Semaine 10 Analyse Du Mouvement - KIN1021 Automne 2024 - PDF
Document Details
Uploaded by Grosseverge
2024
KIN1021
Tags
Summary
Ce document est un ensemble de notes de cours sur l'anatomie fonctionnelle et l'exercice, axé sur l'analyse des mouvements du bassin et du membre inférieur. Il comprend des questions d'examen, des rappels et des informations liées à l'utilisation des Fiches H5P, des outils Visible Body, et un quiz sur StudiUM pour la préparation à un examen. Il couvre les sujets de la marche, du vélo et d'autres mouvements quotidiens et sportifs.
Full Transcript
Anatomie fonctionnelle et exercice – KIN1021 Automne 2024, Semaine 10 Bassin et membre inférieur – Analyse du mouvement Annonces Merci de votre retour sur le problème technique du module 1B Examen de mi-session 2: 6 novembre Laboratoire 2: déjà ouvert; f...
Anatomie fonctionnelle et exercice – KIN1021 Automne 2024, Semaine 10 Bassin et membre inférieur – Analyse du mouvement Annonces Merci de votre retour sur le problème technique du module 1B Examen de mi-session 2: 6 novembre Laboratoire 2: déjà ouvert; fermeture jeudi 7 novembre Dernier cours avec moi Précision Incohérence entre cette question du Quiz de la section H5P « Quiz sur les muscles appendiculaires » et le contenu du cours Plan d’aujourd’hui Ceci n’est pas un cours magistral, votre participation sera essentielle tout au long de la séance Plan d’aujourd’hui 1. Questions aléatoires 2. Analyse du mouvement – Mouvements quotidiens 3. Analyse du mouvement – Mouvements sportifs 1. Questions aléatoires* *Certaines questions ont été générées à l’aide de l’IA générative (chatGPT). Celles-ci ont été vérifiées ou modifiées pour assurer leur pertinence Réchauffement Quels sont les trois os qui composent l'os coxal ? Quelle est la fonction principale des muscles ischio-jambiers ? Quel est le rôle principal du quadriceps? Quels muscles sont les principaux fléchisseurs de la hanche? Quel est le nom de l'articulation qui relie le fémur et le bassin? Quelle est la principale fonction du muscle grand fessier ? Quelle est la fonction principale du muscle gastrocnémien au niveau de la cheville ? Questions aléatoires Quels muscles constituent le groupe des adducteurs de la cuisse ? Décrivez le rôle de la patella dans le mécanisme d’extension du genou Comment le grand fessier contribue-t-il à la posture debout? Quels muscles importants de la hanche ont pour insertion le petit trochanter? Quel est le rôle du ligament ilio-fémoral dans la stabilité de l’articulation de la hanche? Exemples (non-exhaustifs) de questions d’examen Questions à choix multiple Quelle est le dernier arrêt direction OUEST de la ligne d’autobus qui vous ramène au CEPSUM à partir de la station Laurier? Queen Mary / Queen Mary Queen Mary / Frère-André West Broadway / Somerled Sherbrooke / Patricia Aucune de ces réponses Exemples (non-exhaustifs) de questions d’examen Compléter le mot manquant Vous étudiez à l’Université de ________ Réponses qui seront considérées correctes: Montréal, montréal, Montreal, montreal Vrai ou faux Le parc Lafontaine se trouve sur le Plateau Mont-Royal et il est circonscrit entre autres par la rue Papineau Vrai Faux Rappels pour préparer l’examen Fiches H5P + notes de cours Outils de Visible Body Visualisation Modules, quizs, labos Quiz sur StudiUM Appliquer le contenu à votre vie quotidienne Autres rappels Ressources du Bureau d’aide Point de repère de la Faculté de médecine Soutien psychosocial Soutien à l’apprentissage Etc… https://medecine.umontreal.ca/wp-content/uploads/sites/68/2024/08/Bottin-de-ressources-pratiques-2024.pdf 2. Analyse du mouvement – Mouvements quotidiens Marche Mouvement cyclique et répétitif Deux phases du cycle Analyse d’une jambe à la fois et d’un plan à la fois Phase d’appui (60% du cycle) Phase oscillante (40% du cycle) Contact Chargement Mi-appui Fin d’appui Pré-oscillation Début Mi-oscillation Fin d’oscillation Etc… initial du pied d’oscillation 0-2% 2-10% 10-30% 30-50% 50-60% 60-73% 73-87% 87-100% Activité (vous devez…) Écouter la vidéo de la diapositive suivante Décrire dans le grandes lignes la cinématique et l’activité musculaire lors du cycle de la marche Source de la vidéo: https://www.youtube.com/watch?v=JM0EwSlvR1c Marche Contact Chargement Mi-appui Fin d’appui Pré-oscillation Début Mi-oscillation Fin d’oscillation Etc… initial du pied d’oscillation 0-2% 2-10% 10-30% 30-50% 50-60% 60-73% 73-87% 87-100% Phase d’appui (60% du cycle) Phase oscillante (40% du cycle) Décrivez la cinématique articulaire du membre inférieur lors de la phase d’appui et la phase oscillante Source des images: https://www.youtube.com/watch?v=JM0EwSlvR1c Marche Amplitude du mouvement selon la vitesse de la marche Schwartz et al. 2008, doi:10.1016/j.jbiomech.2008.03.015 4. Joint rotations. Three-dimensional joint rotations are shown. Each line represents the ave (dark blue ¼ very slow, through cyan ¼ very fast) is maintained throughout the remaining Marche Contact Chargement Mi-appui Fin d’appui Pré-oscillation Début Mi-oscillation Fin d’oscillation Etc… initial du pied d’oscillation 0-2% 2-10% 10-30% 30-50% 50-60% 60-73% 73-87% 87-100% Phase d’appui (60% du cycle) Phase oscillante (40% du cycle) En tenant compte de la cinématique articulaire et des forces/moments impliqués, quelles seraient d’après vous les principales activations musculaires de la marche? (inspirez-vous de la figure de la diapositive suivante) Source des images: https://www.youtube.com/watch?v=JM0EwSlvR1c Marche Contact Chargement Mi-appui Fin d’appui Pré-oscillation Début Mi-oscillation Fin d’oscillation Etc… initial du pied d’oscillation 0-2% 2-10% 10-30% 30-50% 50-60% 60-73% 73-87% 87-100% A Heck Phase and C (60% d’appui van Dongen du cycle) Phase oscillante (40% du cycle) Heck et van Dongen 2008 Phys. Educ. 43 284 (doi: 10.1088/0031-9120/43/3/005) ARTICLE IN PRESS 1648 M.H. Schwartz et al. / Journal of Biomechanics 41 (2008) 1639–1650 Marche Contact Chargement Mi-appui Fin d’appui Pré-oscillation Début Mi-oscillation Fin d’oscillation Etc… initial du pied d’oscillation 0-2% 2-10% 10-30% 30-50% 50-60% 60-73% 73-87% 87-100% Phase d’appui (60% du cycle) Phase oscillante (40% du cycle) A Heck and C van Dongen ARTICLE IN PRESS 1648 M.H. Schwartz et al. / Journal of Biomechanics 41 (2008) 1639–1650 Fig. 4. Joint rotations. Three-dimensional code (dark blue ¼ very slow, through cyan Heck et van Dongen 2008 Schwartz et al. 2008 Fig. 10. Muscle activity. Surface EMG signals of several major muscle groups are shown. Each line represents the average of trials within the corresponding group. another). However, due to differences in study designs, Conflict of interest subject characteristics, biomechanical models, sampling methods, and equipment, conclusions from such meta- The authors listed on the manuscript had no conflict of analyses are tenuous. Thus, it is worthwhile to have a single interest when performing the study or when preparing the compiled source of data, as is provided in this study. manuscript. 2009, :35 ht differences in mus variability for tib Marche gait [14,20], our cate that tibialis p centage of a max propulsion in par to those with norm Normal vs flat-arched foot posture One explanation f tudinal arch and s (Murley et al. 2009, doi:10.1186/1757-1146-2-35) a flat-arched foo walking, compare 2009, :35 http://www.jfootankleres.com/content/2/1/35 loading of the m from tibialis post excessive tissue str has shown an incr tures with simulat , it is also p reverse, that is, th demand on tibial supported by our In contrast to tib arched group fun age of their max during contact ph compared to par (peak amplitude RMS amplitude - MVIC). These fin working less duri sion phases in p pared to those w these differences (contact phase) a amplitude respect in muscle activity foot types may re peroneus longus t arch. Alternatively Figure foot Traces 3 two representative participants illustrate x-ray angular measurements from normal (left) and flat-arched (right) posture from flat-arched feet b Traces from two representative participants illustrate x-ray angular measurements from normal (left) and requiring less pero flat-arched (right) foot posture. Lateral views (top) show: calcaneal inclination angle; calcaneal-first metatarsal angle; ante- rior posterior views (bottom) show: talonavicular coverage angle; talus second metatarsal angle. A - calcaneal inclination angle, B - calcaneal-first metatarsal angle, C - talo-navicular coverage angle, D - talus-second metatarsal angle. Angle A decreases with Figurelongus Ensemble oneus 5 averaged normal-arch and and30 tibialis EMG participants anterior curves with for fortibialis 30 flat-arch participants posterior, feet with per- A further significa flat-arched foot posture; angle B, C and D increase with flat-arched foot posture, compared to the normal-arched foot posture. Ensemble averaged EMG curves for tibialis posterior, flat-arched group peroneus longus and tibialis anterior for 30 partici- centage of their m pants with normal-arch and 30 participants with flat- during contact ph The temporal characteristics of the walking cycle were completion of each testing session, three MVICs for each arch feet. The curves differ slightly to the actual results mal-arched group measured using circular force sensitive resistors (foots- muscle were undertaken comprised of a gradual and con- (Table 2), as these curves are derived from a single gait cycle RMS amplitude, witches) with a diameter of 13 mm (Model: 402, Interlink tinuous 2 s build-up followed by a maximum 2 s effort. for each participant to illustrate the main findings. Solid lines these differences Electronics, California, USA). These were placed on the Each participant was instructed to perform a maximum -- mean amplitude; shaded area surrounding solid line -- 95% plantar surface of the interphalangeal joint of the hallux contraction against the resistance of the tester and was amplitude respec confidence interval. Significant differences are generally indi- muscle activity. D among the 4 conditions (fast and slow and with a cut orThe intra-subjective without arms). The same test result for each subject was obtained were didn’t for the show statistical significant inter-subjective ANOVA differences test. The gh ordera among the 4 conditions (fasttiming and slow and with aHz). cut whole repeatability of the of activation or led without us to arms). the The ???? definition same of a result motor was obtained strategy for were med for the inter-subjective ANOVA test. The order the standing up and for the sitting down (fig.3). Quelswhole the sont lesrepeatability gestuelles quotidiennes of the timing associées aux of activation Hz).a mouvements ith led us to articulaires affichés the definition of ici-bas? a motor strategy for med ally, the standing up and for the sitting down (fig.3). the was ith Thisa hally, the Genou was Hanche mean This quiet hdard the mean quiet Figure 3: Identified Ferrante et al. 2005 muscular strategy. The knee dard angle is shown in solid line while the hip angle is in dashed line (180 degrees was the complete extension test of the 3: Figure joints). The range Identified muscular of strategy. activationThe of knee each start MVC of all the muscles was always July bigger 2005 – Montreal, Canada during knee standing up then during sitting down and and hip joint angles were measured by two velocity and the presence/absence of arms this was the effect of theasgravity electrogoniometers shown inforce. figure1. All the contribution). We performed also a one way The electromyographic intra-subjective and test kinematic for eachdatasubject were intra-subjective ANOVA exploring the acquired through an acquisition board with an significant differences between the didn’t acquisition show statistical among the 4 rate of 500Hz. conditions (fast S’élever et s’assoir significant and slow Surface electrodes were placed on the differences and with presence/absence of arms contribution. or without arms). muscles of Thethe same right result was obtained leg following the 3. RESULTS Expliquez for theindications of les SENIAM inter-subjective activations. Thetest. ANOVA musculaires recorded The affichées An example of the EMGici-bas levels as a percentage muscles were: of rectus the femoris (RF), medialis Quelles whole repeatabilitydifférences timingdevraient of activation and lateral vasti (VM, VL), semitendinous (ST), y avoir avec/sans appui-bras? of the MVC of all the recorded muscles during standing and sitting is shown in figure 2. led us medialis to the definition of a motor strategy for gastrocnemius (GAM) and gluteus the standing maximus up(GLU). and for the sitting down (fig.3). Before the experiments we performed trials of Maximal Voluntary Contraction (MVC) in isometric conditions following. We recorded the MVC of the GLU during a maximal hip extension against a resistance with the hip completely extended. The ST MVC was acquired during a maximal knee flexion against a resistance with a flexion angle of the knee of 90 degrees. This last position was used also to detect the RF, VM and VL MVCs during a maximal knee extension. Finally the GAM 3: Genou Figure MVC Identified muscular was recorded duringstrategy. a maximal Theplantar knee Hanche angle isextension shown inagainst an while solid line external the resistance hip angle is andin Ferrante et al. (2005). Electromyographic analysis of standing up and sitting down, CIFESS dashed with the ankle line (180 fixedwas degrees at 90thedegrees. complete extension Figure 2:EMG levels of the different muscles during Each experimental the standing up (SU) and sitting down (SD) of the joints). The range trial consisted ofof each of activation 12 movements. Results are expressed as a percentage of consecutive movements of standing involved muscle is represented with a bar below the up and MVC. Dashed lines showed the activation windows. sitting down angular trajectories. performed with 2 different velocities and with or without the help of the It is clear from figure 2 that the percentage of by the backward rotation of the chest. physiological be The three way ANOVA (independent factors The difference were subjects, velocity of the trials and arms MVC of the mu contribution) performed on the percentage of upper body supp MVC of all the muscles showed a statistical the inclusion S’élever et s’assoir significant difference between the subjects for controller. In any conditions because of their different possible to me Différences avecmuscular et sans trophism. appui-brasThus we performed the arms support ANOVA intra-subjective test. stimulation of th References Riener R., Ferr Driven Contro and Sitting D Trans. Rehab. Roebroeck M et al., Biom during sit to s 9, pp. 235-244 Freriks LJM Recommendat results of th Ferrante et al. 2005 Research and D Figure 4: Statistical results on one subject The Merletti R., St asterisks (*) indicate that ANOVA statistical of Electromyog analysis evidenced significant difference among the Acknowledgem presence/absence of the arms support (p Population +âgée Boocock et al. 2005, doi: 10.1016/j.jelekin.2020.102482 3. Analyse du mouvement – Mouvements sportifs Vélo de route Cinématique du cycle de pédalage Trois phases du cycle Source: https://www.youtube.com/shorts/MqLHuwxB5-c Raymond et al. 2005, doi:10.1016/j.ptsp.2005.02.004 Vélo de route Pour une cinématique similaire, il peut avoir différentes activations selon la technique de pédalage (e.g. technique +distale ou +proximale) Cinématique Activations musculaires illustrées par cette source Source: https://www.youtube.com/shorts/MqLHuwxB5-c !! f " " !" f fc fc s e! f c #f $1 " fc s , i! f " " C h!h! f " # C1 ! Ch and Cl were calculated for each time poin where fc is the center frequency of the wavelet and s is a scaling factor Ch(t) and Cl(t) and were then normalized fo describing the width and shape (von Tscharner 2000). The two defined to the mean of Ch(t) $ Cl(t) at each time p wavelets were termed !h(f) and !l(f) for high- and low-frequency To assess whether the work load was l bands, respectively. The EMG intensities were calculated for !h and fatigue, the effect of the protocol block wa !l and in a similar manner to the initial wavelet analysis (von heart rate during each trial. This was asse Tscharner 2000). Each measured EMG intensity spectrum i(f) was analysis of covariance of the heart rates us represented by the linear combination of the optimized wavelets !h subject (random), block number, and crank Vélo de route ??? FIG. 3. Tota pedal cycle for indicates the pe trace shows the lines; n & 756) at 60 r.p.m. and black lines, 60 black lines, 140 Source: https://www.youtube.com/shorts/MqLHuwxB5-c Wakeling et Horn 2009, doi:10.1152/jn.90679.2008 J Neurophysiol VOL 101 FEBRUARY 2009 www.jn.org Downloaded from journals.physiology.org/journal/jn at Univ De Montreal (132.204.251.252) on October 29, !! f " " !" f fc fc s e! f c #f $1 " fc s , i! f " " C h!h! f " # C1 !1 ! f " Ch and Cl were calculated for each time point to give the time-varying where fc is the center frequency of the wavelet and s is a scaling factor Ch(t) and Cl(t) and were then normalized for each muscle and subject describing the width and shape (von Tscharner 2000). The two defined to the mean of Ch(t) $ Cl(t) at each time point for all trials. wavelets were termed !h(f) and !l(f) for high- and low-frequency To assess whether the work load was low enough not to induce bands, respectively. The EMG intensities were calculated for !h and fatigue, the effect of the protocol block was determined on the mean !l and in a similar manner to the initial wavelet analysis (von heart rate during each trial. This was assessed using a multivariate Tscharner 2000). Each measured EMG intensity spectrum i(f) was analysis of covariance of the heart rates using the following factors: represented by the linear combination of the optimized wavelets !h subject (random), block number, and crank power; the crank power Vélo de route FIG. 3. Total EMG intensity during each pedal cycle for the different muscles. Time 0 indicates the pedal at top-dead-center. Each trace shows the mean (thick line) % SE (thin lines; n & 756). Gray line, data for the trials at 60 r.p.m. and 6.5 N m crank torque; solid black lines, 60 r.p.m. and 40 N m; dashed black lines, 140 r.p.m. and 6.5 N m. Fonda et Sarabon 2010, doi:10.2478/v10237-011-0012-0 Wakeling et Horn 2009, doi:10.1152/jn.90679.2008 J Neurophysiol VOL 101 FEBRUARY 2009 www.jn.org Downloaded from journals.physiology.org/journal/jn at Univ De Montreal (132.204.251.252) on October 29, 2024. Activité en équipe de 2 à 6 personnes Choisir l’une des vidéos de la diapositive suivante Décrire la cinématique articulaire et les activations musculaires du membre inférieur en lien avec la gestuelle choisie Prendre des captures d’écran pour illustrer les différentes phases de la gestuelle (vous allez devoir partager votre écran) Activité en équipe de 2 à 6 personnes 1 2 3 Vidéo 1: https://www.youtube.com/shorts/rezs-l3RXdk Vidéo 2: https://www.youtube.com/shorts/lb6byqa8Yg8 Vidéo 3: https://www.youtube.com/shorts/XxPFsZv37Fk Activité en solo Choisir une gestuelle de votre sport de préférence Décrire la cinématique articulaire et les activations musculaires du membre inférieur en lien avec la gestuelle choisie Démontrez ou montrer images/vidéo pour appuyer votre réflexion