Maths 1 PDF
Document Details
Uploaded by ReasonableHappiness4621
Chennai Institute of Technology
Tags
Summary
This document tackles various integral calculus concepts. It delves into multiple integration techniques, transformations, and calculations related to volumes of solids. The mathematics presented focuses on finding definite integrals.
Full Transcript
Subject Code/Title: MAZION Breor Haebra Unit: T ## Unit - II - Integral Calculus ### Multiple Integration: Double and Triple Integrals - Change of order of Integration in double Integrals - Choice of Variables [Cartesian to Polar] - Volume of Solids - Gradient - Curl - Divergence - Theorems of Green...
Subject Code/Title: MAZION Breor Haebra Unit: T ## Unit - II - Integral Calculus ### Multiple Integration: Double and Triple Integrals - Change of order of Integration in double Integrals - Choice of Variables [Cartesian to Polar] - Volume of Solids - Gradient - Curl - Divergence - Theorems of Green’s in a plane - Gauss and Stokes theorems [Excluding Proof]. ### Scalable Integration [Cartesian Co-ordinates] #### 1. Evaluate ∫∫ x(x + y)dydx * Go: ∫∫ x(x + y)dydx = I * G1: ∫∫ x(x + y)dydx = I * = [x2 + xy2]dy = [x2 + xy2]01 * = [ x2 + x/1]dy = x2 + x/1 * = ( x2/2 + x/2 ) 0 - (0 + 0) = x2/2 + x/2 * = ( x2/2 + x/2) dy = x2/2 + x/2 * = ( x2/2 + x/2 ) dy = x2/2 + x/2 #### 2. Evaluate ∫∫ (x2 + y2)dxdy * Go: ∫∫ (x2 + y2)dxdy = I * G1: ∫∫ (x2 + y2)dxdy = I * = (x2 + y2)dx = [x3/3 + xy2]01 * = (1/3 + y2)dy = (1/3 + y2)dy * = (1/9 + y3/3)01 = 1/9 + 1/3 = 4/9 * = (x2/2 + y2)dy = [x2/2 + y2] * = (1/2 + y2)dy = (1/2 + y2) dy #### 3. Evaluate ∫∫ y2dxdy * Go: ∫∫ y2dxdy = I * G1: ∫∫ y2dxdy = I * = y2dx = [xy2]b1 * = [yb2] y=0b = [yb2] log b/log 1 * = [yb2] = log b Subject Code/Title: Unit: TYPE: I: Limits are Variables #### 1. Evaluate: ∫∫ (x2 + y2)dydx * Go: ∫∫ (x2 + y2)dydx = I [Correct Form] * =∫ [xy + y3/3] 02 * =∫ (2x + 8/3) dx * = [x3/3 + 4x/3] 05 = 125/3 + 20/3 = 145/3 #### 2. Evaluate ∫∫ ydydx * Go: ∫∫ ydydx = I [Correct Form] * =∫[y2/2] 1-xdx * =[1/2 - (1-x)2/2] dx * =∫[1 - (1-x)2/2] dx * = -1/2 [(1-x)3/3]01 * = -1/6 (0 - 1) = 1/6 * = 1/2 [(1-x)2/2]01 = 1/4 - 0 #### 3. Evaluate: ∫∫ y2dxdy * Go: ∫∫ y2dxdy = I [Correct Form] * =∫[xy2/2]01 * =∫[y2/2] log 1 - log 2 * = [y2/2] log 1 - log2 = [1/2] log b * = [y2/2] log 1 - log2 = [1/2] log 1 = 0 #### Evaluates: ∫∫ x/y *dxdy * Go: ∫∫ x/y * dxdy = I ⇔ * =∫[x2/2y] 01 * =∫[1/2y] log 1/b - log 1/a = [1/2y] log 1/b - log 1/a * =∫[1/2y] log 1/b - log 1/a = [1/2y] log 1/b - log 1/a = [1/2y] log 1/b * =∫[1/2y] log 1/b - log 1/a = [1/2y] log 1/b - log 1/a = [1/2y] log 1/b * = [1/2y] log 1/b - log 1/a = [1/2y] log (a/b) #### Evaluates: ∫∫ xy2dxdy * Go: ∫∫ xy2dxdy = I ⇔ * =∫[x2y2/2]01 * =∫[y2/2] log 1 - log2 * = [y2/2] log 1 - log2 = [1/2] log 1 = 0 * = [y2/2] log 1 - log 2 = [1/2] log 1 = 0 Subject Code/Title: Unit: * w.r.t 'y' keeping 'x' as a constant then consider the horizontal ship and the new limits accordingly. * w.r.t 'x' keeping 'y' as a constant then consider the vertical ship and the new limits accordingly. * After finding the new limits evaluate the inner integral first and then the outer integral. #### 1. Change the order the integration and hence evaluate it, for ∫∫e-ydydx * Go: ∫∫e-ydydx = I [Correct Form] * The region is bounded by x = 0; x = ∞; y = x; y = ∞ * x values from x:0 to x=∞ * y varies from y=x to y=∞ * After changing the order of integration, we've to integrate w.r.t 'x' first is then w.r.t 'y'. * ∫∫e-ydydx = ∫∫ e-y dxdy * = ∫ e-y [x]0∞ dy = ∫ e-y [∞ - 0] dy = ∫ e-y [∞] dy * = ∫ e-y [∞] dy =∫ e-y [∞] dy = ∫ e-y [∞] dy = ∫ e-y [∞] dy = ∫ e-y [∞]dy * = ∫ e-y [∞] dy = ∫ e-y [∞] dy = ∫ e-y [ ∞] dy = ∫ e-y [∞] dy = ∫ e-y [ ∞] dy = ∫ e-y [ ∞ ] dy = ∫ e-y [ ∞] dy = ∫ e-y [ ∞ ] * = ∫ e-y [ ∞] dy = ∫ e-y [ ∞ ] dy = ∫ e-y [ ∞] dy = ∫ e-y [ ∞] dy = ∫ e-y [ ∞] dy = ∫ e-y [ ∞] dy = ∫ e-y [ ∞ ] dy = ∫ e-y [∞] dy = ∫ e-y [∞] dy = ∫ e-y Subject Code/Title: Unit: #### 2. Change the order of Integration & then evaluate ∫∫ x2dxdy * Go: ∫∫ x2dxdy = I [Correct Form] * x Values from x = y to x = a * y Values from y = 0 to y = a * After changing the order of integration, we integrate w.r.t y first, then w.r.t x. * ∫∫ x2dxdy = ∫∫ x2dydx * = ∫ x2 [y]0a dx * = ∫ x2 [a] dx = a ∫ x2 dx * = a ∫ x2 dx = a ∫ x2 dx =a [ x3/3 ]0a * = a [x3/3]0a = a [ a3/3 - 0] = [a4/3] * = ∫[x3/3]0a = ∫[x3/3]0a = ∫[x3/3]0a = ∫[x3/3]0a = ∫[x3/3]0a = ∫[x3/3]0a = [ x3/3]0a #### 3. Change the order of Integration & evaluate ∫∫ xy2dxdy. * Go: ∫∫ xy2dxdy = I [Correct Form] * x Varies from ० to 4a * y varies from y = x2/4a to y = 2√ax * After changing the order of integration, we integrate w.r.t 'x' first and then w.r.t 'y'. * Hence ∫∫xy2dxdy * = ∫∫ xy2dydx = ∫√2ax x2/4a xy2dydx = ∫√2ax x2/4a xy2dydx * = ∫ [xy3/3] x2/4a 2√ax dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy =∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 * a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy =∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 * a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy =∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 * a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy =∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 * a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy * = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy =∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 * a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy =∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 *a√ay - y3/3] x2/4a dy = ∫ [8/3 * a√ay - y3/3] * x2/4a * dy * = ∫ [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫ [y2/3] x2/4a 2√ax dy = y2/3 * [8/3 *a√ay - y3/3] x2/4a * = **y2/3 [8/3 *a√ay - y3/3] x2/4a** * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫y2/3 * [8/3 *a√ay - y3/3] * x2/4a * dy * = ∫y2/3 * [8/3 *a√ay - y3/3] * x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] * x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy * = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a√ay - y3/3] x2/4a * dy = ∫y2/3 * [8/3 *a