ECE04 Lesson 08 Z-Transform and the DT-LTI System (2) PDF

Summary

These notes explain z-transforms and their applications in discrete-time signal processing. They cover topics like the definition, region of convergence (ROC), properties, and various important functions in the z-domain. Examples and sample problems are included to aid understanding.

Full Transcript

ECE04: SIGNALS, SPECTRA AND SIGNAL PROCESSING Z-TRANSFORM ENGR. ANTHONY RIEGO POINTS Z-TRANSFORM AND THE DT-LTI SYSTEM DIRECT Z-TRANSFORM REGION OF CONVERGENCE Z-TRANSFORM AS A COMPLEX VARIABLE CHARACTERISTIC FAMILIES OF SIGNALS WIT...

ECE04: SIGNALS, SPECTRA AND SIGNAL PROCESSING Z-TRANSFORM ENGR. ANTHONY RIEGO POINTS Z-TRANSFORM AND THE DT-LTI SYSTEM DIRECT Z-TRANSFORM REGION OF CONVERGENCE Z-TRANSFORM AS A COMPLEX VARIABLE CHARACTERISTIC FAMILIES OF SIGNALS WITH THEIR CORRESPONDING ROC PROPERTIES OF Z-TRANSFORM Z-TRANSFORMS OF COMMON FUNCTIONS Z-TRANSFORM Z-Transforms play an important role in the analysis of DT-LTI systems as the Laplace Transform does in the analysis of CT signals. Back to Agenda Page Z-TRANSFORM AND THE DT-LTI SYSTEM THE DIRECT The z-transform of the discrete-time function x(n) is defined as: โˆž โˆ’๐’ ๐‘ฟ ๐’› = เท ๐’™ ๐’ ๐’› ๐’=โˆ’โˆž where ๐’› is a complex variable. Z-TRANSFORM AND THE DT-LTI SYSTEM For convenience, the z-transform of a signal is denoted by: ๐‘ฟ ๐’› โ‰ก ๐™{๐ฑ ๐ง } whereas the relationship is indicated by: ๐’› ๐’™ ๐’ ีž ๐‘ฟ(๐’›) REGION Since the z-transform is an infinite power series, it exists only for those values of ๐‘ง for which the series converges. Z-TRANSFORM AND THE DT-LTI SYSTEM This ๐‘Ÿ๐‘’๐‘”๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘๐‘œ๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘”๐‘’๐‘›๐‘๐‘’ (๐‘…๐‘‚๐ถ )of ๐‘‹(๐‘ง) is the set of all values of ๐‘ง for which ๐‘‹(๐‘ง) attains a finite value. Thus, at any time we cite a z-transform, we must also indicate its ROC. Determine the z-transform and region of convergence of the following finite duration signals: 1. x1 n = 1, 2, 5, 7, 0, 1 2. x2 n = 1, 2, 5, 7, 0, 1 โ†‘ 3. x 3 n = 0, 0, 1, 2, 5, 7, 0, 1 4. x4 n = 2, 4, 5, 7, 0, 1 โ†‘ 5. x5 n = ฮด ๐‘› 6. x6 n = ฮด ๐‘› โˆ’ ๐‘˜ ,k > 0 7. x7 n = ฮด ๐‘› + ๐‘˜ ,k > 0 It can be easily seen that the ROC of a finite duration signal is the entire z-plane, except possibly z = 0, and/or z = โˆž. These points are excluded since ๐’›๐’Œ (k > 0) becomes unbounded for z = โˆž, and ๐’›โˆ’๐’Œ (k > 0) becomes unbounded for z = 0. In many cases, we can express the sum of the finite or infinite series for the z-transform in a closed expression. SAMPLE PROBLEM SAMPLE PROBLEM Determine the z- S A ofM P L transform and region E PROBLEM convergence of the signal: SAMPLE ๐’™ ๐’ = ๐’‚ ๐’ ๐’–(๐’) PROBLEM SAMPLE PROBLEM SAMPLE SAMPLE PROBLEM SAMPLE PROBLEM Determine the z- S A ofM P L transform and region E PROBLEM convergence of the signal: SAMPLE ๐’™ ๐’ = โˆ’๐’‚๐’ ๐’–(โˆ’๐’ โˆ’ ๐Ÿ) PROBLEM SAMPLE PROBLEM SAMPLE THE Z- TRANSFORM AS A Since ๐’› is a complex variable, let us express ๐‘ง in polar form ๐’‹๐œฝ ๐’› = ๐’“๐’† where ๐‘Ÿ = ๐‘ง and ๐œƒ โ‰ค ๐‘ง Z-TRANSFORM AND THE DT-LTI SYSTEM Then, ๐‘ฟ(๐’›) can be expressed as: โˆž ๐’‹๐œฝ โˆ’๐’ ๐‘ฟ(๐’›)ศ๐’›=๐’“๐’†๐’‹๐œฝ = ฯƒ๐’=โˆ’โˆž ๐’™ ๐’ (๐’“๐’† ) โˆž โˆ’๐’ โˆ’๐’‹๐œฝ๐’ = ฯƒ๐’=โˆ’โˆž ๐’™ ๐’ ๐’“ ๐’† THE Z- TRANSFORM AS A In the ROC of ๐‘ฟ(๐’›), ศ X (z) ศ < โˆž, since the z-transform must have a finite value. โˆž โˆ’๐’ โˆ’๐’‹๐œฝ๐’ ๐‘ฟ ๐’› = เท ๐’™ ๐’ ๐’“ ๐’† ๐’=โˆ’โˆž Z-TRANSFORM AND THE DT-LTI SYSTEM โˆž โ‰ค เท ๐’™ ๐’ โˆ’๐’ ๐’“ ๐’† โˆ’๐’‹๐œฝ๐’ ๐’=โˆ’โˆž โˆž โˆ’๐’ โ‰ค เท ๐’™ ๐’ ๐’“ ๐’=โˆ’โˆž โˆ’๐’ Hence | X (z) | is finite if ๐’™ ๐’ ๐’“ is absolutely summable. THE Z- TRANSFORM AS A Our problem is finding the values for which will make ๐‘ฅ ๐‘› ๐‘Ÿ โˆ’๐‘› absolutely summable, so โˆ’1 โˆž โˆ’๐‘› ๐‘ฅ ๐‘› ๐‘‹(๐‘ง) โ‰ค เท ๐‘ฅ ๐‘› ๐‘Ÿ +เท ๐‘› ๐‘Ÿ Z-TRANSFORM AND THE DT-LTI SYSTEM ๐‘›=โˆ’โˆž ๐‘›=0 โˆž โˆž ๐‘› ๐‘ฅ ๐‘› โ‰ค เท ๐‘ฅ โˆ’๐‘› ๐‘Ÿ +เท ๐‘Ÿ๐‘› ๐‘›=1 ๐‘›=0 In which case ๐‘Ÿ in the first term must be small enough for the first term to be finite, but big enough for the second term to prevent it from vanishing. THE Z- TRANSFORM AS A The ROC for the first term is The ROC for the second term is a circle with some radius ๐‘Ÿ1. outside the circle of radius ๐‘Ÿ2. Z-TRANSFORM AND THE DT-LTI SYSTEM REGION Therefore, the ROC for X(z) is the area common among the two terms, where ๐‘Ÿ2 < ๐‘Ÿ < ๐‘Ÿ1. Z-TRANSFORM AND THE DT-LTI SYSTEM CHARACTERISTIC FAMILIES OF SIGNALS FINITE-DURATION Unilateral, Causal ๐‘ฅ ๐‘› ,0 โ‰ค ๐‘› โ‰ค ๐‘ ๐‘…๐‘‚๐ถ: ๐‘ง โ‰  0 (positive side of the timeline) Unilateral,Anti- ๐‘ฅ ๐‘› , โˆ’๐‘ โ‰ค ๐‘› โ‰ค 0 ๐‘…๐‘‚๐ถ: ๐‘ง โ‰  โˆž Causal (negative side of the timeline) Z-TRANSFORM AND THE DT-LTI SYSTEM Bilateral ๐‘ฅ ๐‘› , โˆ’๐‘ โ‰ค ๐‘› โ‰ค ๐‘ ๐‘…๐‘‚๐ถ: ๐‘ง โ‰  0, ๐‘ง โ‰  โˆž (both sides of the timeline) INFINITE-DURATION Unilateral, Causal ๐‘ฅ ๐‘› ,0 โ‰ค ๐‘› โ‰ค โˆž ๐‘…๐‘‚๐ถ: ๐‘ง > ๐‘Ÿ (positive side of the timeline) (outside of the circle) Unilateral, Anti- ๐‘ฅ ๐‘› , โˆ’โˆž โ‰ค ๐‘› โ‰ค 0 ๐‘…๐‘‚๐ถ: ๐‘ง < ๐‘Ÿ Causal (negative side of the timeline) (inside of the circle) Bilateral ๐‘ฅ ๐‘› , โˆ’โˆž โ‰ค ๐‘› โ‰ค โˆž ๐‘…๐‘‚๐ถ: ๐‘Ÿ2 < ๐‘ง < ๐‘Ÿ1 (both sides of the timeline) (annular region) PROPERTIES OF LINEARITY IF: ๐’› ๐’› ๐’™๐Ÿ ๐’ ีž ๐‘ฟ๐Ÿ (๐’›) and ๐’™๐Ÿ ๐’ ีž ๐‘ฟ๐Ÿ (๐’›) THEN: ๐’› Z-TRANSFORM AND THE DT-LTI SYSTEM ๐’™ ๐’ = ๐’‚๐Ÿ ๐’™๐Ÿ ๐’ + ๐’‚๐Ÿ ๐’™๐Ÿ ๐’ ีž ๐‘ฟ ๐’› = ๐’‚๐Ÿ ๐‘ฟ๐Ÿ ๐’› + ๐’‚๐Ÿ ๐‘ฟ๐Ÿ ๐’› TIME-SHIFTING IF: ๐’› ๐’™ ๐’ ีž ๐‘ฟ(๐’›) THEN: ๐’› โˆ’๐’Œ ๐’™ ๐’ โˆ’ ๐’Œ ีž๐’› ๐‘ฟ(๐’›) PROPERTIES OF TIME REVERSAL (FOLDING) IF: ๐’› ๐’™ ๐’ ีž ๐‘ฟ(๐’›) ๐‘…๐‘‚๐ถ: ๐‘Ÿ1 < ๐‘ง < ๐‘Ÿ2 THEN: ๐’› โˆ’๐Ÿ 1 1 Z-TRANSFORM AND THE DT-LTI SYSTEM ๐’™ โˆ’๐’ ีž ๐‘ฟ ๐’› ๐‘…๐‘‚๐ถ: > ๐‘ง > ๐‘Ÿ1 ๐‘Ÿ2 AMPLITUDE SCALING IN THE Z-DOMAIN IF: ๐’› ๐’™ ๐’ ีž ๐‘ฟ(๐’›) ๐‘…๐‘‚๐ถ: ๐‘Ÿ1 < ๐‘ง < ๐‘Ÿ2 THEN: ๐’› ๐’ โˆ’๐Ÿ ๐’‚ ๐’™ ๐’ ีž ๐‘ฟ(๐’‚ ๐’›) ๐‘…๐‘‚๐ถ: ๐‘Ž ๐‘Ÿ1 < ๐‘ง < ๐‘Ž ๐‘Ÿ2 PROPERTIES OF DIFFERENTIATION IF: ๐’› ๐’™ ๐’ ีž ๐‘ฟ(๐’›) THEN: ๐’› ๐’…๐‘ฟ(๐’›) Z-TRANSFORM AND THE DT-LTI SYSTEM ๐’๐’™ ๐’ ีž โˆ’ ๐’› ๐’…๐’› CONVOLUTION IF: ๐’› ๐’› ๐’™๐Ÿ ๐’ ีž ๐‘ฟ๐Ÿ (๐’›) and ๐’™๐Ÿ ๐’ ีž ๐‘ฟ๐Ÿ (๐’›) THEN: ๐’› ๐’™ ๐’ = ๐’™๐Ÿ ๐’ โˆ— ๐’™๐Ÿ ๐’ ีž ๐‘ฟ ๐’› = ๐‘ฟ๐Ÿ ๐’› โˆ™ ๐‘ฟ๐Ÿ ๐’› Z-TRANSFORM SIGNAL Z-TRANSFORM SIGNAL Z-TRANSFORM x(n) X(z) x(n) X(z) ๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ ๐’„๐’๐’”๐Ž๐’ ๐œน(๐’) ๐Ÿ (๐’„๐’๐’”๐Ž๐’ ๐’)๐’–(๐’) ๐Ÿ โˆ’ ๐Ÿ๐’›โˆ’๐Ÿ ๐’„๐’๐’”๐Ž๐’ + ๐’›โˆ’๐Ÿ Z-TRANSFORM AND THE DT-LTI SYSTEM ๐Ÿ ๐’›โˆ’๐Ÿ ๐’”๐’Š๐’๐Ž๐’ ๐’–(๐’) (๐’”๐’Š๐’๐Ž๐’ ๐’)๐’–(๐’) ๐Ÿ โˆ’ ๐Ÿ๐’›โˆ’๐Ÿ ๐’„๐’๐’”๐Ž๐’ + ๐’›โˆ’๐Ÿ ๐Ÿ โˆ’ ๐’›โˆ’๐Ÿ ๐Ÿ ๐Ÿ โˆ’ ๐’‚๐’›โˆ’๐Ÿ ๐’„๐’๐’”๐Ž๐’ ๐’‚๐’ ๐’–(๐’) (๐’‚๐’ ๐’„๐’๐’”๐Ž๐’ ๐’)๐’–(๐’) ๐Ÿ โˆ’ ๐Ÿ๐’‚๐’›โˆ’๐Ÿ ๐’„๐’๐’”๐Ž๐’ + ๐’‚๐Ÿ ๐’›โˆ’๐Ÿ ๐Ÿ โˆ’ ๐’‚๐’›โˆ’๐Ÿ โˆ’๐Ÿ ๐’‚๐’› ๐’‚๐’›โˆ’๐Ÿ ๐’”๐’Š๐’๐Ž๐’ ๐’๐’‚๐’ ๐’–(๐’) (๐’‚๐’ ๐’”๐’Š๐’๐Ž๐’ ๐’)๐’–(๐’) ๐Ÿ โˆ’ ๐Ÿ๐’‚๐’›โˆ’๐Ÿ ๐’„๐’๐’”๐Ž๐’ + ๐’‚๐Ÿ ๐’›โˆ’๐Ÿ (๐Ÿ โˆ’ ๐’‚๐’›โˆ’๐Ÿ )๐Ÿ SAMPLE PROBLEM SAMPLE PROBLEM Convolve the two S A properties M P ofL E sequences using PROBLEM z- transform: S A ๐’™M ๐’™ ๐’ P = {๐Ÿ, L โˆ’๐Ÿ, ๐Ÿ} E PROBLEM ๐Ÿ ๐’ = {๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ} ๐Ÿ SAMPLE PROBLEM SAMPLE Determine the z-transform and the ROC of the signals: A. ๐’™๐Ÿ ๐’ = ๐Ÿ, ๐Ÿ, ๐Ÿ“, ๐Ÿ•, ๐ŸŽ, ๐Ÿ B. ๐’™๐Ÿ ๐’ = ๐Ÿ, ๐Ÿ, ๐Ÿ“, ๐Ÿ•, ๐ŸŽ, ๐Ÿ C. ๐’™๐Ÿ‘ ๐’ = {๐ŸŽ, ๐ŸŽ, ๐Ÿ, ๐Ÿ, ๐Ÿ“, ๐Ÿ•, ๐ŸŽ, ๐Ÿ} lISTENING PREPARE FOR YOUR TAKE-HOME QUIZ 02 lISTENING ABOUT THE TOPIC. lISTENING lISTENING lISTENING QUIZ WILL BE UPLOADED ON YOUR lISTENING GOOGLE CLASSROOM THIS JANUARY 20. lISTENING lISTENING

Use Quizgecko on...
Browser
Browser