sub>3</sub>O+ * Acid Base * Conjugate Base Conjugate Acid ### Forward Reaction: Acid H+ Base H<sub>2</sub>O ### Backward Reaction: Acid H<sub>3</sub>O+ Base X- ### Applying the theory to examples * NH<sub>2</sub>, NH<sub>3</sub>, NH<sub>4</sub>+ * H<sub>3</sub>O+, H<sub>5</sub>O<sub>2</sub>+, H<sub>2</sub>O * H<sub>2</sub>SO<sub>4</sub>, SO<sub>4</sub><sup>2- </sup> * H<sub>2</sub>SO<sub>4</sub> H+ + HSO<sub>4</sub><sup>-</sup> * H<sub>3</sub>SO<sub>4</sub> HSO<sub>4</sub><sup>-</sup> * **Note:** In above mentioned, make Acid-C-B, Base-C.A Pairs. * NH<sub>3</sub> NH<sub>2</sub>- + H+ A CB * NH<sub>4</sub><sup>+</sup> NH<sub>3</sub> Base CA * NH<sub>2</sub>- + 2H+ NH<sub>3</sub> Base CA * **Note:** Conjugate Acid-Base Pairs only differ by 1 Proton(H+) ### 3. Lewis Acid-Lewis Base * **LA:** Accept lone pair of electrons * **LB:** Lone Pair Donor * **LA:** * **a) Electron deficient:** * eg: H+, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na+ * **b) Vacant orbital and e deficiency:** * **Eg:** BF<sub>3</sub> ( 6e- in outermost shell) * **Note:** AlCl<sub>3</sub> (Vacant d) * **Note:** PuCl<sub>3</sub> (Vacant d) * **Note:** FeBr<sub>3</sub> (Vacant d) * **LB:** NH<sub>3</sub>, (CH<sub>3</sub>)<sub>2</sub>O, NH<sub>2</sub><sup>-</sup>, PH<sub>3</sub>, H<sub>2</sub>S * **Examples:** * NH<sub>3</sub> + H+ NH<sub>4</sub>+(aq) LB LA * NH<sub>3</sub> + BF<sub>3</sub> NH<sub>3</sub>.BF<sub>3</sub> LB LA ## Ionic Product of Water * H<sub>2</sub>O(l) H+ + OH- * (UE) 10<sup>-7</sup>M 10<sup>-7</sup>M * K = [H+] [OH-] / [H<sub>2</sub>O] * **Note:** [H<sub>2</sub>O] is a constant * Kx [H<sub>2</sub>O] = [H+] [OH-] * Kw = [H+] [OH-] * **Note:** [H+] = [OH-] = 10<sup>-7</sup>M * **At T = 25<sup>o</sup> C**: * Kw = 10<sup>-14</sup> mol<sup>2</sup> L<sup>-2</sup> * **Note:** Ionic Product of Water * 10<sup>-7</sup> is very small * Dissociation is very less * H<sub>2</sub>O is W.E ## Finding α for H<sub>2</sub>O at 25<sup>o</sup> C * **Note:** α = Dissociated moles/Ionic initial moles/Ionic * H<sub>2</sub>O H+ + OH- * C – Cα Cα Cα * **Note:** Cα = 10<sup>-7</sup> * (10<sup>-7</sup>) * **Note:** 55.55 = 0.0000000001 /55.55 * α = 10<sup>-7</sup>/55.55 * α = 1.8 x 10<sup>-9</sup> * √α = 1.8 x 10<sup>-7</sup> ## Density and Molar Mass at 25<sup>o</sup> C * Density of water = 1000 g/L * Molar mass = 18 g/mol * (C)<sub>H2O</sub> = M = D / MM = 1000 g/L / 18 g/mol = 55.55 mol/L ## Effect of Dilution on α * HX H+ + X- * C 0 0 * C - Cα Cα Cα * Ka = (Cα)<sup>2</sup> / (C - Cα) * Ka = (Cα)<sup>2</sup> / (C - Cα) * α = √Ka / C * ** Note:** α α √Ka / C * **Note:** α > α' if C > C' , or ν1, α' α 1 * **Note:** If we say α <<< 1 (1 - α = 1) * α << √5/c * **Note:** α ≈ 0.05 ## Dilution and Concentration * **Note:** This is not applicable for S.E * α = 1 or α = 100% * SE → Irreversible ## Applying the theory to examples * H<sub>2</sub>O H+ + OH- * Keq = 10<sup>-7</sup> x 10<sup>-7</sup> / 55.55 * Kw = [H+][OH-] * -logKw = -log[H+] - log[OH-] * pKw = pH + pOH * **Note:** pKw = 7 + 7 = 14 at 25<sup>o</sup>C ## Effect of Temperature on α * T α α * HX H+ + X-, △H = +vc * **Note:** Dissociation of Electrolytes is Endothermic. * T↑ , △H↑ , α↑ * log Ke = △H / 2.303R (T<sub>1</sub> - T<sub>2</sub> / T<sub>1</sub>T<sub>2</sub>) * △H = +ve, T↑, K<sub>2</sub>>K<sub>1</sub> ## Effect of Solvent * Polarity of Solvent α Degree of Dissociation * (More Polar) * CH<sub>3</sub>COOH + H<sub>2</sub>O CH<sub>3</sub>COO- + H<sub>3</sub>O+, α<sub>1</sub> * (Less Polar) * CH<sub>3</sub>COOH + CH<sub>3</sub>OH CH<sub>3</sub>COO- + H+, α<sub>2</sub> * α<sub>1</sub> > α<sub>2</sub> ## Applying logarithmic formulas * px = -logx * pKw = -logKw * pH = -logpH * logab = loga + logb * log a/b = loga - logb * loga<sup>b</sup> = bloga * ln = 2.303log<sup>10</sup> ## pH and pH scale * pH = -log[H+] * **Note:** HCL H+ + Cl- * **Note:** H<sub>2</sub>SO<sub>4</sub> 2H+ + SO<sub>4</sub><sup>2-</sup> * **Note:** HNO<sub>3</sub> H+ + NO<sub>3</sub><sup>-</sup> ## Finding pH of 5 x 10<sup>-3</sup> M H<sub>2</sub>SO<sub>4</sub> sol<sup>n</sup> * H<sub>2</sub>SO<sub>4</sub> 2H+ + SO<sub>4</sub><sup>2-</sup> * 5 x 10<sup>-3</sup> 2 x 5 x 10<sup>-3</sup> * **Note:** 2 x 5 x 10<sup>-3</sup> = 10<sup>-2</sup> * [H+] = 10<sup>-6</sup> * pH = -log[10<sup>-6</sup>] * **Note:** pH = 6log<sup>10</sup> (log<sub>10</sub>10 =1) * pH = 6 ## Calculating pH from [H+] * **Note:** [H+]= 5 x 10<sup>-6</sup> * pH = ? * pH = -log(5 x 10<sup>-6</sup>) * **Note:** -(log 5 - log3 + log 10<sup>-6</sup>) * **Note:** -(0.70 - 0.48 - 6) * pH = +5.78 ## pH scale * **Note:** pH scale is from 1-14, with 7 being neutral, less than 7 being acidic, and more than 7 being basic at 25<sup>o</sup>C. ## Effect of Temperature on pH Scale * H2O = H+ + OH-, at 25<sup>o</sup>C * 10<sup>-7</sup> 10<sup>-7</sup> * pKw = 14 * pH scale = 1 to 14 * Neutral = 7 * H2O = H+ + OH-, at 90<sup>o</sup>C * 10<sup>-6</sup> 10<sup>-6</sup> * pH scale = 1 to 12 * Neutral = 6 * **Note:** at 90<sup>o</sup>C, pKw = pH + pOH (H<sub>2</sub>O) * **Note:** pKw = 6+6 * **Note:** pKw = 12 ## Relating pH and pOH * [H+] = [OH-] → Neutral * [H+] > [OH-] → Acidic * [OH-] > [H+] → Basic * **Note:** pOH = 14-pH at 25<sup>o</sup> * pOH = -log[OH-] * **Note:** 14 = pH + pOH = pKw ## pH Measurement * **Note:** pH measurement is covered tomorrow.

Use Quizgecko on...
Browser
Browser