Geometry Problems PDF
Document Details
Uploaded by Deleted User
Tags
Summary
This document contains a collection of geometry problems focusing on right triangles, isosceles triangles, and their properties such as finding areas, altitudes, medians, bisectors, and radii of circles related to them. There are problems involving calculating the sides, areas, and special line segments of these triangles.
Full Transcript
## Geometry Problems **1) The hypotenuse of a right triangle is 41 cm, and its area is 180 cm². Find the legs of the triangle.** - 9 cm, 40 cm - 11 cm, 39 cm - 7 cm, 41 cm - 10 cm, 43 cm - 13 cm, 44 cm **2) One leg of a right triangle is 10 dm, the radius of the circle drawn outside the triangle...
## Geometry Problems **1) The hypotenuse of a right triangle is 41 cm, and its area is 180 cm². Find the legs of the triangle.** - 9 cm, 40 cm - 11 cm, 39 cm - 7 cm, 41 cm - 10 cm, 43 cm - 13 cm, 44 cm **2) One leg of a right triangle is 10 dm, the radius of the circle drawn outside the triangle is 13 dm. Find the area of the triangle.** - 120 dm² - 122 dm² - 123 dm² - 121 dm² - 124 dm² **3) Which method is the most effective for checking whether a point belongs to a parabola?** - Substituting the coordinates of the point into the equation of the parabola - Constructing a tangent at the given point - Finding the distance from the point to the focus - Constructing the medians of the parabola - Calculating the area of the figure **4) What is needed to find the equation of a hyperbola through its vertices?** - Determine the semi-axes of the hyperbola - Construct the circumscribed circle - Calculate the angles of inclination of the asymptotes - Draw the heights of the figure - Plot the graph of the figure **5) In which coordinates is it easier to solve the equations of an ellipse?** - In canonical coordinate system - In polar coordinates - In spherical coordinates - In Cartesian coordinates without transformation - In cylindrical system **6) The area of a right triangle is 150, one of its legs is 15. Find the length of the altitude drawn from the vertex of the right angle.** - 12 - 100√3 - 20 - 200√3 - 24 **7) Find the ratio of the legs of a right triangle whose area and one leg are 28 cm, 490 cm², and 490 cm², respectively.** - 4:5 or 5:4 - 3:4 or 4:3 - 1:2 or 2:1 - 1:3 or 3:1 - 2:3 or 3:2 **8) If the legs of a right triangle are cm and cm, find the area of this triangle.** - 65 cm² - 130 cm² - 120 cm² - 75 cm² - 55 cm² **9) The hypotenuse of a right triangle is 10 cm, and the radius of the inscribed circle is 2 cm. Find the area of the triangle.** - 24 cm² - 21 cm² - 27 cm² - 22 cm² **10) If the side of an isosceles triangle is 9 cm, find its area.** - 81√3/4 cm² - 3√3/2 cm² - 64√3/13 cm² - 16√3 cm² - 19√3 cm² **11) If the side of an isosceles triangle is 1 cm, find its area.** - √3/4 cm² - 3√3/2 cm² - 5√3/2 cm² - 9√3/4 cm² - 4√3 cm² **12) If the side of an isosceles triangle is 0.5 cm, find its area.** - √3/16 cm² - √3/4 cm² - 16√3 cm² - 9√3/2 cm² - 16√3 cm² **13) The side of a right triangle is cm. Find its area.** - 25√3/2 cm² - 9√3/4 cm² - 4√3 cm² - 6√3 cm² - 6√3 cm² **14) The area of a circle inscribed in a right triangle is 16π cm². Find the area of this triangle.** - 48√3 cm² - 44√3 cm² - 42√3 cm² - 45√3 cm² - 40√3 cm² **15) If the radius of a circle drawn outside a right triangle is cm, find the area of the triangle.** - 36√3 cm² - 36√2 cm² - 18√3 cm² - 48√3 cm² - 18√2 cm² **16) What is the side of an isosceles triangle inscribed in a circle of radius 10?** - 10√3 - 10 - 9 - 11√3 - 12√3 **17) The side of an isosceles triangle is 4 cm. Find its area.** - 4√3 cm² - 9√3/4 cm² - 4√3 cm² - 4√3/11 cm² - 6√3 cm² - 4√3/9 cm² **18) If the perimeter of an isosceles triangle is 10 cm, find the radius of the circle drawn outside it.** - 10√3/9 cm - 15 cm - 9√3 cm - 10√3 cm - 9√3/10 cm **19) The vertex A of an isosceles triangle ABC is connected to point D, dividing side BC into segments BD=1cm and DC=2 cm. Determine the length of segment AD.** - 7√7 cm - 11√11 cm - 6√6 cm - 13√13 cm - 5√5 cm **20) The median of an isosceles triangle is . Calculate the perimeter of the triangle.** - 90 - 60 - 45 - 120 - 75 **21) A right triangle is inscribed inside a circle with a radius of 20 cm. Find the length of the bisector of this triangle.** - 30 cm - 25 cm - 32 cm - 36 cm - 34 cm **22) If the side of a right triangle is 7 cm, find its perimeter.** - 21 cm - 25 cm - 19 cm - 18 cm - 24 cm **23) If the area of a right triangle is 16, find its perimeter.** - 24 cm - 27 cm - 32 cm - 36 cm - 28 cm **24) If the median of a right triangle is 1.5 cm, find its perimeter.** - 3√3 cm - 6√3 cm - 12√3 cm - 9√3 cm - 18 cm **25) If the perimeter of a right triangle is 30 cm, find its area.** - 25√3 cm² - 24√3 cm² - 32√3 cm² - 21√3 cm² - 20√3 cm² **26) If the perimeter of an equilateral triangle is 12 cm, find its altitude.** - 4√3 cm - 6√3 cm - 2√3 cm - 8√3 cm - 5√3 cm **27) If the height of an isosceles triangle is 45 cm, find the radius of the inscribed circle.** - 15 cm - 13 cm - 12 cm - 9 cm - 16 cm **28) If the height of an isosceles triangle is 20 cm, find the radius of the inscribed circle.** - 6√3/2 cm - 5√3/3 cm - 6√3/3 cm - 5√3/2 cm - 4√3/3 cm **29) If the height of an isosceles triangle is 16 cm, find the radius of the inscribed circle.** - 5√3/3 cm - 6√3/2 cm - 6√3/3 cm - 4√3/3 cm - 5√3/2 cm **30) If the bisector of an isosceles triangle is cm, find its area.** - √3 cm - 9√3/4 cm - 4√3/11 cm - 6√3 cm - 3√3/2 cm **31) If the median of an isosceles triangle is 6 cm, find its side.** - 4√3 cm - 5√2 cm - 4√2 cm - 5√3 cm - 3√3/4 cm **32) If the median of an isosceles triangle is cm, find its side.** - 9√3 cm - 5√3 cm - 4√3/4 cm - 3√3/11 cm - 6√3 cm **33) If the side of an isosceles triangle is 12 cm, find the radius of the circle drawn outside it.** - 4√3 cm - 7√2 cm - 7√3/6 cm - 6√3 cm - 3√3/4 cm **34) The side of an isosceles triangle is 6cm. Find its altitude.** - 3√3 cm - 2√3 cm - 7√6 cm - 4√6 cm - 7√3 cm **35) The side of an isosceles triangle is 5 cm. Find its bisector.** - 5√3/2 cm - 2√5 cm - 5√3/4 cm - 5√2 cm - 5√2/6 cm **36) The side of an isosceles triangle is 10 cm. Find its median.** - 5√3 cm - 7√2 cm - 12√2 cm - √3/2 cm - 2√3 cm **37) If the height of an isosceles triangle is 8 cm, find its side.** - 16√3/3 cm - 5√7 cm - 4√3 cm - 5√6/4 cm - 5√3 cm **38) If the area of an isosceles triangle is 7, find the radius of the circle drawn outside it.** - 2√7 cm - 3√7 cm - √6/6 cm - 2√6/6 cm - 5√7 cm **39) If the area of an isosceles triangle is , find the radius of the inscribed circle.** - √3/3 cm - √3/2 cm - 8√7 cm - 3√3/2 cm - 7√2 cm **40) If the area of an isosceles triangle is 5, find the radius of the circle drawn outside it.** - 3√30/3 cm - 3√19/19 cm - 3√5/5 cm - 7√3/12 cm - 3√3 cm **41) If the area of an isosceles triangle is 6, find the radius of the inscribed circle.** - 2√3 cm - 3√2 cm - 7√2 cm - 9√2/2 cm - 7√3/2 cm **42) If the area of an isosceles triangle is 4, find its altitude.** - 6 cm - 3√7/7 cm - 5√3/3 cm - 6√7/7 cm - 2√3/3 cm **43) If the area of an isosceles triangle is find its altitude.** - √75/15 cm - √13/13 cm - √14/14 cm - √17/17 cm - √23/23 cm **44) The area of an isosceles triangle is 12. Find the radius of the circle drawn outside it.** - 4 cm - 5√3 cm - 5√2 cm - 5√3/2 cm - 2√5 cm **45) If the area of an isosceles triangle is 15, find the radius of the circle drawn outside it.** - 2√5 cm - 3√10/4 cm - 6√3 cm - 2√3 cm - 3√5/2 cm **46) If the area of an isosceles triangle is 5, find its side.** - 2√5 cm - 5√3/5 cm - 5√2 cm - 5√2 cm **47) If the area of an isosceles triangle is 7, find its side.** - 2√7 cm - 5√7 cm - 7√2 cm - 7√7 cm - 5√3 cm **48) If the area of an isosceles triangle is 8/3 (cm)², find its side.** - 4√2 cm - √3/2 cm - 4√3 cm - (2√2)/3 cm - 5/3 cm **49) If the area of an isosceles triangle is 10, find its altitude.** - 15√3/3 cm - 15√3 cm - 3√15/15 cm - 14√3/14 cm - 3√3 cm **50) If the radius of a circle inscribed in a right triangle is 2 cm, find the area of this triangle.** - 36√3 cm² - 4√4 cm² - 6√4/25 cm² - 3√16 cm² - 16√3 cm² **51) If the radius of the inscribed circle of a right triangle is 3 cm, find the area of this triangle.** - 54√3 cm² - 9√3/16 cm² - 18√3 cm² - 2√3/9 cm² - 9√3 cm² **52) If the radius of the inscribed circle of a right triangle is 3 cm, find the area of this triangle.** - 135√3 cm² - 4√3/11 cm² - 9√3/4 cm² - 4√3/9 cm² - 18√3 cm² **53) If an isosceles triangle has an area, find its side.** - 4√2 cm - √3 cm - 4√3 cm - 2√2 cm - 5√3 cm **54) If the radius of the circumscribed circle of a right triangle is 6 cm, find the area of the triangle.** - 81√3 cm² - 9√3/4 cm² - 60√3 cm² - 4√3/9 cm² - 9√3 cm² **55) If the radius of the inscribed circle of a right triangle is 5 cm, find the area of the triangle.** - 75√3 cm² - 5√3/4 cm² - 4√3/25 cm² - 50√3 cm² - 5√3/9 cm² **56) If the radius of the inscribed circle of a right triangle is 1 cm, find the area of the triangle.** - 3√3 cm - 2√3 cm - 7√3 cm - 9√3 cm - 6√3 cm