Geometry GT Midterm Review PDF

Document Details

StellarFoxglove3490

Uploaded by StellarFoxglove3490

Tags

geometry geometry questions geometry problems high school math

Summary

This document contains geometry questions. The questions cover various topics in geometry, including lines, angles, triangles, and quadrilaterals.

Full Transcript

Geometry GT Midterm Review Name: ___________________________ #1-13: Select the correct response for each of the following questions. 2 1. Which of the...

Geometry GT Midterm Review Name: ___________________________ #1-13: Select the correct response for each of the following questions. 2 1. Which of the following is the equation of a line perpendicular to the line 𝑦 = 4π‘₯ + 3? a. 𝑦 = 4π‘₯ βˆ’ 3 c. 𝑦 = 2π‘₯ βˆ’ 2 3 1 b. 𝑦 = βˆ’ 4 π‘₯ βˆ’ 3 2 d. 𝑦 = βˆ’2π‘₯ βˆ’ 3 2. Given ∠𝐴 β‰… βˆ π‘ and ∠𝐡 β‰… βˆ π‘‹, which of the following do you need to prove βˆ†π΄π΅πΆ β‰… βˆ†π‘π‘‹π‘Œ by ASA? a. Μ…Μ…Μ…Μ… 𝐴𝐡 β‰… Μ…Μ…Μ…Μ… 𝑍𝑋 c. Μ…Μ…Μ…Μ… 𝐴𝐢 β‰… Μ…Μ…Μ…Μ… π‘π‘Œ Μ…Μ…Μ…Μ… β‰… π‘‹π‘Œ b. 𝐴𝐢 Μ…Μ…Μ…Μ… Μ…Μ…Μ…Μ… β‰… π‘‹π‘Œ d. 𝐴𝐡 Μ…Μ…Μ…Μ… 3. What is the best justification for βˆ†π‘€π‘‡π» β‰… βˆ†πΊπ»π‘‡? a. ASA c. SAS b. HL d. SSA 4. If EFGH is a rectangle, what is FH? a. 4 c. √65 b. √33 d. 11 5. If π‘Š(βˆ’3, 1), 𝑋(2, 3), π‘Œ(5, 0), what are the coordinates of the vertices of βˆ†π‘Šπ‘‹π‘Œ after a reflection over line π‘₯ = 2? a. W’ (3, -1), X’ (-2, -3). Y’ (-5, 0) c. W’ (3, 1), X’ (-2, 3). Y’ (-5, 0) b. W’ (7, 1), X’ (2, 3). Y’ (-1, 0) d. W’ (1, 7), X’ (3, 2). Y’ (0, -1) 6. M is the midpoint of 𝐴𝐷̅̅̅̅ and 𝐡𝐢 Μ…Μ…Μ…Μ…. Which triangle congruence theorem could be used to prove that βˆ†π΄π΅π‘€ β‰… βˆ†πΆπ·π‘€? B D a. SSS c. ASA M b. SAS d. HL A C 7. Which translation of the segment with endpoints 𝐡(2, 8) π‘Žπ‘›π‘‘ 𝐢(5,4) is shown by segment B’C’ in the diagram below? a. (π‘₯, 𝑦) β†’ (π‘₯ βˆ’ 4, 𝑦 βˆ’ 1) 𝐡 𝐡′ b. (π‘₯, 𝑦) β†’ (π‘₯ βˆ’ 4, 𝑦 + 1) c. (π‘₯, 𝑦) β†’ (π‘₯ + 4, 𝑦 βˆ’ 1) 𝐢 d. (π‘₯, 𝑦) β†’ (π‘₯ + 4, 𝑦 + 1) 𝐢′ 8. βˆ†π·β€²πΈβ€²πΉβ€² is the image of βˆ†π·πΈπΉ under a 900 counterclockwise rotation with a center at the origin. If the triangle has the following coordinates D(1, 5), E(6,4), and F(3, 1) determine the coordinate of the vertices of βˆ†π· β€² 𝐸 β€² 𝐹 β€² ? a. (-5, 1) (-4, 6) and (-1, 3) c. (5, 1) (4, 6) and (1, 3) b. (-5, -1) (-4, -6) and (-1, -3) d. (5, -1) (4, -6) and (1, -3) 9. Solve for x. a. 4 c. -8 b. -8, 8 d. -16, 4 π‘₯ 2 + 6π‘₯ 6π‘₯ + 64 10. In this figure, which of the following best describes the relationship between ∠1 and ∠2? a. Adjacent and complementary. b. Adjacent and supplementary. c. Adjacent, complementary, and a linear pair. d. Adjacent, supplementary, and a linear pair. 11. In the diagram below, π‘šβˆ π΅π΄πΆ = (π‘₯ 2 βˆ’ 2)0 and π‘šβˆ π΅π΄π· = (π‘₯ 2 + 7π‘₯ βˆ’ 10)0. Determine the π‘šβˆ π΅π΄π·. a. 60 c. 340 b. 14 0 d. 680 12. In the diagram, 𝑝||π‘ž, π‘šβˆ 1 = (3π‘₯ 2 + 20π‘₯)0 π‘Žπ‘›π‘‘ π‘šβˆ 2 = (2π‘₯ 2 + 5π‘₯)0. If 𝒙 is a 𝑝 positive integer, which of the following statements must be true about ∠3? 2 a. It is an acute angle. 1 b. It is an obtuse angle. π‘ž c. It is a right angle. d. It is a straight angle. 3 *Picture is not drawn to scale 13. ∠𝐴𝐡𝐢 π‘Žπ‘›π‘‘ ∠𝐢𝐡𝐷 are supplementary angles. If ∠𝐴𝐡𝐢 is an obtuse angle, which of the following statements about ∠𝐢𝐡𝐷 must be true? a. π‘šβˆ πΆπ΅π· > 900 c. π‘šβˆ πΆπ΅π· ≀ 900 b. π‘šβˆ πΆπ΅π· = π‘šβˆ π΄π΅πΆ d. π‘šβˆ πΆπ΅π· < 900 14. For parallelogram PQLM below, if π‘šβˆ π‘ƒπ‘€πΏ = 830 , π‘‘β„Žπ‘’π‘› π‘šβˆ π‘ƒπ‘„πΏ = ________________. a. 830 c. π‘šβˆ π‘ƒπ‘„π‘€ b. 97 0 d. π‘šβˆ π‘„πΏπ‘€ #15 -26: Answer each of the following multi-part questions. 15. Here are some transformation rules. For each rule, describe whether the transformation is a rigid motion, a dilation, or neither. a. (π‘₯, 𝑦) β†’ (2π‘₯, 𝑦 + 2) b. (π‘₯, 𝑦) β†’ (2π‘₯, 2𝑦) c. (π‘₯, 𝑦) β†’ (π‘₯ + 2, 𝑦 + 2) d. (π‘₯, 𝑦) β†’ (π‘₯ βˆ’ 2, 𝑦) 16. Given that βˆ†πΏπ‘€π‘ β‰… βˆ†π‘ˆπ‘‰π‘Š, complete the statements: a. Μ…Μ…Μ…Μ…Μ… π‘ˆπ‘Š β‰… ______________ b. βˆ πΏπ‘€π‘ β‰… _______________ c. 𝐼𝑓 𝑁𝑀 = 13, then _____________ = 13 17. Write the equation, in slope-intercept form, of the line that is: a. Parallel to 2π‘₯ + 2𝑦 = 12 and contains the point (βˆ’2, 7) b. Perpendicular to 𝑦 = 2π‘₯ βˆ’ 5 and contains the point (βˆ’1,4) 2 18. RECT is a rectangle and the slope of Μ…Μ…Μ…Μ… 𝑅𝐸 𝑖𝑠 5. Μ…Μ…Μ…Μ…? How do you know? a. What is the slope of 𝑅𝑇 Μ…Μ…Μ…Μ… ? How do you know? b. What is the slope of 𝑇𝐢 19. Justify why each of the triangles below are congruent. Answer the questions. Write a congruence statement. a. Which angle corresponds to ∠𝐡𝐴𝐢? Μ…. Which angle corresponds to d. K is the midpoint of 𝐽𝐿 ∠𝐽? b. Μ…Μ…Μ…Μ… 𝐸𝐺 bisects ∠𝐹𝐸𝐻 e. A is the midpoint of Μ…Μ…Μ…Μ… 𝑀𝑆, βˆ π‘† β‰… βˆ π‘€ c. Μ…Μ…Μ…Μ… 𝑂𝑄 𝑏𝑖𝑠𝑒𝑐𝑑𝑠 βˆ π‘ƒπ‘„π‘, βˆ π‘ƒ β‰… βˆ π‘ f. βˆ π‘… π‘Žπ‘›π‘‘ βˆ π‘‡ are right angles. What would prove βˆ π‘…π‘ˆπ‘† β‰… βˆ π‘‡π‘ˆπ‘†? 20. Solve for x: a. 8π‘₯ βˆ’ 4 + 3(π‘₯ + 7) = 6π‘₯ βˆ’ 3(π‘₯ βˆ’ 3) b. 8π‘₯ 2 + 10π‘₯ + 3 = 0 21. Simplify: a. √108 b. √192 22. Given the figure below and π‘šβˆ π΅π΄πΆ = (3π‘₯ + 41)0 , π‘šβˆ π΄π΅πΆ = (12π‘₯ βˆ’ 31)0 , π‘Žπ‘›π‘‘ π‘šβˆ π΅πΆπ΄ = (7π‘₯ βˆ’ 6)0. a. Find x b. Classify βˆ†π΄π΅πΆ by its sides and angles. c. Find π‘šβˆ π΅πΆπ· 23. In the given figure, R and S are on the perpendicular bisector of QT, and QR = 10, QT = 12. a. Find RT b. Find ST c. Find RS 24. Use the following diagram, where 𝑙||π‘š to answer the following: a. What is the best justification for the conclusion that ∠1 β‰… ∠3? 𝑙 2 b. What is the best justification for the conclusion that ∠3 β‰… ∠7? 1 3 4 π‘š c. What is the best justification for the conclusion that ∠4 β‰… ∠6? 6 5 7 d. What is the best justification for the conclusion that ∠2 β‰… ∠8? 8 e. If π‘šβˆ 3 = 3π‘₯ 2 + 20π‘₯ + 94 and π‘šβˆ 6 = π‘₯ 2 + 4π‘₯ + 22, and x is a positive integer, classify ∠8. f. If π‘šβˆ 1 = 2π‘₯ 2 + 8π‘₯ and π‘šβˆ 7 = 5π‘₯ 2 βˆ’ 10π‘₯, find π‘šβˆ 6. 25. Determine if a triangle can be created from the given 3 sides. a. √13, √65, 2√13 b. 3, √11, 7 c. 3√2, 6, 4√3 26. Using the figure below, where π‘šβˆ 1 = 610 , π‘šβˆ π΄π΅πΆ = 810 , π‘Žπ‘›π‘‘ π‘šβˆ 3 = 420. a. Find π‘šβˆ 5 and π‘šβˆ 4. c. What is the shortest side of βˆ†π·π΅πΆ? b. What is the longest side of βˆ†π΄π΅π·? d. Classify βˆ†π΅π·πΆ by sides and angles. #27- 30: Write a two-column proof for each problem. 27. Given: Μ…Μ…Μ…Μ…Μ… 𝑁𝑀||𝑃𝑄̅̅̅̅ 29. Given: βˆ π‘† β‰… βˆ π‘Š, π‘Œ is the midpoint of Μ…Μ…Μ…Μ… 𝑇𝑉 Prove: βˆ†π‘π‘€π‘‚~βˆ†π‘ƒπ‘„π‘‚ Μ…Μ…Μ…Μ… β‰… π‘Šπ‘‰ Prove: 𝑆𝑇 Μ…Μ…Μ…Μ…Μ… 28. Prove that βˆ†π΄π΅πΆ~βˆ†π΄πΈπ· two different ways 30. Given: Μ…Μ…Μ…Μ… 𝐡𝐢 β‰… Μ…Μ…Μ…Μ… 𝐷𝐴, Μ…Μ…Μ…Μ… Μ…Μ…Μ…Μ… 𝐡𝐢 ||𝐷𝐴 Prove: E is the midpoint of Μ…Μ…Μ…Μ… 𝐢𝐴 #31-50: Solve each problem. 31. Graph the triangle whose vertices have coordinates: A(-8, 2), B(-2, 2) and C(-5, 7). Draw its reflection in the x-axis then the line π‘₯ = βˆ’6. 32. Given that ∠𝐡 β‰… ∠𝐸 π‘Žπ‘›π‘‘ ∠𝐢 β‰… ∠𝐹, what other piece of information is needed to show that βˆ†π΄π΅πΆ β‰… βˆ†π·πΈπΉ by the ASA β‰… Postulate? 33. Find the value of ̅𝐻𝐼 Μ…Μ…Μ… that makes βˆ†π»πΌπ½~βˆ†πΎπΏπ‘€. Round to the nearest tenth. 34. If βˆ†π΄π΅πΆ~βˆ†π΄πΈπ·, what is the length of Μ…Μ…Μ…Μ… 𝐡𝐢 ? Round to the nearest tenth. 35. βˆ†π½πΊπ‘‹~βˆ†π‘‹π‘Šπ‘Œ. Find XY 36. Find x and y. 37. Farmer Gaston has a triangular field with two parallel irrigation pipes marked 𝑃1 and 𝑃2 on the map below. She wants to find the distance from barn B to the north end of pipe 2. The distance from the barn to the south end of pipe 1 is 100 feet. The distance from there to the south end of pipe 2 is 20 feet. The distance from the barn to the north end of pipe 1 is 114 feet. How far is the barn from the north end of pipe 2? Round your answer to the nearest foot. 38. What is the distance between (4, -7) and (-2, 10) to the nearest hundredth? 39. In the figure π‘šβˆ π΄πΈπ· = 1050 , π‘šβˆ π΅πΈπ· = 840 , π‘Žπ‘›π‘‘ π‘šβˆ π΄πΈπΆ = 740. What is π‘šβˆ π΅πΈπΆ? 40. If βƒ—βƒ—βƒ—βƒ—βƒ— 𝐴𝑃 bisects βˆ π‘†π΄π‘‡. What is the π‘šβˆ π‘†π΄π‘ƒ? *Picture is not drawn to scale 41. Solve for x. 42. Isosceles βˆ†π΄π΅πΆ with vertex ∠𝐴 with π‘šβˆ π΄ = 250 and π‘šβˆ πΆ = (3π‘₯ βˆ’ 4)0. Find π‘šβˆ π΅πΆπ·. 43. In the diagram 𝑙||π‘š. Classify βˆ†π΄π΅πΆ. 44. If QT is a median of βˆ†π‘„π‘…π‘†, what is the perimeter of βˆ†π‘„π‘…π‘†? R l 5x-8 B 700 3x T 3x+6 A 1100 m Q C 5x S 45. Given: ABCD is a parallelogram 32 a. Find BE b. Find ED 46. Construct a line parallel to the given line through the given point. 47. Construct a line perpendicular to the given line through the given point. #48-50: Construct a regular hexagon, an equilateral triangle, and a square inscribed in a circle.

Use Quizgecko on...
Browser
Browser