IIT JAM Past Papers 2005-2012 PDF
Document Details
Uploaded by Deleted User
2005
IIT
Tags
Summary
This document contains past IIT JAM papers focusing on coordination chemistry from the years 2005 to 2012. The papers include questions and solutions covering topics like crystal field stabilization energy, complex structures, and isomerism. The comprehensive nature of the papers provides a valuable resource for chemistry students preparing for the IIT JAM examination.
Full Transcript
# COORDINATION IIT JAM-2005-2023 ## IIT JAM 2005 **Among the following complexes,** - (i) [Ru(bipyridyl)<sub>3</sub>]<sup>+</sup> - (ii) [Cr(EDTA)] - (iii) trans-[CrCl<sub>2</sub>(oxalate)<sub>2</sub>]<sup>-3</sup> - (iv) cis-[CrCl<sub>2</sub>(oxalate)<sub>2</sub>]<sup>-3</sup> **The ones that s...
# COORDINATION IIT JAM-2005-2023 ## IIT JAM 2005 **Among the following complexes,** - (i) [Ru(bipyridyl)<sub>3</sub>]<sup>+</sup> - (ii) [Cr(EDTA)] - (iii) trans-[CrCl<sub>2</sub>(oxalate)<sub>2</sub>]<sup>-3</sup> - (iv) cis-[CrCl<sub>2</sub>(oxalate)<sub>2</sub>]<sup>-3</sup> **The ones that show chirality are** (a) (i), (ii), (iv) (b) (i), (ii), (iii) (c) (ii), (iii), (iv) (d) (i), (iii), (iv) **(Image of four complexes labeled as (i - iv)**. **3 Chelate Ring POS X=O-A** **2 C-R <Cis POS X=O-A** **Trans POS✓= O-I** **(Image of chelate rings with POS X = O-A and POS Y = O-I)** *** ## IIT JAM 2005 **The crystal field stabilization energy of high spin d<sup>7</sup> octahedral complex is** -4 (a) △<sub>o</sub> + 2P -4 (b) △<sub>o</sub> + 3P -9 (c) △<sub>o</sub> + 2P -9 (d) △<sub>o</sub> + 3P **(Image of the crystal field stabilization energy with CFSE = -0.8△<sub>o</sub> + 2P)** *** ## IIT JAM 2005 **(A) Between [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> and[Co( H<sub>2</sub>O)<sub>6</sub>]<sup>2+**</sup>, **which one has more distorted structure and why?** **(B) Calculate CFSE (in units of △<sub>o</sub>) and spin only magnetic moment for the following complexes:** - (i) [CoF<sub>6</sub>]<sup>3-</sup> - (ii) [Fe(CN)<sub>6</sub>]<sup>3-</sup> - (ii) [NiCl<sub>4</sub>]<sup>2-</sup> **(Image of a diagram with eg = 4/5 △<sub>o</sub> and t<sub>2g</sub> = -2/5 △<sub>o</sub>)** *** ## IIT JAM 2006 **The octahedral crystal field splitting (△<sub>o</sub>) of d orbital energies of the following metal ions decreases in the order** (a) Co<sup>2+ </sup>> Co<sup>3+</sup> > Rh<sup>3+</sup> (c) Rh<sup>3+ </sup>> Co<sup>2+</sup> > Co<sup>3+</sup> (d) Rh<sup>3+</sup> > Co<sup>3+</sup> > Co<sup>2+</sup> (d) Co<sup>3+ </sup>> Co<sup>2+</sup> > Rh<sup>3+</sup> **(Image of a diagram with SFL>WFL)** *** ## IIT JAM 2006 **The optical absorption spectrum of [Ti(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> has its absorption maximum at 20300 cm<sup>-1</sup>. The magnitude of crystalfield stabilization energy in cm<sup>-1</sup> is** (a) 8120 (b) 16240 (c) 24360 (d) 50750 **(Image of the crystal field stabilization energy with CFSE = - 0.4 △<sub>o</sub>)** *** ## IIT JAM 2006 **Write the structure of possible isomers of [CoCl<sub>2</sub>(en)<sub>2</sub>]Cl.** **(Image of three isomers of [CoCl<sub>2</sub>(en)<sub>2</sub>]Cl)** *** ## IIT JAM 2006 **The hydration enthalpies of divalent metal ions of ten elements from calcium to zinc are plotted against their atomic numbers. Why do the hydration enthalpies of only three elements, Ca, Mn and Zn fall on a straight line, whereas values for other metal ions deviate from this line?** **(Image of a graph showing hydration enthalpy of divalent metal ions against atomic numbers)** *** ## IIT JAM 2007 **The ligand with only sigma (σ) bonding character is** (a) CN<sup>-</sup> **(b) CH<sub>3</sub><sup>-</sup>** (c) CO (d) NO **(Image of CH<sub>3</sub><sup>-</sup> with a sigma bond, M←CH<sub>3</sub>)** *** ## IIT JAM 2007 **[Cr(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> gave an absorption at 208 kJ/mol which corresponds to △<sub>o</sub>. Calculate the crystal field stabilisation energy of this complex in kJ/mol.** **(Image of the crystal field stabilisation energy with CFSE = -250 KJ/mol)** *** ## IIT JAM 2008 **(a) For the complexes [FeF<sub>6</sub>]<sup>3-</sup> and [Fe(CN)<sub>6</sub>]<sup>3-</sup>** (i) Show the hybridization using VB(valence bond) theory (ii) Calculate the CFSE (crystal field stabilisation energy) **(b) Identify the dark blue complex formed when [Fe(CN)<sub>6</sub>]<sup>3-</sup> is treated with FeSO<sub>4</sub> and account for the origin of its colour.** **(Image showing the hybridization, CFSE calculations and the formation of the blue complex)** *** ## IIT JAM 2008 **For tetrahedral complexes, which always exhibit high spin states, the maximum CFSE (crystal field stabilisation energy) is:** (a) –8 Dq **(b) –12 Dq** (c) –16 Dq (d) –20Dq **(Image of the crystal field stabilisation energy with CFSE = -12 Dq)** *** ## IIT JAM 2008 **In general, magnetic moment of paramagnetic complexes varies with temperature as** (a) T<sup>2</sup> (b) T (c) T<sup>-2</sup> **(d) T<sup>-1</sup>** **(Image of the Curie's Law formula)** *** ## IIT JAM 2009 **(A) Provide IUPAC names for the following complexes:** - (i) [CoCl(NH<sub>3</sub>)<sub>5</sub>] - (ii) K<sub>2</sub>[PdCl<sub>4</sub>] **(B) The magnetic moment of [Mn(H<sub>2</sub>O)<sub>6</sub>] (NO<sub>3</sub>)<sub>2</sub> is approximately 6.0 μ<sub>B</sub>. Find the number of unpaired electrons, show crystal field splitting and calculate the CFSE.** **(Image of the octahedral splitting and the complex formation)** *** ## IIT JAM 2010 **(a) Draw the crystal field splitting diagram with appropriate labels for [NiCl<sub>4</sub>]<sup>2-</sup>. Determine the spin only magnetic moment and the crystal field stabilization energy (CFSE) for this complex. (Given : Atomic number of Ni = 28)** **(Image of the crystal field splitting diagram with CFSE = - 0.8 △<sub>o</sub>)** *** ## IIT JAM 2010 **Which one of the following configuration will show Jahn-Teller distortion in an octahedral field?** (a) high spin d<sup>4</sup> (b) high spin d<sup>5</sup> **(c) high spin d<sup>9</sup>** (d) low spin d<sup>6</sup> **(Image showing the d-orbital splitting, eg<sup>3</sup> t<sub>2g</sub><sup>6</sup>, with JTD)** *** ## IIT JAM 2010 **The colour of potassium dichromate is due to** (a) d-d transition (b) transition in K<sup>+</sup> ion **(c) Ligand-to-metal charge transfer** (d) metal-to-ligand charge transfer **(Image of the K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> formation with LMCT)** *** ## IIT JAM 2011 **Addition of an aqueous solution of Fe(II) to potassium hexacyanochromate (III) produces a brick-red coloured complex, which turn dark green at 100°C. The dark green complexes is** (a) Fe<sub>4</sub>[Cr(CN)<sub>6</sub>]<sub>3</sub> (b) KFe[Cr(CN)<sub>6</sub>] **(c) KCr[Fe(CN)<sub>6</sub>]** (d) Fe[Cr(CN)<sub>6</sub>] **(Image showing the reaction of K<sub>3</sub>[Cr(CN)<sub>6</sub>] with Fe<sup>2+</sup>, and the formation of KCr[Fe(CN)<sub>6</sub>] at 100 <sup>o</sup>C )** *** ## IIT JAM 2011 **The oxide that has the inverse spinel structure is** (a) FeCr<sub>2</sub>O<sub>4</sub> (b) MnCr<sub>2</sub>O<sub>4</sub> (c) CoAl<sub>2</sub>O<sub>4</sub> **(d) CoFe<sub>2</sub>O<sub>4</sub>** **(Image showing the spinels, the normal and inverse spinel structures with the reaction of Fe<sup>3+</sup> with Fe to form an inverse structure)** *** ## IIT JAM 2011 **The magnetic moment of [Fe(phen)<sub>2</sub>(NCS)<sub>2</sub>] varies with temperature. The magnetic moments at 200 K and 50 K are 4.9 μ<sub>B</sub> and 0 μ<sub>B</sub>, respectively. Write the d-electron configurations of Fe at both temperatures and give reason for the observed change in the magnetic moment. (phen = 1,10-phenanthroline)** **(Image of the d-configuration of Fe at 200K and 50K degrees)** *** ## IIT JAM 2012 **A coordination compound is composed of one Co(III), one chloride, one sulphate and four molecules of ammonia. The aqueous solution of the compound gives no precipitate when combined with aqueous BaCl<sub>2</sub>, while a white precipitate is formed with aqueous AgNO<sub>3</sub> solution. Draw its structure and explain the observations with chemical equations.** **(Image of the complex formation of [Co(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>]Cl, the reaction with BaCl<sub>2</sub> and the reaction with AgNO<sub>3</sub>)** *** ## IIT JAM 2012 **The spin-only magnetic moments of K<sub>3</sub>[Fe(oxalate)<sub>3</sub>] and K<sub>3</sub>[Ru(oxalate)<sub>3</sub>] are 5.91 μ<sub>B</sub> and 1.73 μ<sub>B</sub>, respectively. Write down their ligand field electronic configurations. Justify your answer. Atomic number of Fe and Ru are 26 and 44 respectively.** **(Image of the Fe and Ru d-configuration with the complex formation)** *** ## IIT JAM 2012 **The tetrachloro complexes of Ni(II) and Pd(II) respectively, are (atomic numbers of Ni and Pd are 28 and 46 respectively)** (a) diamagnetic and diamagnetic (b) paramagnetic and paramagnetic (c) diamagnetic and paramagnetic **(d) paramagnetic and diamagnetic** **(Image of the Ni and Pd with the complex formation sp<sup>3</sup>d<sup>2</sup> for Ni and sp<sup>3</sup> for Pd)** *** ## IIT JAM 2012 **Show with labels the splitting of d-orbitals in an octahedral ligand field. Calculate the CFSE of (i) high spin d<sup>6</sup> and (ii) low spin d<sup>6</sup> metal ions in octahedral field.** **(Image of the d-orbital splitting in an octahedral ligand field, with CFSE = -0.4△<sub>o</sub> and CFSE = -2,4△<sub>o</sub>)** *** ## IIT JAM 2013 **CaO, VO and MnO have octahedral coordination of the metal ions in a rock-salt structure. The correct increasing order of their lattice enthalpies is** **(Image of the lattice enthalpy graph with the increasing order of lattice enthalpy of VO>MnO>CaO)** *** ## IIT JAM 2013 **A coordination compound is composed of one Co(III), one chloride, one sulphate and four molecules of ammonia. The aqueous solution of the compound gives no precipitate when combined with aqueous BaCl<sub>2</sub>, while a white precipitate is formed with aqueous AgNO<sub>3</sub> solution. Draw its structure and explain the observations with chemical equations.** **(Image of the complex formation of [Co(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>]Cl, the reaction with BaCl<sub>2</sub> and the reaction with AgNO<sub>3</sub>)** **[Co(NH<sub>3</sub>)<sub>4</sub>SO<sub>4</sub>]Cl**