Projectile Motion NEET 2025 PDF
Document Details
Uploaded by Deleted User
Vishnu Nagar (VN Sir)
Tags
Summary
These notes cover projectile motion, including equations for horizontal and vertical components of velocity, maximum height, and range. It also includes numerical examples and shortcuts, suitable for undergraduate-level physics students preparing for NEET 2025 exam.
Full Transcript
# ARJUNA NEET 2025 ## Lecture 03: समतल में गति **By - Vishnu Nagar (VN Sir)** **Physics** **Topics to be covered** - क्षेतिज प्रक्षेप्य गति - वृत्तीय गती ## समतल में गति **प्रक्षेप्य गति की समीकरण** - $y = xtan\theta - \frac{1}{2}gt^2/cos^2\theta$ - $y = xtan\theta - \frac{1}{2}gt^2(1+tan^2...
# ARJUNA NEET 2025 ## Lecture 03: समतल में गति **By - Vishnu Nagar (VN Sir)** **Physics** **Topics to be covered** - क्षेतिज प्रक्षेप्य गति - वृत्तीय गती ## समतल में गति **प्रक्षेप्य गति की समीकरण** - $y = xtan\theta - \frac{1}{2}gt^2/cos^2\theta$ - $y = xtan\theta - \frac{1}{2}gt^2(1+tan^2\theta)/tan^2\theta$ - $y = xtan\theta - tan^2\theta * x^2/R$ **Important Equations for Projectile motion** $H = U^2sin^2\theta/2g$ $H = U_y^2/2g$ $T = 2U_y/g = 2Usin\theta/g$ $R = U^2sin2\theta/g = 2UxUy/g$ $R_{max} = U^2/g$ **If $\theta = 45^{\circ}$** - $H = Rtan\theta/4$ - $T = \sqrt{8H/g}$ **पुरक कोणी पर प्रधगति** $R_1 = R_2 = R = U^2sin2\theta/g$ $R = 4\sqrt{H_1H_2}$ **पुरक कोर्णा में अन्य** $R_1 = R_2 = R = U^2sin2\theta/g$ $H_1 = U^2sin^2\theta/2g$ $H_2 = U^2cos^2\theta/2g$ $H_1 * H_2 = \frac{1}{4} * (\frac{U^2sin2\theta }{g})^2$ $H_1*H_2 = \frac{1}{4*4} * (\frac{U^2sin2\theta }{g})^2$ $H_1*H_2 = \frac{1}{16} (R^2)$ $16H_1H_2 = R^2$ $4\sqrt{H_1H_2} = R$ **Some Important Points** - क्षेतिज दिशा का वेग नियत रहता है - प्रक्षेप्य गति के दौरान Hmax पर प्रडिशा का रंग शुन्य होता है **Illustration** Consider a Body moving from point A to B in Projectile Path - $V_f = Ucos\theta \hat{i} + Usin\theta \hat{j}$ - $V_f = Ucos\theta \hat{i}$ - $\Delta V = V_f - V_i$ = -$Usin\theta \hat{j}$ - $|\Delta V| = Usin\theta$ **Numerical** A body is projected with an initial velocity of 50 m/s at an angle of 37 degrees to the horizontal. Find 1. **The magnitude of the velocity of the body at point P.** 2. **The time taken to reach point P.** **Solution** - Resolve the initial velocity into horizontal and vertical components. - Apply the equations of motion to find the vertical component of the velocity at point P. - Use the Pythagorean theorem to find the magnitude of the velocity at point P. **Shortcut** If a body is projected with an initial velocity of \[U] at an angle of \[\theta] to the horizontal, then the time taken to reach the maximum height is given by $t = \frac{U sin\theta }{g}$ **So the answer is:** $t = \frac{50}{10} = \frac{25}{3}$ ## क्षैतिज प्रक्षेप्य गति **x दिशा** - $U_x = U$ - $a_x = 0$ **y दिशा** - $U_y = 0$ - $a_y = -g$ **Important Equations for Horizontal Projectile Motion** - $S = Ut + 1/2at^2$ - $X = U_xt + 0$ - $X = U_xt$ **Equations for horizontal and vertical direction** 1.) $x = Ut = \frac{U*2h}{\sqrt{g}}$ 2.) $h = \frac{1}{2}gt^2$ ## **Numerical** A projectile is launched horizontally from the top of a cliff with an initial velocity of \[U] . The projectile lands at a distance \[x] from the base of the cliff. What is the height of the cliff? **Solution** Use the equation for the horizontal distance traveled x = Ut t = x --- U Then use the equation for the vertical distance traveled $h = \frac{1}{2}gt^2$ **Answer:** $h = \frac{1}{2}g\frac{x^2}{U^2}$ ## Vertical Projectile Motion **x दिशा** - $U_x = U$ - $a_x = 0$ **y दिशा** - $U_y = 0$ - $a_y = -g$ - $V = V_x\hat{i} + V_y\hat{j}$ - $V = U_i-gt\hat{j}$ - $V_y = -gt$ ## Numerical A body is thrown vertically upwards with an initial velocity of \[u]. What is the time taken by the body to reach the maximum height? **Solution** Use the equation for the final velocity of the body $V = U + at$ At maximum height $V = 0$ $0 = U -(g)t$ $t = U/g$ **Answer:** $t = U/g$ ## The final answer The time taken by the body to reach the maximum height is $t = U/g$.