Integration Methods and Examples PDF
Document Details
Uploaded by RenewedHeather
جامعة الدلتا التكنولوجية
Tags
Summary
This document is a collection of examples and methods of integration. It covers various types of integrals like definite integrals, indefinite integrals, and standard integrals. Different methods of integration, such as integration by substitution and integration by parts, are shown with solved examples. The document also explains integration by partial fractions.
Full Transcript
## Part 4: Integrations ### علم التفاضل (Calculus) A graph of a function is shown. The area under the curve between x1 and x2 is: $A = \int_{x_1}^{x_2} sin(x) dx$ The area under the curve between x1 and x3 is: $A = \sum_{i = 1}^{3} x_i$ ### علم التكامل (Integral Calculus) #### Definite I...
## Part 4: Integrations ### علم التفاضل (Calculus) A graph of a function is shown. The area under the curve between x1 and x2 is: $A = \int_{x_1}^{x_2} sin(x) dx$ The area under the curve between x1 and x3 is: $A = \sum_{i = 1}^{3} x_i$ ### علم التكامل (Integral Calculus) #### Definite Integral The definite integral of f(x) from a to b is represented as: $\int_{a}^{b} f(x) dx$ **Example:** $I = \int_{a}^{b} sin^2(x) dx = g(b)-g(a)$ Where g(x) is the antiderivative of $sin^2(x)$. #### Indefinite Integral The indefinite integral of f(x) is represented by: $\int f(x) dx$ **Example:** $ I = \int sin^2(x) dx = g(x) + C$ ### Types of Integrals - **Direct Integrals** - **Methods of Integrals** - **Fractions** - **Parts** - **Substitution** #### Standend Integrals **Examples:** - $I = \int x^3 + 6x + 1 dx = \frac{1}{4}x^4 + 6*\frac{1}{2}x^2 + x + C$ - $I = \int sin(x) dx = - cos(x) + C$ - $I = \int sec^2(x) dx = tan(x) + C$ - $I = \int sec( x) tan(x) dx = sec(x) + C$ - $I = \int sinh(3x) dx = \frac{1}{3}cosh(3x) + C$ - $I = \int \frac{3dx}{\sqrt{1-9x^2}} = \frac{1}{3}cos^{-1}(3x) + C$ - $I = \int \frac{1}{x} dx = ln(|x|) + C$ - $I = \int \frac{f'(x)}{f(x)} dx = ln(f(x)) + C$ #### Other Methods of Integration **Example:** $I = \int \frac{1}{x^2 + 1} dx = tan^{-1}(x) + C$ **Example:** $I = \int e^{3x} dx = \frac{1}{3}e^{3x} + C$ **Example:** $I = \int cos(3x + 1) dx = \frac{1}{3}sin(3x + 1) + C$ **Example:** $I = \int sin^3(x)cos(x) dx = \frac{1}{4}sin^4(x) + C$ ### Integration By Partial Fractions **Example:** $I = \int \frac{3x}{(x+1)^2(x+1)} dx$ Let's solve $\frac{3x}{(x+1)^2(x+1)} = \frac{A}{(x+1)^2} + \frac{B}{x+1}$ Multiply both sides by $(x+1)^2(x+1):$ $3x = A(x+1) + B(x+1)^2$ $x = - 1: -3 = A(0) + B(0) \implies B = -3$ $x = 0: 0 = A(1) + B(1) \implies A = 3$ Now with our values of A and B we can integrate: $I = \int \frac{3}{(x+1)^2} - \frac{3}{(x+1)} dx$ $I = 3 \int \frac{1}{(x+1)^2} - \int \frac{3}{(x+1)} dx$ $I = 3\int (x+1)^{-2} dx - 3\int \frac{1}{(x+1)} dx$ $I = 3 \frac{(x + 1)^3}{3} - 3ln(x+1) + C$ $I = -3ln(x+1) - (x+1)^{-1} + C$ Let me know if I can help with anything else!