UNIDAD 1 Ergonomía 1 Fundamentos PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document introduces the foundational concepts of ergonomics. It defines ergonomics and outlines the key objectives of ergonomic analysis and design, including improving human-machine interaction, controlling the work environment, and designing meaningful and accessible systems for users. The text references historical figures and scientific approaches within the field.
Full Transcript
Cap-1 5/10/99 12:48 Página 16 16 Fundamentos de ergonomía Vauban, en el siglo XVII, y Belidor en el siglo XVIII pueden ser considerados pioneros en los planteamientos y el a...
Cap-1 5/10/99 12:48 Página 16 16 Fundamentos de ergonomía Vauban, en el siglo XVII, y Belidor en el siglo XVIII pueden ser considerados pioneros en los planteamientos y el análisis con metodología ergonómica, ya que intentan medir la carga de trabajo físico en el mismo lugar donde se desarrolla la actividad. En el siglo siguiente Tissot se interesa por la climatización de los locales y Patissier preconiza la recopilación de datos sobre mortalidad y morbosidad de los obreros. La universidad de Leningrado crea la Cátedra de Higiene (1871), que dirige Dobroslavin, donde se desarrrollan una serie de trabajos sobre los métodos de las investigaciones higiénicas; Erisman (1881) organiza la cátedra de Higiene de la Universidad de Moscú y efectúa estudios pioneros sobre las condiciones higiénicas del trabajo y vida de los obreros fabriles. Taylor, Babbage y los Gilbreth representan la posición de la organización científica del trabajo: el trabajo se analiza con precisión, sobre todo los tiempos y costes de los procesos productivos, por medios científicos, en contraposición a los medios empíricos que se utilizaban hasta entonces. El sistema P-M que analiza el ergónomo, y por el cual se interesa la ergonomía, es el conjunto de elementos (humanos, materiales y organizativos) que interaccionan dentro de un ambiente determinado, persiguiendo un fin común, que evolucionan en el tiempo, y que poseen un nivel jerárquico. Los objetivos básicos que persigue el ergónomo al analizar y tratar este sistema se podrían concretar en: i mejorar la interrelación persona-máquina. ii controlar el entorno del puesto de trabajo, o del lugar de interacción conductual, detectando las variables relevantes al caso para adecuarlas al sistema. iii generar interés por la actividad procurando que las señales del sistema sean significativas y asumibles por la persona. iv definir los límites de actuación de la persona detectando y corrigiendo riesgos de fatiga física y/o psíquica. v crear bancos de datos para que los directores de proyectos posean un conocimiento suficiente de las limitaciones del sistema P-M de tal forma que evite los errores en las interacciones. Definiciones de ergonomía El término ergonomía proviene de las palabras griegas ergon (trabajo) y nomos (ley o norma); la primera referencia a la ergonomía aparece recogida en el libro del polaco Wojciech Jastrzebowki (1857) titulado Compendio de Ergonomía o de la ciencia del trabajo basada en verdades tomadas de la naturaleza, que según traducción de Pacaud (1974) dice: “para empezar un estudio científico del © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 17 1 Introducción 17 BIENESTAR INCREMENTO Confort Enriquecimiento, Térmico Cambio y Confort Ampliación de Acústico Relaciones Tareas Confort Personales Visual Trabajo Mental Campos Electromagnéticos PRODUCTIVIDAD SEGURIDAD Cultura Sexo Calidad del FÍSICO SOCIAL Empresa aire Edad Relaciones Estilo Mando Pericia Dimensionales del P.T. Roles Estrofosfera Actividad Trabajo en Grupo Posturas, Movimientos, Horarios Desplazamientos Flujos Comunicación EFICACIA PSÍQUICO Fig. 1.3 Variables mínimas a considerar en el diseño de un puesto de actividad para diferentes usuarios. trabajo y elaborar una concepción de la ciencia del trabajo en tanto que disciplina, no debemos supeditarla en absoluto a otras disciplinas científicas,… para que esta ciencia del trabajo, que entendemos en el sentido no unilateral del trabajo físico, de labor, sino de trabajo total, recurriendo simultáneamente a nuestras facultades físicas, estéticas, racionales y morales…”. De todas formas, la utilización moderna del término se debe a Murrell y ha sido adoptado oficialmente durante la creación, en julio de 1949, de la primera sociedad de ergonomía, la Ergonomics Research Society, fundada por ingenieros, fisiólogos y psicólogos británicos con el fin de “adaptar el trabajo al hombre”. Durante la II Guerra Mundial los progresos de la tecnología habían permitido construir máquinas bélicas, sobre todo aviones, cada vez más complejas de utilizar en condiciones extremas. A pesar del proceso de selección del personal, de su formación, de su entrenamiento y de su elevada motivación © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 18 18 Fundamentos de ergonomía para desempeñar las tareas propuestas, las dificultades con las que se encontraban para desarrollar su cometido provocaban multitud de pérdidas materiales e incluso pérdidas humanas. La selección, el entrenamiento, y la motivación no eran, pues, suficientes: la plasticidad humana para responder a los requerimientos de las máquinas tenía sus límites. El análisis de las necesidades y posibilidades del hombre, por parte de los ingenieros, fisiólogos, psicólogos, etc... no podía fundamentarse única y exclusivamente en el “me pongo en su lugar”: debían generarse una serie de técnicas que permitieran operativizar este “ponerse en su lugar”. La competencia técnica y el avance tecnológico, indispensable para concebir nuevas máquinas, herramientas o equipamientos, no era condición suficiente y necesaria para asegurar el buen funcionamiento de éstas. Se necesitaban “otros” conocimientos, o tal vez, otra manera de plantear el problema que permitiera, en la medida de lo posible, anticipar el comportamiento de las personas en la situación de relación P-M, para de esta forma reducir su riesgo de error, e incrementar el grado de fiabilidad humana: había nacido la ergonomía moderna. Delimitación de las definiciones de Ergonomía Un recurso ampliamente utilizado para centrar el debate en torno a un campo de conocimiento es la vía de la definición. Desde una perspectiva general la definición es un intento de delimitación, esto es, de “indicación de los fines o límites (conceptuales) de un ente con respecto a los demás” (Ferrater 1981). En la delimitación y alcance de un campo de estudio o disciplina científica, que busca su estatuto epistemológico, su independencia con respecto a otras disciplinas, su reconocimiento académico-público, y su dimensión de intervención profesional, parece que la definición juega un papel fundamental a juzgar por el esfuerzo de la mayoría de los autores en buscar definiciones. Si recurrimos a las enciclopedias podemos recoger la definición de la Larousse “la Ergonomía es el estudio cuantitativo y cualitativo de las condiciones de trabajo en la empresa, que tiene por objeto el establecimiento de técnicas conducentes a una mejora de la productividad y de la integración en el trabajo de los productores directos”. La definición de ergonomía de la Real Academia de la Lengua Española (1989) es: “Parte de la economía que estudia la capacidad y psicología humanas en relación con el ambiente de trabajo y el equipo manejado por el trabajador”. Esta definición se nos antoja, cuando menos, pobre y limitada; por ello podemos utilizar, como rodrigón, la del Ministerio de Trabajo de España (1974) que en su Plan Nacional de Higiene y Seguridad en el Trabajo define a la ergonomía como “Tecnología que se ocupa de las relaciones entre el hombre y el trabajo”. Las definiciones de los profesionales Consideramos que las definiciones que pueden servir como punto de referencia más significativo son aquellas que utilizan los profesionales de la ergonomía, y que a posteriori acostumbran a ser las que se popularizan y calan en el argot de la población, ya que estas definiciones correlacionan © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 19 1 Introducción 19 positivamente con el pensamiento de cualificados profesionales del área, que a su vez son los que reflexionan de manera más crítica sobre su campo de conocimiento. Los profesionales de la ergonomía utilizan diferentes definiciones que pretenden enmarcar el quehacer cotidiano que debería realizar un profesional de esta disciplina; evidentemente estas definiciones han evolucionado en el tiempo. Las definiciones más significativas que han ido apareciendo son: la más clásica de todas es la de Murrell (1965): “la Ergonomía es el estudio del ser humano en su ambiente laboral”; para Singlenton (1969), es el estudio de la “interacción entre el hombre y las condiciones ambientales”; según Grandjean (1969), considera que Ergonomía es “el estudio del comportamiento del hombre en su trabajo”; para Faverge (1970), “es el análisis de los procesos industriales centrado en los hombres que aseguran su funcionamiento”; Montmollin (1970), escribe que “es una tecnología de las comunicaciones dentro de los sistemas hombres-máquinas”; para Cazamian (1973), “la Ergonomía es el estudio multidisciplinar del trabajo humano que pretende descubrir sus leyes para formular mejor sus reglas”; y para Wisner (1973) “la Ergonomía es el conjunto de conocimientos científicos relativos al hombre y necesarios para concebir útiles, máquinas y dispositivos que puedan ser utilizados con la máxima eficacia, seguridad y confort”. En la definición del equipo encargado de elaborar análisis de las condiciones de trabajo del obrero en la empresa, comúnmente conocido como método L.E.S.T.; sus autores: Guélaud, Beauchesne, Gautrat y Roustang (1975), definen la ergonomía como “el análisis de las condiciones de trabajo que conciernen al espacio físico del trabajo, ambiente térmico, ruidos, iluminación, vibraciones, posturas de trabajo, desgaste energético, carga mental, fatiga nerviosa, carga de trabajo y todo aquello que puede poner en peligro la salud del trabajador y su equilibrio psicológico y nervioso”. Para McCormick (1981), la ergonomía trata de relacionar las variables del diseño por una parte y los criterios de eficacia funcional o bienestar para el ser humano, por la otra designing for human use. Por último, citaremos la definición de Pheasant (1988), para quien la ergonomía es la aplicación científica que relaciona a los seres humanos con los problemas del proyecto tratando de “acomodar el lugar de trabajo al sujeto y el producto al consumidor”. Síntesis de las definiciones Del recorrido histórico sobre distintas definiciones de Ergonomía, en una muestra bibliográfica más exhaustiva que la presentada aquí, se desprenden tres cuestiones fundamentales: i que su principal sujeto de estudio es el hombre en interacción con el medio tanto “natural” como “artificial”. ii su estatuto de ciencia normativa. iii su vertiente de protección de la salud (física, psíquica y social) de las personas (Fig. 1.4). © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 20 20 Fundamentos de ergonomía FÍSICO MENTAL SOCIAL SALUD CONDICIONES CONTENIDO ORGANIZACIÓN MATERIALES DEL DEL AMBIENTE TRABAJO TRABAJO DE TRABAJO SEGURIDAD PSICOLOGÍA INGENIERÍA EVITAR HIGIENE SOCIOLOGÍA PSICOLOGÍA DAÑO INGENIERÍA INGENIERÍA ECONOMÍA FÍSICA FISIOLOGÍA SOCIOLOGÍA FISIOLOGÍA LEGISLACIÓN PSICOLOGÍA ESTADÍSTICA ERGONOMÍA BIENESTAR “LA SALUD ES EL BIENESTAR FÍSICO, PSÍQUICO Y SOCIAL DE LAS PERSONAS” Fig. 1.4 Ciencias que utiliza la ergonomía (según Fernández de Pinedo) para mantener la salud de los trabajadores. Una definición de ergonomía debiera recoger, a nuestro entender, los elementos condicionantes que enmarcan su realización. Por ello podríamos pensar en la ergonomía como en una actuación que considerara los siguientes puntos: i objetivo: mejora de la interacción P-M, de forma que la haga más segura, más cómoda, y más eficaz; esto implica selección, planificación, programación, control y finalidad. ii procedimiento pluridisciplinar de ingeniería, medicina, psicología, economía, estadística, etc..., para ejecutar una actividad. iii intervención en la realidad exterior, o sea, alterar tanto lo natural como lo artificial que nos rodea; lo material y lo relacional. iv analizar y regir la acción humana: incluye el análisis de actitudes, ademanes, gestos y movimientos necesarios para poder ejecutar una actividad; en un sentido más figurado implica anticiparse a los propósitos para evitar los errores. v valoración de limitaciones y condicionantes del factor humano, con su vulnerabilidad y seguridad, con su motivación y desinterés, con su competencia e incompetencia... © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 21 1 Introducción 21 vi y por último, un factor que debemos ponderar en su justo valor: el económico, sin el cual tampoco se concibe la intervención ergonómica (Fig. 1.5) TA X O N O M Í A PUESTO DE TRABAJO P-M ERGONOMÍA SISTEMAS PP-MM PREVENTIVA Diseño - Concepción ERGONOMÍA CORRECTIVA Análisis de errores y rediseño GEOMÉTRICA Postural, movim., entornos AMBIENTAL Iluminación, sonido, calor,… ERGONOMÍA TEMPORAL Ritmos, pausas, horarios,… TRABAJO FÍSICO TRABAJO MENTAL Fig. 1.5 Diferentes enfoques de la clasificación de la ergonomía. Como podemos ver, son abundantes las definiciones y el alcance de éstas con respecto al campo de actuación de la ergonomía. En la proliferación de definiciones se suele reflejar la visión de un autor concreto en un tiempo determinado y, como es evidente, toma partido en la cuestión de lo que significa definir el objetivo de estudio de la ergonomía influenciado por su formación de base. Podemos agrupar las distintas definiciones del concepto de ergonomía de la siguiente forma: i la ergonomía como tradición acumulativa del conocimiento organizado de las interacciones de las personas con su ambiente de trabajo. ii la ergonomía como conjunto de experiencias, datos empíricos, y de laboratorio; muchas definiciones se sitúan bajo este epígrafe. Desde esta concepción la ergonomía es un conjunto de actividades planificadas y preparadas para la concepción y el diseño de los nuevos puestos de trabajo, y para el rediseño de los existentes. © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 22 22 Fundamentos de ergonomía iii la ergonomía, como una tecnología, es una aproximación fruto del intento de aplicar la gestión científica al trabajo y al ocio. iv la ergonomía como plan de instrucción, haciendo hincapié en los procesos mentales de las personas. v la ergonomía como herramienta en la resolución de problemas, sobre todo en el ámbito de los errores humanos y de toma de decisión. vi por último, aparece una nueva visión de la ergonomía donde se enfatiza el carácter singular de su metodología que posibilita un estudio unitario y flexible de los problemas, tanto laborales como extralaborales, de interacción entre el usuario y el producto/servicio (Fig. 1.6). A modo de resumen, podemos decir que la ergonomía trata de alcanzar el mayor equilibrio posible entre las necesidades/posibilidades del usuario y las prestaciones/requerimientos de los productos y servicios. PSÍQUICO PROCESO DE TRABAJO sentidos, memoria, rotación, contenido del trabajo, atención... diversidad de tareas, distribución del tiempo, ritmo adecuado, valoración, turnos, biorritmos,..... FÍSICO AMBIENTE DE TRABAJO medidas, fuerza, tiempo de reacción, peso... condiciones termohigénicas, ruido, vibraciones, iluminación, colores del local, radiaciones, SOCIAL dimensiones del local rol , estatus... DIMENCIÓN DEL PUESTO DE TRABAJO altura del plano de trabajo, asiento ajustable, dimenciones dinámicas, alcances, herramientas funcionales, esfuerzos, posturas, movimientos SOFTWARE EDAD SEXO tablas, manuales, códigos, PERICIA paneles de instrucción, emkdesing símbolos,..... Fig. 1.6 Consideraciones ergonómicas al diseñar un puesto de trabajo. © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 23 1 Introducción 23 Alcance de la ergonomía Una primera aproximación a la ergonomía colocaría a ésta en la posición de estudio del ser humano en su ambiente laboral, lo que permitiría pensar en la ergonomía como en una técnica de aplicación, en la fase de conceptualización y corporificación de proyectos (ergonomía de concepción o preventiva), o como una técnica de rediseño para la mejora y optimización (ergonomía correctiva). Una segunda visión de la ergonomía recogería la idea de que, en realidad, ésta debe ser una disciplina eminentemente prescriptiva, que debe proporcionar a los responsables de los proyectos los límites de actuación de los usuarios para de este modo adecuar las realizaciones artificiales a las limitaciones humanas. Por último, en un tercer enfoque, un poco más ambicioso que los anteriores, entendería esta ciencia como un campo de estudio interdisciplinar donde se debaten los problemas relativos a qué proyectar y cómo articular la secuencia de posibles interacciones del usuario con el producto, con los servicios, o incluso con otros usuarios. De todas formas, una reflexión sucinta sobre el alcance de la ergonomía, podría contemplar los tres apartados siguientes: i la ergonomía como banco de datos sobre la horquilla de las capacidades y limitaciones de respuesta de los usuarios. ii la ergonomía como programa de actividades planificadas, para mejorar el diseño de los productos, servicios y/o las condiciones de trabajo y uso. iii la ergonomía como disciplina aplicada para mejorar la calidad de vida de las personas. Esta forma de presentar la ergonomía sugiere una perspectiva ecológica en la que el significado de cualquier elemento debe ser visto como algo creado de forma contínua por las interdependencias con las fuerzas con las que está relacionado. Así, el carácter de la ergonomía configura y a la vez es configurado por sus relaciones externas con las perspectivas del conocimiento y las prácticas en otros campos de conocimiento: ingeniería, medicina, psicología, economía, diseño, fisiología, etc. Metodología Podemos pensar en representar la ergonomía como un campo de investigación y de práctica que tiene que ser visto en interdependencia directa respecto a los proyectos de concepción de puestos de trabajo y ocio, y a los atributos funcionales de los productos y servicios. El desarrollo de la tecnología permite proyectar herramientas, máquinas, equipos y servicios con elevadas prestaciones, pero además debemos exigir a los proyectos que respeten y que se adecúen a los límites de capacidad de respuesta humana. © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 24 24 Fundamentos de ergonomía En la actualidad, debido al caudal de datos e investigaciones que poseemos, la labor del ergónomo se centra, cada vez más, en la selección de criterio: criterio en la elección del equipo humano que debe abordar el proyecto, criterio en la selección de variables pertinentes, criterio en la utilización de tablas y matrices, criterio en la selección del nivel de TLV’s (Threshold Limit Values), etc... El monto de conocimiento que generan las diferentes disciplinas científicas se acumula de tal forma que el ergónomo se ve obligado a generar una estrategia válida que le permita acceder a la información relevante al caso con el mínimo esfuerzo, para poder disponer de los requerimientos funcionales que debe cumplir el proyecto, manteniendo el grado más bajo de saturación de los canales perceptivos de los usuarios, y respetando las compatibilidades funcionales con el resto de productos y servicios que ya figuran dentro del sistema (Fig. 1.7). SOLUCIÓN ERGONÓMICA CONSIDERA REALIZA RELACIONES ERGONOMÍA ANÁLISIS SINÉRGICAS GLOBAL emkdesing Conflicto - Desequilibrio Fig. 1.7 Intervención de la ergonomía en los conflictos del sistema El ergónomo utiliza los métodos clásicos de investigación en ciencias humanas y biológicas, pero además ha adaptado y creado nuevos métodos que, en muchos casos, son pequeñas variantes de metodologías conocidas, que le permiten recoger de forma exhaustiva y económica las variables significativas de los problemas que se le plantean en el devenir de su intervenció. Podemos destacar los siguientes: i informes subjetivos de las personas, ya que el grado de bienestar de una situación no sólo depende de las variables externas, sino de la consideración que de éstas haga el usuario. © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 25 1 Introducción 25 ii observación y mediciones: esta técnica permite recoger datos cargados de contenido. Una variación en la metodología de observación, como puede ser la observación conjugada de varios personas con diferencias en formación, sexo, cultura, edad, pericia, experiencia, etc..., acostumbra a enriquecer enormemente los resultados. iii simulación y modelos: debido a la complejidad de los sistemas, o a la innovación, en ciertos momentos debemos recurrir a la modelación o simplemente a la simulación de las posibles respuestas del sistema. iv método de incidentes críticos: mediante el análisis de estos incidentes, podemos encontrar las situaciones caracterizadas como fuentes de error, y ahondar en el análisis explorativo de éstas. La intervención ergonómica Existen, al menos, dos formas de entender lo que debe ser la intervención ergonómica, y cómo se debe aplicar: para unos, la ergonomía debe elaborar manuales, catálogos de recomendaciones o de normas que deben servir de guía a los proyectistas; detrás de esta concepción aparece arraigada la necesidad de dotar de herramientas útiles a los encargados de dirigir proyectos, o de poner a punto equipamientos y servicios. Esta aproximación se considera a menudo la única posible cuando estos productos/servicios están destinados a un “gran público”, o cuando no se conocen sus futuras condiciones de utilización. Esta concepción presenta una ergonomía sin ergónomos, en la cual el profesional es sustituido por los datos, y se deja en manos del buen criterio de otros profesionales el uso cabal de la disciplina. Este modo de actuación carece, a nuestro entender, de la particularidad que le otorga el ergónomo, y evidentemente no puede asegurar la aplicación fidedigna y correcta de los indicadores ergonómicos; para nosotros se requiere la presencia directa del profesional de la ergonomía, y aún mejor del equipo de ergonomía, el cual es el único garante que permite ponderar y considerar las variables pertinentes al caso en función de los objetivos a alcanzar, y de los recursos de que se dispone. La otra forma de entender la ergonomía requiere la presencia activa del ergónomo en la fase de proyecto y/o en el lugar de trabajo/ocio, posibilita el analizar la actividad, entender la forma de actuación real de los usuarios, diferenciando “lo que dicen, de lo que hacen”, inferiendo los procesos que subyacen en su actuación, las variaciones no reseñadas en las condiciones de realización de la tarea, el uso de “otros” medios de trabajo, etc., todo lo cual es necesario para elaborar estrategias más eficaces a la hora de dar forma y corporizar el proyecto. Entre estos dos posicionamientos de actuación existen posibilidades eclécticas que permiten actuar en función de los medios de que se dispone. De todas formas, no debemos dejar de remarcar, una vez más, que la segunda forma de actuación expuesta es la que consideramos coherente y eficaz a la actuación del profesional de la ergonomía, para la dotación de valor ergonómico al proyecto. © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 26 26 Fundamentos de ergonomía Las etapas de la intervención Podemos reducir la intervención ergonómica a una serie de etapas fácilmente identificables en cualquier proyecto: i análisis de la situación: ésta se realiza cuando aparece algún tipo de conflicto. ii diagnóstico y propuestas: una vez detectado el problema el siguiente paso reside en diferenciar lo latente de lo manifiesto, destacando las variables relevantes en función de su importancia para el caso. iii experimentación: simulación o modelaje de las posibles soluciones. iv aplicación: de las propuestas ergonómicas que se consideran pertinentes al caso. OBJETIVOS DE LA ERGONOMÍA INCREMENTAR… CALIDAD DE SEGURIDAD VIDA BIENESTAR EFICACIA MEJORAR LA FIABILIDAD DEL SISTEMA Fig. 1.8 Objetivo de la ergonomía © Los autores, 1999; © Edicions UPC, 1999. Cap-1 5/10/99 12:48 Página 27 1 Introducción 27 v validación de los resultados: grado de efectividad, valoración económica de la intervención y análisis de fiabilidad. vi seguimiento: por último, cabe retroalimentar y comprobar el grado de desviación para ajustar las diferencias obtenidas a los valores pretendidos mediante un programa. El objetivo que se persigue siempre en ergonomía es el de mejorar “la calidad de vida” del usuario, tanto delante de una máquina herramienta como delante de una cocina doméstica, y en todos estos casos este objetivo se concreta con la reducción de los riesgos de error, y con el incremento de bienestar de los usuarios. Facilitar la adaptación al usuario de los nuevos requerimientos funcionales es incrementar la eficiencia del sistema. La intervención ergonómica no se limita a identificar los factores de riesgo y las molestias, sino que propone soluciones positivas, soluciones que se mueven en el ámbito posibilista de las potencialidades efectivas de los usuarios, y de la viabilidad económica que enmarca cualquier proyecto. El usuario no se concibe como un “objeto” a proteger sino como una persona en busca de un compromiso aceptable con las exigencias del medio. El ergónomo da referencias para concebir situaciones más adaptadas a las tareas a realizar, en función de las características de todos los usuarios involucrados en el proyecto. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 29 2 Interfaz hombre-máquina: relaciones informativas y de control 29 2 Interfaz persona-máquina: relaciones informativas y de control Interfaz persona-máquina (P-M) La ergonomía geométrica posibilita la actuación en el diseño de los espacios, máquinas y herramientas que configuran el entorno de la persona, que no es otra cosa que los medios que éste utiliza para comunicarse o satisfacer sus necesidades en el trabajo o en el ocio. El conjunto de útiles y mecanismos, su entorno y el usuario, forman una unidad que podemos definir y analizar como un sistema P-M, considerando, no sólo los valores de interacción de variables, sino también las relaciones sinérgicas. Podemos clasificar estos sistemas en función del grado y de la calidad de interacción entre el usuario y los elementos del entorno; utilizando una clasificación comúnmente aceptada, obtendríamos tres tipos básicos de sistemas de interacción: 1) manuales; 2) mecánicos; 3) automáticos (Fig 2.1). Sistemas manuales La principal característica estriba en que es el propio usuario el que aporta su energía para el funcionamiento, y que el control que ejerce sobre los resultados es directo: un albañil levantando una pared, o un artesano manejando un martillo y una escarpa, o un ciclista, podrían ser buenos ejemplos. Sistemas mecánicos A diferencia de los sistemas manuales, el usuario aporta una cantidad limitada de energía, ya que la mayor cantidad de ésta es producida por las máquinas o por alguna fuente exterior. Son sistemas en los cuales el hombre recibe la información del funcionamiento directamente o a través de dispositivos informativos y mediante su actuación sobre los controles regula el funcionamiento del sistema. Un motorista, un operario abriendo una zanja con un martillo neumático, nos pueden ilustrar la idea. De todas formas, el ejemplo más recurrido para la exposición de sistemas mecánicos es la conducción de un automóvil. El sistema conductor-automóvil está incluido en un sistema de rango superior, la © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 30 30 Fundamentos de ergonomía TIPOS DE SISTEMAS SEGÚN LA FUNCIÓN DE LA PERSONA: A.- SISTEMA MANUAL PERSONA ENTRADA (como motor y controlador) SALIDA INFORMACIÓN EN MEMORIA PROCESA- SENSA- MIENTO ACCIÓN CIÓN Y DECISIÓN INFORMACIÓN DE RETROALIMENTACIÓN (sistema en lazo cerrado) B.- SISTEMA MECÁNICO PERSONA (como controlador) PROCESO INFORMACIÓN EN MEMORIA CONTROL DE PROCESO C.- SISTEMA AUTOMÁTICO MÁQUINA (Según Programa) PERSONA (como monitor) Fig. 2.1 Tipos de sistemas según la función de la persona dentro de los mismos: a) Sistema manual b) Sistema mecánico c) Sistema automático © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 31 2 Interfaz hombre-máquina: relaciones informativas y de control 31 circulación, en el cual el conductor recibe un plus de información de los propios componentes intrínsecos del vehículo (velocidad, potencia, características, ruidos..), y del entorno (carretera, señales de tráfico, edificios, señales naturales, otros vehículos, etc...). Los indicadores: velocímetro, tacómetro, displays de iluminación, termómetros, y niveles de aceite, gasolina, agua... nos darán la referencia acerca de las medidas de velocidad, de las revoluciones del motor, del tipo de iluminación utilizada, de la temperatura del agua en el circuito de refrigeración, del nivel de los depósitos, etc. Los controles del sistema serán el volante de dirección, los pedales de aceleración, freno y embrague, las palancas para el cambio de velocidades y para accionar las luces, las galgas de nivel de los líquidos, etc., cuya resistencia, posición, altura, olor, color y textura, actúan de retroalimentación sobre el conductor y le permiten calibrar en todo momento el grado de fiabilidad del sistema. Si a todo esto le sumamos los componentes propios del conductor, características antropométricas, edad, sexo, pericia, aptitud, capacidades fisiológicas, etc., obtendremos la resultante total de variables a analizar en el sistema mecánico conductor-automóvil. Sistemas automáticos Los sistemas automáticos, o de autocontrol, son más teóricos que reales, ya que deberían, una vez programados, mantener la capacidad de autorregularse. En la práctica no existen sistemas totalmente automáticos, siendo imprescindible la intervención de la persona como parte del sistema, al menos en las funciones de supervisión y mantenimiento. LA PERSONA GENERALMENTE ES MEJOR: PARA SENTIR NIVELES MUY BAJOS DE CIERTOS TIPOS DE ESTIMULOS: VISUALES, AUDIBLES, TACTILES, OLFATIVOS Y GUSTATIVOS, AL MENOS CON MAYOR FACILIDAD Y SENCILLEZ. DETECTAR ESTIMULOS SONOROS CON UN ALTO NIVEL DE RUIDO DE FONDO. RECONOCER PATRONES COMPLEJOS DE ESTIMULOS QUE PUEDEN VARIAR EN SITUACIONES DIFERENTES. SENTIR SUCESOS NO USUALES E INESPERADOS EN EL AMBIENTE. UTILIZAR UNA EXPERIENCIA MUY VARIADA PARA TOMAR DECISIONES, ADAPTANDOLA A NUEVAS SITUACIONES. DECIDIR NUEVAS FORMAS ALTERNATIVAS DE OPERACION EN CASO DE FALLOS. RAZONAR INDUCTIVAMENTE GENERALIZANDO OBSERVACIONES. HACER ESTIMACIONES Y EVALUACIONES SUBJETIVAS. GRAN FLEXIBILIDAD PARA TOMAR DECISIONES ANTE SITUACIONES IMPREVISTAS. CONCENTRARSE EN LAS ACTIVIDADES MAS IMPORTANTES CUANDO LA SITUACION LO INDIQUE. Fig. 2.2 La persona generalmente es mejor... © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 32 32 Fundamentos de ergonomía LAS MÁQUINAS GENERALMENTE SON MEJORES: PARA SENTIR ESTÍMULOS QUE ESTAN FUERA DE LAS POSIBILIDADES HUMANAS: RAYOS X, MICROONDAS, SONIDOS ULTRASÓNICOS,… APLICAR “RAZONAMIENTO” DEDUCTIVO, COMO RECONOCER ESTÍMULOS QUE PERTENECEN A DETERMINADA CLASIFICACIÓN ESPECIFICADA. VIGILAR SUCESOS PREVISTOS, ESPECIALMENTE CUANDO SON POCO FRECUENTES, SIN PODER IMPROVISAR. ALMACENAR GRANDES CANTIDADES DE INFORMACIÓN CODIFICADA RÁPIDA Y PRECISA Y ENTREGARLA CUANDO SE LE SOLICITA. PROCESAR INFORMACIÓN CUANTITATIVA SIGUIENDO PROGRAMAS ESPECÍFICOS. RESPONDER RÁPIDA Y CONSISTENTEMENTE A SEÑALES DE ENTRADA. EJECUTAR CONFIABLEMENTE ACTIVIDADES ITERATIVAS Y EJERCER FUERZA FÍSICA CONSIDERABLE HOMOGÉNEAMENTE Y CON PRECISIÓN. MANTENERSE EN ACTIVIDAD DURANTE LARGOS PERIODOS. CONTAR Y MEDIR CANTIDADES FÍSICAS. REALIZAR SIMULTÁNEAMENTE VARIAS ACTIVIDADES. ACTUAR EN AMBIENTES HOSTILES A LA PERSONA. MANTENER LA OPERACIÓN EFICIENTE BAJO DISTRACCIONES. Fig. 2.3 La máquina generalmente es mejor.... Cuando diseñamos sistemas automáticos, lo que estamos diseñando en realidad son sistemas semiautomáticos (satélites, sondas, etc), pero al final del proceso siempre encontraremos usuarios que recibirán unos u otros datos y que, previa interpretación, actuarán en consecuencia (dar por desaparecidos la sonda espacial, artefacto fuera del sistema de control, rectificar trayectoria, etc...). En la práctica los sistemas P-M suelen estar formados por la interacción de subsistemas de los tres tipos. Para diseñar correctamente un sistema P-M, debemos identificar las funciones, jerarquizarlas y hacer una repartición de ellas entre la persona y la máquina; debemos pues, considerar las ventajas e inconvenientes (económicos, tecnológicos, sociales y por supuesto ergonómicos) de atribuir una función la persona o a la máquina, para esto último tenemos que considerar las características generales de ambos (Fig. 2.2 y Fig 2.3). Dispositivos informativos (DI) La necesidad de recibir información es indispensable para que el usuario controle el sistema; la retroalimentación que recibirá, la cantidad y calidad de información, su cadencia, la forma en que la recibe, etc... determinarán la calidad de la respuesta que éste podrá realizar. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 33 2 Interfaz hombre-máquina: relaciones informativas y de control 33 Atendiendo al canal por el que se recibe la información, generalmente la visión es el sistema detector por el cual el usuario recibe más del 80% de la información exterior. De los otros sistemas de recogida de información, sólo la audición y el tacto aparecen significativamente, ya que tanto el gusto, como el olfato, son canales poco utilizados en el medio laboral, excepto casos muy concretos, como catadores, narices (perfumistas), etc. A la hora de diseñar cualquier mando o control o algún dispositivo informativo, tendremos en cuenta el tipo de información que se ha de percibir, los niveles de distinción y comparación, la valoración de la información recibida, la carga de estímulos recibidos, la frecuencia y el tiempo disponible de reacción, el tiempo compartido entre la persona y la máquina para dar respuesta, las posibles interferencias, la compatibilidad entre persona y máquina, etc. Los dispositivos se pueden categorizar en dispositivos visuales, táctiles y auditivos, atendiendo a los canales sensoriales por los que se puede recibir la información. Muchas veces la implementación de éstos pasa por la combinación de una o varias categorías, lo que obliga a realizar un análisis relacional de ellos, y un análisis de saturación y compatibilidad de los canales perceptivos por los cuales el usuario recibirá el monto total de información. Dispositivos informativos visuales (DIV) El problema de los indicadores visuales estriba en que no sólo dependen de la percepción visual del operario, sino que además debemos considerar las condiciones externas que configuran el espacio de trabajo, y que interfieren en el proceso de captación de la información visual. Elegiremos aquel dispositivo que, cumpliendo los requisitos, sea el más sencillo de todos. Es por eso que esta selección se debe hacer desde los dispositivos más simples a los más complejos; la elección se efectuará teniendo en cuenta esta premisa, pues la información debe ser la necesaria y suficiente, sin excesos ni defectos. Los DIV se usan principalmente cuando… (Fig. 2.4). LOS DISPOSITIVOS INFORMATIVOS VISUALES SE USAN PRINCIPALMENTE CUANDO: 1. LOS MENSAJES SON LARGOS Y COMPLEJOS. 2. SI HAY QUE REFERIRSE A ELLOS POSTERIORMENTE. 3. SE RELACIONAN CON UNA SITUACION DE ESPACIO. 4. NO IMPLICAN ACCION INMEDIATA. 5. EL OIDO ESTA SOBRACARGADO. 6. EL LUGAR ES MUY RUIDOSO. 7. LA PERSONA PERMANECE EN POSICION FIJA. Fig. 2.4 Utilización de los dispositivos informativos visuales (DIV) © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 34 34 Fundamentos de ergonomía Los parámetros que intervienen en las respuesta de las personas son la visibilidad, la legibilidad, el grado de fatiga y la compatibilidad. Algunos de los aspectos específicos relacionados con estas cuatro variables, son: - Visibilidad: brillo y contraste - Legibilidad: tamaño, claridad y tipo de fuente luminosa - Grado de fatiga: fuente luminosa, color, parpadeo - Compatibilidad: grado de adecuación del sistema A continuación se enumeran los dispositivos informativos visuales (DIV) básicos (Fig. 2.5). DISPOSITIVOS INFORMATIVOS VISUALES (D.I.V.) 1. ALARMAS 2. INDICADORES 3. CONTADORES 3 4. DIALES Y CUADRANTES 5. SIMBOLOS 6. LENGUAJE ESCRITO 7. PANTALLAS Fig. 2.5 DIV básicos. A la hora de diseñar diferentes sistemas de captación visual de información, debemos considerar las diferencias individuales tales como: edad, tiempo de reacción, adaptación, acomodación y agudeza visuales, cromatismo, cultura, fatiga y entrenamiento. Además, se deben atender las condiciones externas que afectan a las discriminaciones visuales, tales como contrastes, tiempo de exposición, relación de luminancias, movimiento del objeto y deslumbramientos. Los dispositivos informativos visuales (también llamados displays) son captadores de información que facilitan la percepción por el hombre, ya sea mediante una transducción del estímulo a un sistema de codificación o de umbrales humanos que permitan su captación o, en otros casos, simplemente mediante la presentación en umbrales humanos adecuados de la energía que emiten las fuentes externas que se deben percibir. A continuación se muestra en un diagrama simplificado del proceso de la información visual. (Fig. 2.6) © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 35 2 Interfaz hombre-máquina: relaciones informativas y de control 35 REFERENCIA (MEMORIA) FORMACIÓN IMAGEN PROCESOS ANÁLISIS PROCESO CORTICAL TOMA DE DECISIÓN SENSIBILIZACIÓN PROCESO NEURO E - ESTÍMULO IMÁGENES DE RETINIANO RETINA R RETROALIMENTACIÓN Fig. 2.6 Diagrama simplificado del proceso de información visual Las alarmas Son dispositivos que transmiten la información urgente de forma rápida y clara, se manejan con un bit de información (si-no) sin otras alternativas. Su significado debe ser conocido por todos los operarios del lugar de trabajo. Acostumbran a estar relacionados con alarmas sonoras para llamar la atención, y deben poseer un determinado parpadeo. Como ejemplo citaremos la lámpara parpadeante o fija que alerta sobre la falta de combustible, la alarma visual en las plantas nucleares, las alarmas de las ambulancias y bomberos, etc. Los indicadores La diferencia fundamental respecto a las alarmas estriba en que los indicadores no llevan añadido el componente de urgencia. Se pueden utilizar para indicar funcionamiento, paro,dirección, etc.... El intermitente de un coche, las señales del tráfico, el rótulo del nombre de una calle, etc... son buenos ejemplos de indicadores. Símbolos Por su sencillez y fácil comprensión son elementos muy útiles; el peligro consiste en una mala utilización, ya sea por ambigüedad, por deficiencias en la normalización, o por incompatibilidad cultural. Los carteles de riesgo eléctrico, de no fumar, toxicidad, campo de fútbol, etc... son un buen ejemplo (Fig. 2.7). © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 36 36 Fundamentos de ergonomía Fig. 2.7 Algunos símbolos de uso común Los contadores Son los más sencillos de todos los DIV que informan sobre valores numéricos, con un número muy bajo de errores en la lectura. No sirven para variables cuyos cambios son muy rápidos, ya que no permitirían la lectura e incluso podrían llevar a confusión de sentido en la variación de los valores (régimen de cambio). Citaremos el contador de kW/h, reloj digital horario, “su turno”, etc. Diales y cuadrantes Son los DIV más complejos. En función de su forma pueden ser circulares, semicirculares, sectoriales, cuadrados, rectangulares (horizontales y verticales). Por su funcionamiento se pueden clasificar como indicador móvil con escala fija y como indicador fijo con escala móvil. Los de indicador fijo provocan menos errores de lectura; sin embargo, los de indicador móvil permiten conocer mejor el régimen de cambio de la variable. Ejemplos: el reloj analógico, medidores de presión, termómetros... (Fig. 2.8). Características generales de los dispositivos informativos visuales (DIV) Las características generales de los DIV se pueden resumir en: 1 Su precisión debe de ser la necesaria (la precisión es la división más pequeña de una escala). 2 Su exactitud debe de ser la mayor posible (la exactitud es la capacidad del dispositivo para reproducir el mismo valor cuando aparece la misma condición). 3 Deben ser lo más simples que sea posible. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 37 2 Interfaz hombre-máquina: relaciones informativas y de control 37 AGUJA MÓVIL AGUJA FIJA ESCALA FIJA ESCALA MÓVIL 5 4 6 5 4 6 3 7 3 7 2 8 2 8 1 9 1 9 0 10 0 10 30 20 40 2 1 3 10 50 0 4 0 60 10 6 0 1 2 3 4 5 6 7 9 7 6 8 5 4 3 2 1 3 4 5 6 7 8 9 0 OPERACIÓN Lectura de valor absoluto BUENO BUENO Observación de cambio de valor MUY BUENO BUENO Lectura de valor exacto control de proceso MUY BUENO BUENO Ajuste a un valor dado MUY BUENO PASABLE Fig. 2.8 Dispositivos de información (UNE81-600-85) 4 Deben ser directamente utilizables, evitando los cálculos. A lo sumo utilizar factores múltiplos de 10. 5 Las divisiones de las escalas deben ser 1, 2 y 5. 6 En las escalas sólo deben aparecer números en las divisiones mayores. 7 La lectura de los números debe ser siempre en posición vertical. 8 El tamaño de las marcas debe estar de acuerdo con la distancia visual, la iluminación, y el contraste. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 38 38 Fundamentos de ergonomía Siendo la distancia visual a: altura de marcas grandes = a/90 altura marcas medianas = a/125 altura marcas pequeñas = a/200 grosor de las marcas = a/5000 distancia entre dos marcas pequeñas = a/600 distancia entre dos marcas grandes = a/50 9 Las dimensiones de las letras y números se deberían adecuar a las siguientes proporciones: relación altura : anchura = 0,7 : 1 relación grosor : altura = 1 : 6 (para negro sobre blanco) 1 : 8 (para blanco sobre negro) 10 la distancia de la punta del indicador al número, o a la división debe ser la mínima posible, evitando siempre el enmascaramiento. 11 La punta del indicador debe ser aguda, formando un ángulo de 20°. 12 Los planos del indicador y de la escala deben estar lo más cercanos que sea posible para evitar el error de paralaje. 13 Siempre que se pueda se deben sustituir los números por colores (por ejemplo: verde, amarillo y rojo), zonas... 14 Es muy útil combinar estas lecturas con dispositivos sonoros de advertencia para valores críticos. 15 Las combinaciones que se pueden efectuar con los números y las letras son prácticamente infinitas. Se utilizan para valoraciones, descripciones e identificaciones. El contraste debe ser superior al 75-80%. En ocasiones puede ser útil su combinación con colores, luces y sonidos para acentuar su capacidad de información cualitativa. 16 El conjunto de colores incluyendo tonos, matices, textura, etc. es prácticamente ilimitado. Se establece, por las normas de seguridad e higiene en el trabajo, utilizar los colores normalizados, y si se puede simplificar: rojo, amarillo, verde, blanco y negro. Se aconseja su utilización en indicadores cualitativos y para tareas de emergencia y búsqueda. 17 Luces: aunque se pueden emplear diez colores diferentes, se recomienda limitar su utilización a cuatro: rojo, verde, amarillo y blanco. Se utilizan en displays cualitativos, como apoyo a los cuantitativos y en señales de alarma. El parpadeo se utilizará en señales de alarma, la frecuencia de parpadeo se debe mantener en menos de 1 parpadeo/segundo y siempre debe ser menor que la frecuencia crítica de fusión retiniana. 18 La intensidad del brillo se debe limitar a tres grados: muy opaco, normal e intenso. Los flashes se deben limitar a dos y tienen importancia en señales de alerta. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 39 2 Interfaz hombre-máquina: relaciones informativas y de control 39 19 Se recomiendan las formas geométricas, aunque se ha comprobado que se pueden utilizar hasta veinte: triángulos, círculos, estrellas, rombos, y semicírculos. Se utilizan en representaciones simbólicas para identificación. 20 Las figuras descriptivas se recomienda que sean: definidas, cerradas, simples y unificadas (Fig. 2.9). ALGUNAS CARACTERISTICAS QUE DEBEN POSEER DIALES Y CUADRANTES: 1. LO MAS SIMPLE QUE SEA POSIBLE. 2. PRECISION NECESARIA Y SUFICIENTE. 3. DIRECTAMENTE LEGIBLES PARA EVITAR CALCULOS, O USAR FACTORES MULTIPLOS DE 10. 4. LAS DIVISIONES DE LAS ESCALAS DEBEN SER 1, 2 Y 5. 5. NUMERAR SOLO LAS DIVISIONES GRANDES. 6. LA LECTURA DE LOS NUMEROS DEBE SER VERTICAL. 7. EL TAMAÑO DE LAS MARCAS DEBE ESTAR RELACIONADO CON LA DISTANCIA VISUAL, ILUMINACION Y CONTRASTE. 8. LA PUNTA DEL INDICADOR DEBE SER AGUDA Y ESTAR LO MAS CERCA POSIBLE DEL NUMERO SIN TOCARLO. 9. LOS PLANOS DEL INDICADOR Y LA ESCALA DEBEN ESTAR LO MAS PROXIMOS POSIBLE. 10. OTROS… Fig. 2.9 Cuadro resumen de las características visuales que deben poseer diales y cuadrantes Ubicación de los DIV La ubicación de los DIV requiere de una atención especial, ya que éstos están condicionados por los siguientes aspectos: 1 Su importancia dentro del sistema tratado. 2 Su frecuencia de uso. 3 Su posible agrupamiento con otros DIV según su función, o relacionado con sus controles correspondientes. 4 La secuencia de las lecturas. 5 Las estrofosferas de trabajo. 6 Las cargas de trabajo físico (alta, media y baja). © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 40 40 Fundamentos de ergonomía 7 La iluminación (reflexiones indeseables, sombras, etc.) 8 Polvo y suciedad.... Pantallas Las consideraciones que deben tener las pantallas hacen referencia a su dimensión y a las posibilidades de control del contraste, brillo, rotación, e inclinación: 1 El usuario debe poder regular la luminosidad y el contraste. 2 La luminancia de la pantalla no debe ser inferior a 10 cd/m2 y la de los caracteres estará entre 3 y 15 veces la de la pantalla; la relación correcta oscilará entre 6:1 y 10:1. 3 La altura del borde superior de la pantalla debe estar relacionada con la altura de ojos del operador y no deberá superar la línea horizontal de los ojos. 4 Respecto al tamaño de pantalla, las de 12" son válidas para trabajos ocasionales. Para trabajos de entrada de datos el mínimo es de14". Las pantallas mayores de 16" permiten la visualización de un documento estándar de tamaño DIN A-4 completo. 5 Siempre que se pueda se optará por pantallas de resolución 72 dpi. Y aspecto ratio 1 (que los pixels sean cuadrados). 6 Si mantenemos una frecuencia de centelleo de 70 barridos por segundo (Hz) podemos decir que prácticamente será buena para el 95 % de la población, aunque existirá un 5% que debido a su alta sensibilidad se sentirá molesto; la solución estriba en incrementar la frecuencia. 7 El color de los caracteres negros sobre blanco ofrece mejor contraste que los caracteres blancos sobre fondo negro, y además son compatibles con la mayoría de los documentos escritos en papel. Algunos autores recomiendan el color marrón ámbar para el fondo con caracteres amarillos, debido a su buen contraste con baja intensidad de iluminación, ya que corresponden a la máxima sensibilidad del ojo, situada entre los 540 y los 590 nm (amarillo verdoso), y a que su percepción es menos perturbada por los fenómenos de reflexión. 8 La forma de los caracteres debe estar bien definida. 9 Los caracteres deben estar bien diseñados (la matriz de pixels de 7 x 9 es la preferible, aunque podemos aumentar la matriz a 11 x 14). Si no es así pueden confundirse los caracteres C-G, X-K, T-1-Y,U-V, D-O-0, 8-B, y S-5... 10 El tamaño de los caracteres debe ser de 3,5 a 4,5 mm para que su lectura sea fácil a la distancia de 40-70 cm. Lo mejor es trabajar con programas que admitan el cambio de tamaño. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 41 2 Interfaz hombre-máquina: relaciones informativas y de control 41 11 La anchura de los caracteres debe estar comprendida entre el 60 y el 80% de la altura y su espesor debe ser próximo al 15%. 12 La separación entre caracteres será inferior al 20% de la anchura. 13 Los caracteres deben ser estables y no emitir centelleo. 14 La distancia interlineal (mínimo 120% del cuerpo de letra utilizada) debe ser lo suficientemente amplia para que los caracteres en minúscula de líneas contiguas queden suficientemente separados para distinguirlos entre sí; dos líneas de separación suele ser una buena distancia. 15 La separación entre línea base será del 120 al 150% del cuerpo de letra utilizada. 16 La fosforescencia residual en algunos ordenadores tarda un tiempo apreciable en desaparecer de la pantalla. Se debiera mantener un tiempo de persistencia inferior a 0,02 segundos. 17 El borde coloreado de la pantalla no debe diferir demasiado del de la propia pantalla; debe proporcionar una transición suave entre la superfície de la pantalla y el borde, y no debe exceder la relación 3:1. 18 Para evitar reflexiones es importante que pueda cambiarse fácilmente el ángulo de inclinación de la pantalla; el movimiento debe estar comprendido entre 15° hacia arriba y 5° hacia abajo. 19 La superficie exterior de la pantalla debe estar tratada de tal forma que elimine los posibles reflejos, “imágenes fantasma”, y que no sea necesario poner un filtro exterior. 20 Las radiaciones no visibles que pudieran estar presentes en la pantalla, como los rayos X, UV e IR, deben tender a cero. Si existen deben estar dentro de los límites permitidos. 21 El cursor debe ser fácilmente localizable (parpadeo) y poco molesto. No debe confundirse con otros símbolos. 22 Los dispositivos de control del monitor deben estar en lugares accesibles para facilitar su manipulación. 23 Por último, debe estudiarse la posición de la pantalla respecto a las ventanas, luminarias del techo y luminarias suplementarias para evitar reflejos indeseables. Lenguaje escrito Antes de elaborar un documento escrito se deben considerar una serie de puntos que ayudan a rebajar los posibles errores en la comunicación: © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 42 42 Fundamentos de ergonomía 1 Tener claros los objetivos perseguidos. 2 Determinar las características de los transmisores del mensaje. 3 Concretar las características de los receptores del mensaje. 4 Valorar el “ruido” existente en el sistema. 5 Efectividad del mensaje. 6 Redundancia. 7 Capacidad del canal de transmisión. Las reglas para el uso del lenguaje en comunicación escrita se deben apoyar en la selección cuidadosa de las palabras, en el modo de usarlas, en la construcción de las frases y del idioma/s empleado. La utilización del lenguaje escrito se podría sintetizar de la siguiente forma: 1 Uso de oraciones cortas. 2 Títulos expresivos y breves. 3 Describir el todo antes que las partes. 4 Uso de oraciones activas. 5 Uso de oraciones afirmativas (excepto para evitar conductas arraigadas). 6 Uso de palabras conocidas. 7 Organización de secuencia temporal. 8 Evitar la ambigüedad (precisión y claridad). 9 Legibilidad. McCormick propone usar letras negras sobre fondo blanco para textos de instrucciones o advertencia en equipos para una distancia de lectura entre 350-1400 mm; las letras con una relación óptima grueso/altura (G/H) de1/6 hasta1/8: donde H= 0,056D + K1 + K2 siendo H = altura de las letras en milímetros © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 43 2 Interfaz hombre-máquina: relaciones informativas y de control 43 D = distancia de lectura en milímetros K1 = factor de corrección según la iluminación y las condiciones de visión como sigue: k1 =1,5 mm para un nivel de iluminación > de 10 lux y condiciones de lectura favorables. k1 = 4,1 mm para un nivel de iluminación > de 10 lux y condiciones de lectura desfavorables. k1 = 4,1 mm para un nivel de iluminación < de 10 lux y condiciones de lectura favorables. k1 = 4,1 mm para un nivel de iluminación < de 10 lux y condiciones de lectura desfavorables. k1 = 6,6 mm para un nivel de iluminación < de 10 lux y condiciones de lectura desfavorables. k2 = factor de corrección según la importancia del mensaje 1,9 mm para situaciones de emergencia. Dispositivos sonoros Las características de la información audible se pueden resumir de la siguiente forma: 1 No requieren una posición fija del trabajador. 2 Resisten más la fatiga. 3 Llaman más la atención. 4 Sólo se utilizan para alarmas o indicativos de un máximo de dos o tres situaciones, con excepción del lenguaje hablado que se utiliza para impartir instrucciones. 5 Se pueden utilizar en combinación con dispositivos visuales. 6 Su nivel de presión sonora en el punto de recepción debe estar al menos 10 dB por encima del ruido de fondo. 7 La comunicación oral sin amplificación está en un rango de presión sonora entre 46 (susurro) y 86 (grito) dB, y la audición máxima se obtiene alrededor de los 3400 Hz. Los dispositivos informativos sonoros se pueden clasificar en timbres, chicharras, sirenas, etc.., además del lenguaje hablado. En su utilización deben considerarse los siguientes aspectos: 1 Para mensajes cortos y simples. 2 Cuando no haya que referirse a ellos posteriormente. 3 Cuando se relacionan con sucesos o eventos en el tiempo. 4 Si implican una acción inmediata. 5 Si el canal visual está sobrecargado. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 44 44 Fundamentos de ergonomía 6 Cuando el lugar está muy oscuro o muy luminoso. 7 Cuando el operario no permanece fijo en un puesto. Para comprobar la inteligibilidad de la información oral se puede recurrir a pruebas con sílabas sin sentido, si el 95% de vocales y consonantes son bien recibidas se puede decir que la inteligibilidad es normal; para el 80% se permite la comprensión; para el 75% se requiere alta concentración y para menos del 65% hay mala inteligibilidad. Para esto existen tablas de comprobación silábicas por idiomas, dialectos y poblaciones, ya que las diferencias idomáticas son importantes (Fig. 2.10). MONOSILABOS PARA LA PRUEBA DE INTELIGIBILIDAD DEL HABLA PREN DRO BRE LON GOR JAR TIN CER TRO DRI MUL NAL BIN FUS CHOR PAL LUM BLE CLA JAC LIN JIM MEL RAL DUS CES TEL MOS AL AU LOI CLE COR MIS FER GUI LAR ÑAR CHON SA FAR TAS LES BE BIAR TUN PEC JUE ÑAL ÑIS TIL QUI GRE JUS QUEL LLIN DUR SIM SUA FAU CLI PAU QUES MAI AR CIU BUR BRI FO JU NUN BLA CHU IS FLA DIS SIS PES CER ZAN PRU REN FIS GA AT TAI NER DRA SIT TIL MER JO LAM NEL DOL CLA GLO DES ROI POT Fig. 2.10 Monosílabos para la prueba de inteligibilidad de habla, elaborado por los autores También se utilizan tablas y gráficos como el del nivel de interferencia del habla (NIH) que es el promedio del nivel de presión sonora en las bandas de octava con frecuencia central de de 500, 1000 y 2000 Hz. Igualmente existe el método de la interferencia de la comunicación oral (ICO), que correlaciona el ruido de fondo con la distancia y el nivel de presión sonora de la voz (normal, alta, casi gritando, gritando, y exclamación) (Fig. 2.11). Dispositivos informativos táctiles Generalmente se utilizan para identificar controles en lugares con baja iluminación, o cuando hay gran densidad de controles, o para personas con dificultades visuales graves. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 45 2 Interfaz hombre-máquina: relaciones informativas y de control 45 110 EXC 100 LAM ACI ÓN 90 GRI TAN DO Ruido de fondo dB (A) 80 CAS I GR ITA NDO 70 VOZ ALT A 60 VOZ NOR MAL 50 40 0,25 0,5 1 2 4 8 Distancia en m Fig. 2.11 Interferencia de la comunicación oral (ICO) Debido a la redundacia del estímulo, son útiles para evitar errores de manipulación, su óptima selección ayuda a incrementar la fiabilidad del sistema. La forma debe guardar analogía con la función siempre que sea posible (Fig. 2.12). Relaciones de control El control de los sistemas es el objetivo final del usuario, todo sistema debe estar proyectado para que su fiabilidad esté dentro de los límites previstos, para ello se debe recibir la información codificada de tal forma que sea significativa y que las diferencias puedan ser captadas. A continuación se muestra un esquema muy simplificado de la operación de control (Fig.2.13). Para poder ejercer una buena relación de control es necesario establecer previamente la secuencia de interacciones entre las relaciones dimensionales y las relaciones informativas; una vez analizadas éstas y su interacción, estableceremos el tipo y calidad de relación de control que debemos aplicar al sistema. Las funciones básicas que deben cumplir los controles son: 1 Activar y desactivar (interruptor de luz). 2 Fijación de valores discretos (selector de velocidades de una batidora). © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 46 46 Fundamentos de ergonomía Clase A. Mandos de rotación múltiple Clase B. Mandos de rotación fraccional Clase C. Mandos de posición de retén Mandos de forma codificada y estandarizada que emplean los aviones de la United States Air Force. Serie de mandos para palancas distinguibles por el solo tacto. Las formas de cada serie rara vez se confunden con las de la otra. Fig. 2.12 Ejemplos de dispositivos informativos táctiles según diferentes autores. © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 47 2 Interfaz hombre-máquina: relaciones informativas y de control 47 3 Fijación de valores continuos (control de volumen de una radio). 4 Control ininterrumpido (volante del coche). 5 Entrada de datos (teclado). 1. CONCEPCIÓN DE LA META 2. SELECCIÓN DE LA META 3. PROGRAMACIÓN 4. EJECUCIÓN DEL PROGRAMA I C S P E I Fig. 2.13 Etapas de la función de control Tipos básicos de controles Los diferentes tipos de controles con frecuencia aparecen mezclados entre sí en el puesto de trabajo, o integrados en un mismo control; de todas formas una clasificación básica de los mismos puede ser la siguiente: 1 Botón pulsador manual: es el control más simple y más rápido. Se utiliza para activar y desactivar, tanto para situaciones habituales como para casos de emergencia (Fig. 2.14). 2 Botón pulsador de pie: se utiliza para situaciones similares al anterior, cuando las manos están muy ocupadas; no posee la misma precisión, ni la misma velocidad que los de mano (Fig. 2.15). 3 Interruptor de palanca: se utiliza en operaciones que requieren alta velocidad y puede ser de dos o tres posiciones (Fig. 2.16). © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 48 48 Fundamentos de ergonomía Botón pulsador tipo champiñón ø > 40 deseable 70-80 Botón pulsador emergente con L ó ø > 20 una posición de reposo Lóø Botón pulsador sobresaliente Lóø Botón pulsador: L ó ø > 20 o de tecla Tecla de teclado: L ó ø > 12 Fig. 2.14 Botón pulsador manual Fig. 2.15 Botón pulsador de pie Fig. 2.16 Interruptores de palanca © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 49 2 Interfaz hombre-máquina: relaciones informativas y de control 49 4 Selector rotativo: pueden ser de escala móvil (a) y escala fija (b); en este último el tiempo de selección y los errores cometidos son menos (del orden de la mitad) que cuando se utilizan escalas móviles; pueden ser de valores discretos o de valores continuos, siendo más precisos los de valores discretos (Fig. 2.17). 5 Perilla: son selectores rotativos sin escala, ya que el usuario recibe la información del estado del sistema mediante otros dispositivos (el dial de la radio), o directamente (el volumen del sonido de la radio) (Fig. 2.18). 6 Volante de mano y manivelas: se utilizan para abrir y cerrar válvulas que no requieren excesiva fuerza, para desplazar piezas sobre bancadas, etc..., las manivelas pueden asociarse con los volantes de mano; en el volante de mano el diámetro dependerá de las dimensiones de la mano y de la relación C/D que se precise, aunque diámetros comprendidos entre 15 y 20 cm suelen ser válidos para muchas operaciones. La longitud de las manivelas estará en función de la fuerza que se requiera aplicar (Fig. 2.19). A B Fig. 2.17 Selector rotativo Fig. 2.18 Perilla Fig. 2.19 Manivela y volante de mano con manivela © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 50 50 Fundamentos de ergonomía Fig. 2.20 Volante (a) (b) (c) (d) Fig. 2.21 Palancas 7 Volantes: Se utilizan tanto para control ininterrumpido (automóvil) como valores continuos (hormigoneras). Su diámetro depende de la fuerza, de la velocidad de accionamiento y de la antropometría (Fig. 2.20). 8 Palancas: la longitud estará en función de la fuerza a desarrollar y de la estrofosfera del puesto. Admiten rapidez pero son poco precisas (Fig. 2.21). © Los autores, 1999; © Edicions UPC, 1999. Cap-2 6/10/99 11:04 Página 51 2 Interfaz hombre-máquina: relaciones informativas y de control 51 9 Pedales: existe una gran variedad, el diseño del pedal depende de su función, de la relación C/D, de la situación, del ángulo que forma el pie con la tibia y del esfuerzo que se estima necesario para su accionamiento. No debemos olvidar que algunas de estas variables están interrelacionadas (Fig. 2.22). 10 Teclado: se utiliza para entrada de datos, es rápido (Fig. 2.23). 11 Ratón: posee una o más teclas y constituye un sistema que es desplazado de acuerdo con las necesidades del usuario; se debe vigilar su compatibilidad espacial, su velocidad, su precisión y la adaptabilidad a la mano (zurdos y diestros) (Fig. 2.24). (b) (a) Fig. 2.22 Pedales 20 (17 mm) ) mm (17 20 25 (22 mm) Fig. 2.23 Teclado