Cellular Metabolism PDF
Document Details
Uploaded by ColorfulLaplace8206
Tags
Summary
This document presents diagrams and explanations related to cellular metabolism, focusing on the processes of glucose, energy production, and cellular pathways. The diagrams depict various metabolic reactions and pathways. This could serve to help visualize and understand complex biochemical processes.
Full Transcript
11/18/24 Cellular metabolism Glucose Biosynthesis Amino Proteins Acids Nucleotides Fatty Acids...
11/18/24 Cellular metabolism Glucose Biosynthesis Amino Proteins Acids Nucleotides Fatty Acids Lipids Energy Lactate Aerobic Glycolysis OXPHOS TCA Energy Amino Acids Fatty Acids Glutamine 1 2 1 11/18/24 Glucose ATP G6P ATP Glycolysis NAD+ NADH ATP Cytosol Energy Mitochondria H+ H+ CO2 NADH I H+ Ox ATP NADH II III Ph Lactate Pyruvate NAD+ IV os NADH FADH2 TCA NADH CO2 FAD+ O2 H+ H+ H2O NAD+ NADH Cycle FADH2 αKG H+ H+ NADH H+ 36ATP H+ CO2 3 4 2 11/18/24 ATP Energy for the cell 5 Efficient ATP production Glucose -requires O2 G6P Glycolysis NAD+ NADH ATP Cytosol Mitochondria H+ H+ CO2 NADH I H+ Ox ATP NADH II III Ph Lactate Pyruvate NAD+ IV os NADH FADH2 TCA NADH CO2 FAD+ O2 H+ H+ H2O NAD+ NADH Cycle FADH2 αKG H+ H+ NADH H+ 36ATP H+ CO2 6 3 11/18/24 In the absence of O2 Glucose - glucose metabolized to lactate G6P - inefficient ATP production to maintain energy homeostasis Glycolysis NAD+ NADH ATP Cytosol Mitochondria H+ H+ CO2 NADH I H+ Ox ATP NADH II III Ph Lactate Pyruvate NAD+ IV os NADH FADH2 TCA NADH CO2 FAD+ O2 H+ H+ H2O NAD+ NADH Cycle FADH2 αKG H+ H+ NADH H+ 36ATP H+ CO2 7 Aerobic Glycolysis Glucose G6P Glycolysis NAD+ NADH ATP Cytosol Mitochondria H+ H+ CO2 NADH I H+ Ox ATP NADH II III Ph Lactate Pyruvate NAD+ IV os NADH FADH2 TCA NADH CO2 FAD+ O2 H+ H+ H2O NAD+ NADH Cycle FADH2 αKG H+ H+ NADH H+ 36ATP H+ CO2 8 4 11/18/24 Glucose 9 Serine glycerol Alanine Nucleotides Aspartate Amino Acids Lipids Glucose 10 5 11/18/24 Glucose Lactate Glucose PPP Glycolysis R5P Nucleotides G6P Cholesterol Lipids Fatty Acids Phospho-Lipids Glycerol DHAP Acetyl-CoA Ser GP Amino Acids OAA Ala Pyruvate Asp Lactate Citrate OAA Nucleotides Amino Acids TCA Cycle 11 Glucose Lactate Glucose PPP Glycolysis R5P Nucleotides G6P Cholesterol Lipids Fatty Acids Phospho-Lipids Glycerol DHAP Acetyl-CoA Ser GP Amino Acids OAA Ala Pyruvate Asp Lactate Citrate OAA Nucleotides Amino Acids TCA Cycle 12 6 11/18/24 Glucose Glycolysis Energy FFA ATP 2ATP Pyruvate H+ Ox Ph os H+ H+ O2 H+ H+ Krebs H+ TCA Cycle H2O H+ H+ H+ 34ATP CO2 Glutamine 13 Glucose Amino Acids Glucose Glucose Energy Glycolysis Nucleotides Cholesterol ATP Lipids Fatty Acids Phospho-Lipids Biosynthesis Amino Acids Asp Nucleotides Amino Acids Krebs Cycle Lactate Glutamine Amino Acids 14 7 11/18/24 Glucose Glucose Glycolysis Metabolites that Energy regulate immune cell ATP function Biosynthesis Regulation Krebs Cycle Lactate 15 Glucose Glucose Metabolic enzymes Energy Glycolysis that regulate immune ATP cell function Biosynthesis Regulation Krebs Cycle Lactate 16 8 11/18/24 Fatty acid Synthesis Glutathione reduction Energy NADP+ NADPH Glucose ATP Glucose 6 Ribulose 5 Nucleotides phosphate phosphate Biosynthesis Fructose 6 xylulose 5 phosphate phosphate Glycolysis Glyceraldehyde Pentose phosphate pathway 3 phosphate Regulation Redox Lactate Signalling Pyruvate ROS 17 Energy ATP Biosynthesis Regulation Redox Signalling ROS 18 9 11/18/24 Tn Glc TE Glc TM Gl FA TReg FA Glc Glc TG FA Glg TCA Lac TCA TCA TCA Gln Gln Gln Gln NK M1M! Glc M2M! FA N! Glc Glc Glc FA Glg CMS Cit Lac TCA Lac TCA Lac Suc TCA Gln Gln Gln Gln 19 N𝛗 Glc Glg Lac TCA Gln Glycogen accumulation in polymorphonuclear leukocytes, and other intracellular alterations that occur during inflammation. J M Robinson, M L Karnovsky, M J Karnovsky DOI: 10.1083/jcb.95.3.933 20 10 11/18/24 Cellular metabolism Glucose Biosynthesis Amino Proteins Acids Nucleotides Fatty Acids Lipids Energy Lactate Aerobic Glycolysis OXPHOS TCA Energy Amino Acids Fatty Acids Glutamine 21 Energy ATP Biosynthesis Regulation Redox Signalling ROS 22 11 11/18/24 CD8 Cytotoxic Teff cell Naive CD8+ T cell Memory CD8+ T cell CD4 Th1 Treg Naive Effector T cell Th17 CD4+ T cell 23 CD8 Cytotoxic T cell Aerobic Glycolysis sis HIF1𝛂 + Glycoly Metabolic rates S OXPHOS OXPHO ↑ mTORC1 cMYC TCR IL2 Time Memory T cell Aerobic Glycolysis + OXPHOS then Metabolic rates ↓ mTORC1 OXPHOS cMYC TCR Time 24 12 11/18/24 TE Glc TM Gl FA Glc TG Glg Lac TCA TCA Gln Gln 25 CD8 Cytotoxic T cell sis Glycoly Metabolic rates S OXPHO ROS ROS TCR ‘Fissed’ Mitohondria IL2 Time ’Fused’ Memory T cell Metabolic rates ’Fused’ Mitochondrial network TCR Time 26 13 11/18/24 27 CD8 Cytotoxic T cell sis Glycoly Metabolic rates S OXPHO ROS ROS TCR ‘Fissed’ Mitohondria IL2 Time ’Fused’ Memory T cell Metabolic rates ’Fused’ Mitochondrial network TCR Time 28 14 11/18/24 Can metabolic manipulation affect T cell differentiation? AMPK KO Glycolysis (Inhibitor of mTORC1) Viral and tumour responses Disrupt FAO - OXPHOS Cytotoxic Teff cell Pathology associated with a range of autoimmune Naive CD8+ T cell diseases OxPhos mTORC1 Inhibition Memory Immunological memory - CD8+ T cell Vaccination Glycolytic Inhibition Inhibition of mitochondrial fission 29 CD4 ↓ mTORC1 ↑ mTORC1 Th1 Treg Naive Effector T cell Th17 CD4+ T cell TReg FA TE Glc Glc FA TCA Lac TCA Gln Gln 30 15 11/18/24 Cancer Autoimmunity mTORC1 mTORC1 CD4 Inhibition Activation Glycolytic Inhibition Th1 Treg Naive Effector T cell Th17 CD4+ T cell TReg FA TE Glc Glc FA TCA Lac TCA Gln Gln 31 Th1 Treg Naive Th17 CD4+ T cell 32 16 11/18/24 Therapy for autoimmunity Treg Naive Th17 CD4+ T cell TReg FA Th17 Glc Glc FA FA TCA Lac TCA Gln Gln 33 ACC T Berod L et al De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014 Nov;20(11):1327-33. doi: 10.1038/nm.3704 34 17 11/18/24 Berod L et al De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014 Nov;20(11):1327-33. doi: 10.1038/nm.3704 35 What does this mean for immune cells at immunological sites where metabolic fuels might not be abundantly present? Tumours 36 18 11/18/24 Tumours are highly glycolytic Some also consume lots of glutamine Glucose levels LOW Glutamine levels LOW – Maybe! 37 We know less about nutrient levels at sites of infection Nutrient levels are likely to be affected here too 38 19 11/18/24 What are the consequences of low glucose and/or glutamine for immune cells? 39 Orn Enzymatic depletion Competitive uptake and use Arginase Leu Trp IDO Arg Gln Leu Glucose Kyn Gln Trp Arg Glucose Kyn Amino acids other Trp Arg Leu Gln Glucose Kyn Signalling NFAT 40 20 11/18/24 Orn Enzymatic depletion Competitive uptake and use Arginase Leu Trp IDO Arg Gln Leu Glucose Kyn Gln Trp Arg O2 Glucose Kyn Amino acids other Trp Arg Leu Gln Glucose O2 O2 Kyn Signalling NFAT 41 Arginine can be consumed within the tumour microenvironment by the enzymes iNOS, often expressed in tumour cells and arginase, expressed by tumour associated fibroblasts and tumour associated macrophages (TAMs) Arginine is important for T cell and NK cell responses and arginine depletion in tumour microenvironment has been shown to inhibit anti-tumour T cells responses 42 21 11/18/24 Tryptophan can be depleted by the action of the enzyme Indoleamine 2,3-dioxygenase (IDO), which is often highly expressed in tumour cells or in tumour associated cells such as tolerogenic DCs IDO mediated inhibition of T cells and NK cells is due to a combination of tryptophan depletion and the production of the metabolite kyneurenine, which impacts upon the function of NK cells and T cells, at least in part, through acting upon the aryl hydrocarbon receptor (AhR) 43 Depletion of arginine at sites of infection. Helicobacter pylori bacteria express arginase to deplete the local microenvironment of arginine and in the absence of this amino acid, macrophages expressing iNOS cannot produce anti-microbial NO Arginase Arginine ↓ iNOS activity ↓ NO 44 22 11/18/24 Depletion of arginine at sites of infection. Intracellular parasite Leishmania major expresses arginase to deplete the host cell of arginine and reduce iNOS-dependent production of NO Arginase Arginine ↓ iNOS activity ↓ NO 45 Altered nutrient-sensitive signalling ⤋ Gln, Arg, Leu ⤋ Gln, Glc ⤊ Kyn ⤋ amino acids ⤋ Glc ⤋ amino acids ⤊ ⤊ ⤋ ⤋ ⤊ ⤊ ⤊ ⤋ ⤋ ⤋ ⤋ ⤋ ⤋ ⤊ ⤊ Immunological Consequences 46 23 11/18/24 Take home message: Altered metabolic microenvironments have a significant impact upon the functions of immune cells Tumours 47 Immunometabolism Recommended Reading: Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033. Loftus R., Finlay. DK (2016) Immunometabolism: Cellular Metabolism Turns Immune Regulator. J. Biol Chem 2016 Jan 1;291(1):1-10. doi: 10.1074/jbc.R115.693903 Walls J., Sinclair LV., Finlay DK. Nutrient sensing, signal transduction and immune responses. Semin Immunol. 2016 Sep 24. pii: S1044-5323(16)30090-2. doi: 10.1016/j.smim.2016.09.001 Buck, M. D., O'Sullivan, D., & Pearce, E. L. (2015). T cell metabolism drives immunity. The Journal of Experimental Medicine, 212(9), 1345–1360. http://doi.org/10.1084/jem.20151159 O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016 Sep;16(9):553-65. doi: 10.1038/nri.2016.70. O’Brien K and Finlay DK. Immunometabolism and natural killer cell responses Nat Rev Immunol. 2019 May;19(5):282-290. doi: 10.1038/s41577-019-0139-2 48 24