DMD1 - Module 14 - Blood Components And Hematopoiesis PDF

Summary

This document provides information on blood components and hematopoiesis. It describes the composition of blood, the role of blood in transportation, regulation, and protection. Furthermore, it details the processes of hematopoiesis, erythropoiesis, and platelet production, along with the physiology of haemostasis, including the different pathways, and the role of endothelium.

Full Transcript

‭CHAPTER 14 UNSTOPPABLE BLEEDING‬ ‭BLOOD COMPONENTS AND HAEMATOPOIESIS‬ ‭ lood‬‭is‬‭a‬‭connective‬‭tissue‬‭made‬‭up‬‭of‬‭cellular‬‭elements‬‭suspended‬‭in‬‭an‬‭ECF‬‭matrix‬‭-‬‭plasma‬‭.‬‭Plasma‬‭makes‬‭up‬‭a‬‭¼‬‭of‬‭the‬ B ‭ECF, and acts as a buffer between the cells and the external environment....

‭CHAPTER 14 UNSTOPPABLE BLEEDING‬ ‭BLOOD COMPONENTS AND HAEMATOPOIESIS‬ ‭ lood‬‭is‬‭a‬‭connective‬‭tissue‬‭made‬‭up‬‭of‬‭cellular‬‭elements‬‭suspended‬‭in‬‭an‬‭ECF‬‭matrix‬‭-‬‭plasma‬‭.‬‭Plasma‬‭makes‬‭up‬‭a‬‭¼‬‭of‬‭the‬ B ‭ECF, and acts as a buffer between the cells and the external environment. The composition is; 2L cells, 3L plasma = 5L blood.‬ ‭Blood‬‭is‬‭a‬‭connective‬‭tissue‬‭made‬‭up‬‭of‬‭cellular‬‭elements‬‭suspended‬‭in‬‭an‬‭ECF‬‭matrix‬‭-‬‭plasma‬‭.‬‭Plasma‬‭makes‬‭up‬‭a‬‭¼‬‭of‬‭the‬ E‭ CF, and acts as a buffer between the cells and the external environment. The composition is; 2L cells, 3L plasma = 5L blood‬ ‭Role of blood‬ ‭‬ ‭Transport‬‭: gases, nutrients, waste, hormones, growth‬‭factors‬ ‭‬ ‭Regulation‬‭: temperature, pH, water‬ ‭‬ ‭Protection‬‭: prevent blood loss, infection control‬ ‭ omposition of blood‬ C ‭L>M>E>B.‬ ‭Lymphocytes‬‭mediate‬‭the‬‭acquired‬‭immune‬‭response‬‭of‬‭the‬‭body,‬‭20-35%‬‭of‬‭WBC.‬‭There‬‭are‬‭3‬‭subtypes;‬‭T‬‭cells,‬‭B‬‭cells,‬‭NK‬ ‭cells.‬ ‭Monocytes‬‭mature‬‭and‬‭enlarge‬‭in‬‭resident‬‭tissue;‬‭they‬‭are‬‭the‬‭precursor‬‭to‬‭macrophages.‬‭They‬‭can‬‭transit‬‭to‬‭tissues‬‭in‬‭8h,‬ ‭lifespan can be months/years. They engage in phagocytosis and secrete pro-inflammatory signal molecules (cytokines).‬ ‭Neutrophils‬‭are‬‭the‬‭most‬‭abundant‬‭WBC‬‭(50-70%),‬‭short‬‭life‬‭span‬‭(1-2‬‭days).‬‭They‬‭have‬‭2-5‬‭lobular‬‭segments‬‭of‬‭nucleus‬‭and‬ ‭engage in phagocytsosis by ingestion of bacteria and release a variety of cytokines and pyrogens (cause fever).‬ ‭Eosinophils‬ ‭are‬ ‭pink‬ ‭stained‬ ‭granules‬ ‭in‬ ‭cytoplasm,‬ ‭and‬ ‭are‬ ‭associated‬ ‭with‬ ‭allergic‬ ‭reactions‬‭and‬‭parasitic‬‭diseases.‬‭They‬ ‭have a cytotoxic cell type: release substances from granules that kill pathogens.‬ ‭Basophils‬‭are‬‭large,‬‭dark‬‭blue‬‭stained‬‭granules‬‭in‬‭cytoplasm‬‭and‬‭release‬‭inflammatory‬‭mediators-‬‭histamine,‬‭heparin,‬‭other‬ ‭cytokines.‬ ‭ latelets‬ ‭and‬ ‭platelet‬ ‭production;‬ ‭platelets‬ ‭are‬ ‭small,‬ ‭round‬ ‭and‬ ‭colourless‬ ‭with‬ ‭no‬ ‭nucleus.‬ ‭They‬ ‭contain‬ ‭mitochondria,‬ P ‭smooth‬‭ER‬‭and‬‭vesicles‬‭filled‬‭with‬‭cytokines,‬‭growth‬‭factors‬‭and‬‭clotting‬‭factors‬‭and‬‭are‬‭always‬‭present‬‭in‬‭the‬‭blood,‬‭life‬‭span‬ ‭of 7-10 days. They play a major role in haemostasis and thrombosis, but also have immune function.‬ T‭ he‬ ‭process‬ ‭of‬ ‭haematopoiesis‬ ‭is‬ ‭orchestrated‬ ‭by‬ ‭pluripotent‬ ‭hematopoietic‬ ‭stem‬ ‭cells‬‭,‬ ‭which‬ ‭possess‬ ‭the‬ ‭ability‬ ‭to‬ ‭differentiate‬ ‭into‬ ‭various‬ ‭subtypes‬ ‭of‬‭blood‬‭cells.‬‭This‬‭developmental‬‭journey‬‭commences‬‭early‬‭in‬‭embryonic‬‭development‬ ‭and‬ ‭persists‬ ‭throughout‬ ‭an‬ ‭individual's‬ ‭life.‬ ‭Hematopoiesis‬ ‭predominantly‬ ‭transpires‬ ‭within‬ ‭the‬ ‭bone‬ ‭marrow‬‭,‬ ‭initially‬ ‭in‬ ‭bones‬‭until‬‭the‬‭age‬‭of‬‭5,‬‭and‬‭subsequently‬‭in‬‭specific‬‭adult‬‭locations‬‭such‬ ‭as‬ ‭the‬ ‭pelvis,‬ ‭spine,‬ ‭ribs,‬ ‭cranium,‬ ‭and‬ ‭proximal‬ ‭ends‬ ‭of‬ ‭long‬ ‭bones.‬ ‭Approximately‬‭25%‬‭of‬‭the‬‭produced‬‭cells‬‭are‬‭red‬‭blood‬‭cells‬‭(‭R ‬ BCs‬‭),‬‭while‬ ‭the‬ ‭majority,‬ ‭constituting‬ ‭75%,‬ ‭are‬ ‭white‬ ‭blood‬ ‭cells‬ ‭(‭W ‬ BCs‬‭)‬ ‭with‬ ‭a‬ ‭shorter‬ ‭lifespan‬ ‭(due‬ ‭to‬ ‭the‬ ‭shorter‬ ‭lifespan,‬ ‭there‬ ‭needs‬ ‭to‬ ‭be‬ ‭more‬ ‭production).‬ ‭This‬ ‭process‬ ‭is‬ ‭primarily‬ ‭regulated‬ ‭by‬ ‭cytokines‬‭,‬ ‭including‬ ‭colony-stimulating‬ ‭factors,‬ ‭interleukins,‬ ‭and‬ ‭stem‬ ‭cell‬ ‭factor‬ ‭for‬ ‭white‬ ‭blood‬ ‭cells,‬ ‭erythropoietin‬ ‭for‬ ‭red‬ ‭blood‬ ‭cells,‬ ‭and‬ ‭thrombopoietin‬ ‭for‬ ‭platelets.‬ ‭Notably,‬ ‭immature‬ ‭blood‬ ‭cells‬ ‭undergo‬ ‭maturation‬ ‭within‬ ‭the‬ ‭bone‬ ‭marrow‬ ‭before‬ ‭entering‬ ‭the‬ ‭circulation.‬ ‭The‬ ‭head‬ ‭of‬ ‭long‬ ‭bones‬ ‭serves‬ ‭as‬ ‭a‬ ‭critical‬ ‭site‬ ‭for‬ ‭hematopoiesis‬ ‭due‬ ‭to‬ ‭its‬ ‭extensive‬ ‭blood‬ ‭supply‬‭,‬ ‭facilitating‬ ‭the‬ ‭immediate‬ ‭release‬ ‭of‬ ‭newly‬ ‭formed‬ ‭blood‬ ‭cells‬ ‭into‬ ‭the‬ ‭bloodstream‬ ‭upon‬ ‭production.‬ ‭This‬ ‭dynamic‬ ‭and‬ ‭finely‬ ‭tuned‬ ‭system‬‭ensures‬‭a‬‭continuous‬‭supply‬‭of‬‭functional‬‭blood‬‭cells‬‭essential‬‭for‬ ‭various physiological processes throughout an individual's life.‬ E‭ rythropoiesis‬‭,‬‭the‬‭process‬‭of‬‭red‬‭blood‬‭cell‬‭(RBC)‬‭production‬‭,‬‭is‬‭a‬‭highly‬ ‭regulated‬ ‭and‬ ‭essential‬ ‭physiological‬ ‭mechanism,‬‭generating‬‭approximately‬‭200‬ ‭billion‬ ‭cells‬ ‭per‬ ‭day.‬ ‭Control‬ ‭over‬ ‭erythropoiesis‬ ‭lies‬ ‭in‬ ‭the‬ ‭hands‬ ‭of‬ ‭the‬ ‭glycoprotein‬ ‭erythropoietin‬ ‭(EPO)‬ ‭and‬ ‭certain‬ ‭cytokines,‬ ‭with‬ ‭EPO‬ ‭being‬ ‭primarily‬‭produced‬‭by‬‭the‬‭kidneys‬‭.‬‭The‬‭release‬‭of‬‭EPO‬‭is‬‭triggered‬‭by‬‭hypoxia‬‭,‬‭a‬ ‭condition‬‭characterized‬‭by‬‭a‬‭lack‬‭of‬‭oxygen‬‭reaching‬‭the‬‭body's‬‭tissues,‬‭which‬‭can‬ ‭be‬‭induced‬‭by‬‭factors‬‭such‬‭as‬‭exercise‬‭or‬‭exposure‬‭to‬‭high‬‭altitudes‬‭.‬‭EPO‬‭is‬‭a‬‭key‬ ‭target‬‭in‬‭blood‬‭doping‬‭practices‬‭,‬‭as‬‭its‬‭administration‬‭stimulates‬‭the‬‭production‬ ‭of‬ ‭RBCs,‬ ‭leading‬ ‭to‬ ‭an‬ ‭increase‬ ‭in‬ ‭haematocrit‬ ‭and‬ ‭circulating‬ ‭haemoglobin‬ ‭levels‬ ‭in‬ ‭the‬ ‭blood.‬ ‭Within‬ ‭the‬ ‭bone‬ ‭marrow,‬ ‭committed‬ ‭progenitor‬ ‭cells‬ ‭transform‬ ‭into‬ ‭nucleated‬ ‭erythroblasts,‬ ‭initiating‬ ‭the‬ ‭process.‬ ‭As‬ ‭these‬ ‭cells‬ ‭progress,‬ ‭their‬ ‭nucleus‬ ‭shrinks‬ ‭from‬ ‭20‬ ‭micrometers‬ ‭to‬ ‭7‬ ‭micrometers.‬ ‭The‬ ‭pivotal‬ ‭step‬ ‭in‬ ‭erythropoiesis‬ ‭is‬ ‭enucleation‬‭,‬ ‭where‬‭the‬‭nucleus‬‭is‬‭pinched‬‭off‬‭and‬‭subsequently‬‭phagocytosed‬‭by‬‭bone‬‭marrow‬‭macrophages.‬‭This‬‭step,‬‭limiting‬‭the‬‭rate‬ ‭of‬ ‭RBC‬ ‭production,‬ ‭ensures‬ ‭the‬ ‭removal‬ ‭of‬ ‭the‬ ‭nucleus‬ ‭and‬ ‭other‬ ‭organelles,‬ ‭including‬ ‭mitochondria.‬ ‭The‬ ‭final‬ ‭immature‬ ‭stage‬‭in‬‭the‬‭bone‬‭marrow‬‭is‬‭the‬‭reticulocyte‬‭,‬‭which‬‭lacks‬‭a‬‭nucleus‬‭and‬‭swiftly‬‭leaves‬‭the‬‭bone‬‭marrow.‬‭Within‬‭24‬‭hours‬‭,‬‭the‬ ‭reticulocyte‬ ‭differentiates‬ ‭into‬ ‭a‬ ‭mature‬ ‭erythrocyte‬ ‭(RBC)‬ ‭in‬ ‭the‬ ‭bloodstream,‬ ‭fully‬ ‭equipped‬ ‭to‬ ‭perform‬ ‭its‬ ‭vital‬ ‭role‬ ‭in‬ ‭oxygen transport and gas exchange throughout the body.‬ ‭Stem cell → erythroblast (nucleated) → reticulocyte (enucleated) → mature RBC‬ ‭ latelets‬‭,‬ ‭essential‬ ‭components‬ ‭of‬ ‭the‬ ‭blood‬ ‭responsible‬ ‭for‬ ‭clot‬ ‭formation‬ ‭and‬ ‭wound‬ ‭healing,‬ ‭originate‬ ‭from‬ ‭a‬ ‭unique‬ P ‭process‬ ‭in‬ ‭the‬ ‭bone‬‭marrow.‬‭Megakaryocytes‬‭,‬‭large‬‭and‬‭distinct‬‭cells‬‭,‬‭undergo‬‭a‬‭specialized‬‭form‬‭of‬‭cell‬‭division‬‭known‬‭as‬ ‭endomitosis‬‭.‬‭During‬‭endomitosis,‬‭the‬‭megakaryocytes‬‭replicate‬‭their‬‭DNA‬‭up‬‭to‬‭seven‬‭times‬‭without‬‭undergoing‬‭cytokinesis‬‭,‬ ‭resulting‬ ‭in‬ ‭a‬ ‭polyploid‬ ‭state‬ ‭(N=128)‬‭.‬ ‭The‬ ‭growth‬ ‭and‬ ‭maturation‬ ‭of‬ ‭megakaryocytes‬ ‭are‬ ‭carefully‬ ‭regulated‬ ‭by‬ ‭thrombopoietin‬‭(‭T‬ PO‬‭),‬‭a‬‭glycoprotein‬‭that‬‭plays‬‭a‬‭crucial‬‭role‬‭in‬‭platelet‬‭production.‬‭As‬‭megakaryocytes‬‭undergo‬‭maturation‬ ‭and‬ ‭reach‬ ‭a‬‭sufficient‬‭size,‬‭platelets‬‭begin‬‭to‬‭form‬‭as‬‭cell‬‭fragments‬‭that‬‭bud‬‭off‬‭from‬‭the‬‭surface‬‭of‬‭the‬‭megakaryocytes‬‭.‬ ‭This‬‭process‬‭of‬‭platelet‬‭release‬‭involves‬‭the‬‭budding‬‭of‬‭small‬‭fragments‬‭into‬‭the‬‭blood‬‭vessels‬‭within‬‭the‬‭bone‬‭marrow.‬‭Once‬ ‭released‬‭into‬‭the‬‭bloodstream,‬‭these‬‭platelets‬‭circulate‬‭and‬‭play‬‭a‬‭pivotal‬‭role‬‭in‬‭responding‬‭to‬‭injuries,‬‭forming‬‭blood‬‭clots,‬ ‭and maintaining‬‭haemostasis‬‭.‬ ‭PHYSIOLOGY OF HAEMOSTASIS‬ ‭ aemostasis‬‭is the process to stop bleeding when injury‬‭occurs to a blood vessel. There are three major steps in the process;‬ H ‭steps 1 and 2 are primary haemostasis (prevented by antiplatelets), step 3 is secondary haemostasis (prevented by‬ ‭anticoagulants).‬ T‭ he‬‭first‬‭step‬‭involves‬‭vasoconstriction‬‭,‬‭a‬‭temporary‬‭reduction‬‭in‬‭blood‬‭flow‬‭within‬‭the‬‭damaged‬‭vessel.‬‭This‬‭constriction‬‭is‬ ‭induced‬‭by‬‭paracrine‬‭molecules‬‭released‬‭from‬‭the‬‭endothelium‬‭.‬‭Applying‬‭pressure‬‭achieves‬‭a‬‭similar‬‭effect,‬‭contributing‬‭to‬ ‭the overall mechanism of minimizing blood loss.‬ ‭The‬ ‭second‬ ‭step,‬ ‭formation‬ ‭of‬ ‭a‬ ‭platelet‬ ‭plug‬‭,‬ ‭commences‬ ‭with‬ ‭platelet‬ ‭adhesion‬ ‭to‬ ‭the‬ ‭damaged‬ ‭site,‬ ‭followed‬ ‭by‬ ‭activation‬‭and‬‭aggregation‬‭.‬‭Platelets‬‭in‬‭the‬‭blood‬‭bind‬‭to‬‭collagen‬‭in‬‭the‬‭injured‬‭endothelium‬‭through‬‭integrins‬‭.‬‭As‬‭platelets‬ ‭adhere,‬‭they‬‭release‬‭granules‬‭containing‬‭substances‬‭like‬‭ADP‬‭(providing‬‭energy)‬‭,‬‭calcium,‬‭serotonin,‬‭and‬‭platelet-activating‬ ‭factor‬ ‭(PAF)‬‭,‬‭initiating‬‭a‬‭positive‬‭feedback‬‭loop‬‭to‬‭attract‬‭and‬‭activate‬‭more‬‭platelets.‬‭This‬‭aggregation‬‭of‬‭platelets‬‭forms‬‭a‬ ‭plug‬ ‭that‬ ‭temporarily‬ ‭seals‬ ‭the‬ ‭breach‬ ‭by‬‭binding‬‭to‬‭fibrinogen/fibrin.‬‭Von‬‭Willebrand‬‭Factor‬‭(vWF)‬‭is‬‭an‬‭adhesive‬‭protein‬ ‭that‬ ‭helps‬ ‭platelets‬ ‭stick‬ ‭to‬ ‭damaged‬ ‭blood‬ ‭vessel‬ ‭walls‬ ‭when‬ ‭injured.‬ ‭Thus,‬ ‭the‬ ‭platelet‬ ‭is‬ ‭essential‬ ‭but‬ ‭temporary‬ ‭to‬ ‭strengthen the plug.‬ ‭The‬ ‭third‬ ‭step,‬ ‭coagulation‬‭,‬ ‭leads‬ ‭to‬ ‭the‬ ‭formation‬ ‭of‬ ‭a‬ ‭stable‬ ‭blood‬ ‭clot‬‭.‬ ‭Fibrinogen‬ ‭is‬ ‭converted‬ ‭to‬ ‭fibrin,‬ ‭an‬ ‭insoluble‬ ‭biopolymer‬‭that‬‭forms‬‭a‬‭network,‬‭trapping‬‭blood‬‭cells.‬‭Platelets,‬‭binding‬‭to‬‭fibrin‬‭or‬‭fibrinogen,‬‭contribute‬‭to‬‭platelet-platelet‬ ‭aggregation.‬ ‭Three‬ ‭pathways—the‬ ‭extrinsic,‬ ‭intrinsic,‬ ‭and‬ ‭convergence‬ ‭to‬ ‭the‬ ‭common‬ ‭pathway—lead‬ ‭to‬ ‭thrombin‬ ‭activation,‬ ‭ultimately‬ ‭resulting‬ ‭in‬ ‭fibrinogen‬ ‭conversion‬ ‭to‬ ‭fibrin.‬ ‭Positive‬‭feedback‬‭loops,‬‭where‬‭increased‬‭thrombin‬‭levels‬ ‭enhance‬ ‭intrinsic‬ ‭and‬ ‭extrinsic‬ ‭pathways,‬ ‭amplify‬ ‭the‬ ‭clotting‬‭response.‬‭Within‬‭the‬‭coagulation‬‭component,‬‭there‬‭is‬‭either‬ ‭extrinsic‬‭or‬‭intrinsic‬‭pathways,‬‭and‬‭both‬‭of‬‭these‬‭converge‬‭to‬‭the‬‭common‬‭pathway‬‭-‬‭need‬‭to‬‭memorise‬‭this.‬‭These‬‭pathways‬ ‭use calcium dependent enzymes.‬ ‭The intrinsic pathway is instigated by contact activation i.e. FXII gets activated by collagen, setting off a cascade.‬ ‭The extrinsic pathway is instigated by cell injury i.e. damage exposes tissue factor (FIII) leading to FVII activation.‬ ‭These‬ ‭two‬ ‭pathways‬‭converge‬‭which‬‭results‬‭in‬‭thrombin‬‭activation‬‭(FII),‬‭which‬‭then‬‭leads‬‭to‬‭fibrinogen‬‭conversion‬‭to‬‭fibrin‬ ‭(FI) (biopolymer), which then leads to cross linking of fibrin (via FXIII).‬ ‭Intrinsic begins within the blood vessel (slower), whereas extrinsic begins outside the blood vessel (faster).‬ ‭ oagulation factors can get disrupted - haemophilia type‬‭is dependent on the factor that is affected‬‭:‬ C ‭Haemophilia A:‬‭FVIII‬‭affected, 80-85% of cases → unstable‬‭clots, bleeding‬ ‭Haemophilia B: FIX‬‭affected, 10-15% of cases → bleeding‬ ‭ lot‬ ‭retraction‬ ‭and‬ ‭dissolution;‬ ‭after‬ ‭the‬ ‭platelet‬ ‭plug‬ ‭and‬ ‭coagulation‬ ‭forms‬ ‭a‬‭clot,‬‭the‬‭clot‬‭begins‬‭to‬‭shrink‬‭and‬‭fibrin‬‭is‬ C ‭broken‬ ‭down‬ ‭to‬ ‭fragments‬ ‭→‬ ‭fibrinolysis.‬ ‭Plasminogen‬ ‭is‬ ‭activated‬ ‭by‬ ‭tissue‬ ‭plasminogen‬ ‭activator‬ ‭(tPA),‬ ‭which‬ ‭forms‬ ‭plasmin‬ ‭-‬ ‭plasmin‬ ‭breaks‬ ‭down‬ ‭fibrin‬ ‭polymers‬ ‭into‬ ‭fibrin‬ ‭fragments‬ ‭(in‬ ‭fact,‬ ‭tPA‬ ‭is‬ ‭given‬ ‭to‬ ‭breakdown‬ ‭clots‬ ‭following‬ ‭strokes).‬ T‭ he‬‭role‬‭of‬‭endothelium;‬‭healthy‬‭endothelium‬‭maintains‬‭haemostasis‬‭in‬‭equilibrium‬‭and‬‭regulates‬‭many‬‭biomolecules‬‭that‬ ‭actively inhibit thrombosis. As such there are various structural components that play different roles;‬ ‭ ‬ S‭ tructural components‬ ‭‬ ‭tPA‬‭is produced by the endothelium and forms plasmin‬‭- fibrinolysis‬ ‭‬ ‭Heparan‬‭sulphate‬‭-‬‭forms‬‭glycocalyx‬‭that‬‭traps‬‭water‬‭and‬‭prevents‬‭molecules‬‭and‬‭platelets‬‭from‬‭interacting‬‭with‬‭the‬ ‭endothelium. Forms anti-thrombin factor that inhibits thrombosis‬ ‭‬ ‭Thrombomodulin‬‭- activates C-protein to inhibit thrombin‬‭and prevent coagulation‬ ‭‬ ‭Nitric oxide (NO) and prostacyclin (PGI2)‬‭- inactivate‬‭platelets‬ ‭‬ ‭CD39‬‭- inactivates platelets by restricting energy‬‭the blood can use (restricts ADP)‬ ‭THROMBOSIS‬ ‭ aemostasis vs thrombosis‬ H ‭Haemostasis‬‭is‬‭the‬‭process‬‭to‬‭stop‬‭bleeding‬‭when‬‭injury‬‭occurs‬‭to‬‭a‬‭blood‬‭vessel‬‭-‬ ‭equilibrium‬ ‭can‬ ‭be‬ ‭restored‬ ‭after‬ ‭haemostasis.‬ ‭It‬ ‭involves‬ ‭a‬ ‭balance‬ ‭between‬ ‭bleeding and thrombosis.‬ ‭Thrombosis‬ ‭is‬ ‭the‬ ‭pathological‬‭formation‬‭of‬‭blood‬‭clot‬‭-‬‭uncontrolled‬‭or‬‭excessive‬ ‭coagulation‬ ‭or‬ ‭platelet‬ ‭activation.‬ ‭This‬ ‭is‬ ‭due‬ ‭to‬ ‭inappropriate‬ ‭activation‬ ‭of‬ ‭the‬ ‭coagulation‬‭system‬‭or‬‭when‬‭regulatory‬‭mechanisms‬‭that‬‭prevent‬‭clot‬‭formation‬‭are‬ ‭disrupted.‬‭This‬‭can‬‭either‬‭be‬‭hereditary‬‭(e.g.‬‭haemophilia‬‭is‬‭sex‬‭linked)‬‭or‬‭acquired‬ ‭(anticoagulant/antiplatelet agents).‬ T‭ hrombosis‬‭- occurs via Virchow Triad (at least one‬‭of the following):‬ ‭Abnormal‬ ‭vessel‬ ‭wall:‬ ‭endothelial‬ ‭dysfunction/disturbances/damage,‬ ‭contact‬ ‭pathway‬ ‭activation‬ ‭(intrinsic),‬ ‭tissue‬ ‭factor‬ ‭release (extrinsic)‬ ‭Abnormal blood flow‬‭: venous obstructions/stasis, AF,‬‭aortic stenosis, mechanical valves‬ ‭Abnormal‬‭blood‬‭constituents‬‭:‬‭abnormalities‬‭in‬‭thrombin‬‭generation,‬‭platelets/coagulation‬‭and‬‭fibrinolytic‬‭pathways‬‭or‬‭other‬ ‭cellular components/microparticles‬ ‭A combination of these three creates an environment that promotes the formation of blood clots.‬ T‭ hrombosis occurs in various ways‬‭based on its location‬‭and aetiology;‬ ‭Arterial thrombosis:‬‭high shear force due to dysfunction‬‭in endothelial cell‬ ‭Venous thrombosis:‬‭low shear force due to valve involvement‬‭(within veins)‬ ‭Medical‬‭device‬‭thrombosis:‬‭high‬‭and‬‭low‬‭shear‬‭force‬‭due‬‭to‬‭blood‬‭clot‬‭+‬‭fibrin‬‭+‬‭platelet‬‭causes‬‭thrombosis‬‭on‬‭the‬‭medical‬ ‭implant surface‬ ‭ rterial‬ ‭thrombosis‬ ‭poses‬ ‭a‬ ‭significant‬ ‭risk,‬ ‭as‬‭it‬‭can‬‭lead‬‭to‬‭severe‬ A ‭consequences‬ ‭such‬ ‭as‬ ‭heart‬ ‭attacks‬ ‭or‬ ‭strokes‬‭.‬ ‭This‬ ‭type‬ ‭of‬ ‭thrombosis‬ ‭often‬ ‭stems‬ ‭from‬ ‭arterial‬ ‭narrowing‬ ‭caused‬ ‭by‬ ‭the‬ ‭buildup‬ ‭of‬ ‭lipids‬ ‭and‬ ‭cholesterol‬‭.‬ ‭The‬ ‭heightened‬ ‭blood‬ ‭flow,‬ ‭or‬ ‭shear‬ ‭stress‬‭,‬ ‭in‬ ‭the‬ ‭narrowed‬ ‭region‬ ‭triggers‬ ‭the‬ ‭activation‬ ‭of‬ ‭platelets‬‭and‬‭von Willebrand Factor (vWF)‬‭.‬ ‭vWF binds to collagen, unfolding and exposing receptors.‬ ‭Platelets‬ ‭roll‬ ‭along‬ ‭these‬ ‭receptors‬ ‭and‬ ‭are‬ ‭arrested‬ ‭through‬ ‭the‬ ‭integrin‬ ‭GPIb-V-IX,‬ ‭initiating‬ ‭adhesion‬ ‭through‬ ‭αIIbβ3‬ ‭and‬ ‭α2β1‬ ‭integrins.‬ ‭This cascade signals further platelets, leading to their aggregation.‬ ‭Fibrinogens‬ ‭circulating‬ ‭in‬ ‭the‬ ‭blood‬ ‭attach‬ ‭to‬ ‭platelets,‬ ‭promoting‬ ‭the‬ ‭formation‬ ‭and‬ ‭propagation‬ ‭of‬ ‭the‬ ‭thrombus.‬ ‭Downstream‬‭of‬‭the‬‭growing‬‭platelet‬‭clot,‬‭disturbed‬‭flow‬‭and‬‭coagulation‬‭contribute‬‭to‬‭the‬‭formation‬‭of‬‭a‬‭white‬‭clot,‬‭rich‬‭in‬ ‭platelets.‬‭Refer to image below for more information.‬ ‭ enous‬ ‭thrombosis‬‭,‬ ‭specifically‬ ‭deep‬ ‭vein‬ ‭thrombosis‬‭,‬ ‭occurs‬ V ‭due‬ ‭to‬ ‭blood‬ ‭flow‬ ‭stasis‬ ‭downstream‬ ‭of‬ ‭a‬ ‭vein‬ ‭valve‬‭.‬ ‭Reduced‬ ‭blood‬ ‭flow‬ ‭and‬ ‭stasis‬ ‭(low‬ ‭shear‬ ‭stress)‬ ‭impede‬ ‭the‬ ‭mass‬ ‭transport‬ ‭of‬ ‭coagulation‬ ‭factors‬ ‭downstream,‬ ‭leading‬ ‭to‬ ‭the‬ ‭accumulation‬‭of‬‭coagulation‬‭factors‬‭and‬‭activation‬‭of‬‭tissue‬‭factor‬ ‭(TF).‬ ‭This‬ ‭process‬ ‭results‬ ‭in‬ ‭the‬ ‭formation‬ ‭of‬ ‭a‬ ‭red‬ ‭clot,‬ ‭characterized by its richness in fibrin and red blood cells‬‭.‬ ‭ edical‬ ‭device‬ ‭thrombosis‬ ‭is‬ ‭triggered‬ ‭by‬ ‭contact‬ ‭with‬ M ‭foreign‬ ‭materials‬ ‭in‬ ‭medical‬ ‭devices,‬ ‭leading‬ ‭to‬ ‭protein‬ ‭adhesion‬ ‭and‬ ‭the‬ ‭activation‬ ‭of‬ ‭pathways‬ ‭that‬ ‭induce‬ ‭thrombosis.‬ ‭The‬ ‭flow‬ ‭conditions‬ ‭depend‬ ‭on‬‭the‬‭medical‬ ‭device‬ ‭geometry‬ ‭and‬ ‭blood‬ ‭flow,‬ ‭with‬ ‭examples‬‭ranging‬ ‭from‬‭low-flow‬‭shear‬‭situations‬‭(e.g.,‬‭venous‬‭catheter)‬‭to‬ ‭high-flow‬ ‭shear‬ ‭scenarios‬ ‭(e.g.,‬ ‭arterial‬ ‭mechanical‬ ‭valve).‬ ‭Certain‬ ‭medical‬ ‭devices,‬ ‭such‬ ‭as‬ ‭artificial‬ ‭hearts,‬ ‭may experience both high and low flow conditions.‬ E‭ mbolisms‬ ‭occur‬ ‭when‬ ‭blood‬ ‭clots‬ ‭break‬ ‭off‬ ‭and‬ ‭lodge‬ ‭downstream‬‭,‬ ‭causing‬ ‭further‬ ‭complications.‬ ‭Arterial‬ ‭embolisms‬‭,‬ ‭such‬‭as‬‭cerebral‬‭embolism,‬‭can‬‭result‬‭in‬‭strokes‬‭.‬‭Venous‬‭embolisms‬‭,‬‭including‬‭pulmonary‬‭embolism‬‭in‬‭the‬‭lungs‬‭or‬‭systemic‬ ‭embolism‬ ‭in‬ ‭areas‬ ‭like‬ ‭the‬ ‭legs,‬ ‭present‬ ‭additional‬ ‭challenges.‬ ‭Medical‬ ‭device‬ ‭embolisms‬ ‭depend‬ ‭on‬ ‭the‬ ‭location‬ ‭of‬‭the‬ ‭device in the body and can lead to diverse complications based on their specific contexts.‬ ‭ANTITHROMBOTICS‬ ‭ ntithrombotics:‬ ‭prevent‬ ‭formation‬ ‭of‬ ‭clots‬ ‭-‬ ‭these‬ ‭include‬ ‭antiplatelets‬ ‭and‬ ‭anticoagulants‬ ‭as‬ ‭these‬ ‭both‬ ‭contribute‬ ‭to‬ A ‭thrombosis.‬ ‭Antiplatelets:‬‭prevent platelet activitiy - coagulation‬‭activity could still theoretically occur‬ ‭Anticoagulants:‬‭prevent coagulant activity - platelet‬‭activity could still theoretically occur‬ ‭ latelet‬ ‭activation,‬ ‭adhesion,‬ ‭aggregation‬ ‭-‬ ‭Begins‬ ‭with‬ ‭damage‬ ‭to‬ ‭the‬ ‭endothelium‬ ‭which‬ ‭exposes‬ ‭collagen‬ ‭and‬ ‭vWF‬ P ‭(activation)‬‭,‬‭allowing‬‭binding‬‭of‬‭platelets‬‭to‬‭GP‬‭receptors‬‭(integrins)‬‭(adhesion)‬‭.‬‭Platelets‬‭then‬‭recruit‬‭other‬‭platelets‬‭by‬‭the‬ ‭release of other cofactors:‬ ‭‬ ‭COX-1 → produces thromboxane A2 (TxA2) → recruits more platelets‬ ‭○‬ ‭Aspirin inhibits COX1 → inhibits TxA2 → inhibits platelet recruitment‬ ‭‬ ‭ADP released from the cell acts on P2Y1/P2Y12 receptors on nearby platelets to recruit and adhese to them‬ ‭○‬ ‭Clopidogrel, prasugrel, ticagrelor inhibit the P2Y1/P2Y12 receptor‬ ‭Finally, platelets aggregate and form a haemostasis‬‭(aggregatrion).‬ S‭ imultaneously‬ ‭to‬ ‭platelet‬ ‭adhesion‬ ‭and‬ ‭aggregation,‬ ‭blood‬ ‭coagulation‬ ‭occurs,‬ ‭beginning‬ ‭with‬ ‭endothelial‬ ‭dysfunction‬‭,‬ ‭exposing‬ ‭tissue‬ ‭factor‬ ‭(activates‬ ‭FVII),‬ ‭and‬ ‭a‬ ‭cascade‬ ‭of‬ ‭interactions‬ ‭of‬ ‭factors.‬ ‭This‬ ‭activates‬ ‭thrombin‬ ‭(FIIa),‬ ‭converts‬ ‭fibrinogen to fibrin, fibrin causes cross linking to strengthen the clot.‬ ‭Warfarin‬‭inhibits‬‭FII, FVII, FIX, FX‬‭(old TV channels‬‭- it’s a Sydney thing :) ).‬ ‭Direct oral anticoagulants (DOAC) and heparin‬‭inhibits‬‭FXa, FIIa i.e. directly inhibits the common the pathway.‬ ‭ ntithrombotic drugs‬ A ‭Oral‬‭anticoagulants‬‭:‬‭d‭a‬ bigatran‬‭(‬‭d‭i‬rect‬‭thrombin‬‭inhibitor),‬‭apixaban/rivaroxaban‬‭(FXa‬‭inhibitors),‬‭Warfarin‬‭(Vit‬‭K‬‭antagonist‬‭-‬ ‭interferes with clotting factors in the liver).‬ ‭Injectable anticoagulants:‬‭heparin, low molecular‬‭weight heparin, fondaparinux (FXa inhibitor)‬ ‭Antiplatelets‬‭: aspirin, clopidogrel/ticagrelor/prasugrel‬‭(P2Y12 inhibitors), dipyridamole‬ I‭ nternational‬ ‭normalised‬ ‭ratio‬ ‭(INR)‬ ‭quantifies‬ ‭the‬ ‭length‬ ‭of‬ ‭time‬ ‭it‬ ‭takes‬ ‭for‬ ‭blood‬ ‭to‬ ‭clot.‬ ‭This‬ ‭is‬ ‭only‬ ‭for‬ ‭patients‬ ‭on‬ ‭warfarin.‬ ‭INR‬‭2-3‬‭is‬‭normal,‬‭but‬‭pts‬‭with‬‭prosthetic‬‭valves‬‭will‬‭need‬‭higher‬‭INR‬‭2.5-3.5‬‭-‬‭blood‬‭needs‬‭to‬‭take‬‭longer‬‭to‬‭clot‬‭because‬‭they‬ ‭have prosthetic valves → increased risk of clotting.‬ ‭ arfarin‬ ‭mechanism‬ ‭of‬ ‭action‬‭;‬ ‭R-warfarin‬ ‭inhibits‬ ‭vitamin‬‭K‬‭reductase‬‭from‬‭working,‬‭inhibiting‬‭the‬‭production‬‭of‬‭clotting‬ W ‭factors.‬ ‭Vitamin‬ ‭K‬ ‭reductase‬ ‭is‬ ‭a‬ ‭reduced‬ ‭version‬ ‭of‬ ‭Vitamin‬ ‭K,‬ ‭which‬ ‭operates‬ ‭to‬ ‭convert‬ ‭clotting‬ ‭factors‬ ‭from‬ ‭being‬ ‭non-functional‬ ‭to‬ ‭functional‬ ‭i.e.‬ ‭activates‬ ‭clotting‬ ‭factors‬ ‭from‬ ‭their‬ ‭inactivated‬ ‭form‬ ‭e.g.‬ ‭FVII‬ → ‭ ‬ ‭FVIIa‬ ‭(‘a’‬ ‭stands‬ ‭for‬ ‭activated). In their activated form, clotting factors are known as‬‭functional zymogens.‬‭Refer to diagram‬‭for more:‬ ‭ eparins‬ ‭and‬ ‭fondaparinux;‬ ‭antithrombin‬ ‭is‬ ‭synthesised‬ ‭in‬ ‭the‬ H ‭liver‬ ‭-‬ ‭it‬ ‭is‬ ‭an‬ ‭endogenous‬ ‭anticoagulant.‬ ‭It‬ ‭inhibits‬ ‭clotting‬ ‭factors 2a (thrombin) and 10a.‬ ‭Unfractionated‬ ‭heparin‬ ‭(snake‬ ‭looking)‬ ‭wraps‬ ‭around‬ ‭the‬ ‭anti-thrombin‬ ‭and‬ ‭thrombin‬ ‭molecules,‬ ‭and‬ ‭increases‬ ‭its‬ ‭effect‬ ‭as an anticoagulant (the chain has to be >18 molecules in length)‬ ‭Low‬ ‭molecular‬ ‭weight‬ ‭heparin‬ ‭-‬ ‭shorter‬ ‭than‬ ‭unfractionated‬ ‭heparin‬ ‭binds‬ ‭to‬ ‭10a‬ ‭moreso‬ ‭than‬ ‭2a‬ ‭(less‬ ‭so‬ ‭to‬‭thrombin,‬‭but‬ ‭moreso to antithrombin).‬ ‭Fondaparinux‬‭binds to antithrombin, only 10a, not‬‭2a‬ ‭Summary:‬ ‭Unfractionated - both 2a and 10a‬ ‭Low weight heparin - 10a predominantly, but also a little bit 2a‬ ‭Fondaparinux - only 10a‬ ‭Indications‬ ‭for‬ ‭anticoagulants‬ ‭or‬ ‭antiplatelets:‬ ‭atrial‬ ‭fibrillation,‬ ‭venous‬ ‭thromboembolism‬ ‭or‬ ‭pulmonary‬ ‭embolism,‬ ‭coronary artery disease, valvular heart disease, stroke‬ ‭Dental implications - need to balance the risk of bleeding with clotting‬ ‭‬ ‭Medical/medication history, including doses/indications‬ ‭‬ ‭Other medications such as NSAIDs and complementary/alternative medicine (can have an antithrombotic effect)‬ ‭‬ ‭Discuss with clinician managing patient‬ ‭‬ ‭Temporary interruption vs continuation of antithrombotic‬ ‭Patient‬ ‭related‬ ‭bleeding‬ ‭risk‬ ‭factors:‬ ‭increased‬ ‭blood‬ ‭pressure,‬ ‭decreased‬ ‭kidney/liver‬ ‭function‬ → ‭ ‬ ‭decreased‬ ‭ability‬ ‭to‬ ‭metabolise‬‭drugs‬‭→‬‭prolonged‬‭effect‬‭of‬‭medication‬‭→‬‭increased‬‭risk‬‭of‬‭bleeding,‬‭prior‬‭stroke,‬‭history‬‭of‬‭bleeding,‬‭bleeding‬ ‭ isorder,‬ ‭poor‬ ‭anticoagulant‬ ‭control‬ ‭-‬ ‭INR‬ ‭is‬ ‭fluctuating‬ ‭and‬ ‭poorly‬ ‭managed,‬ ‭increased‬ ‭age‬ ‭or‬ ‭frailty,‬ ‭NSAIDs,‬ ‭increased‬ d ‭alcohol consumption‬ ‭Procedure related‬‭bleeding risk factors‬ ‭Timing of cessation if indicated -‬‭only with consultation‬‭with prescriber‬ ‭‬ ‭Warfarin - 5 days prior to procedure‬ ‭‬ ‭DOAC - 24-72 hours (1-3 days) prior to procedure, depending on renal function and specific DOAC‬ ‭‬ ‭Antiplatelet - 5-7 days prior to procedure‬ L‭ ocal haemostatic measures‬ ‭Non-pharmacological‬‭:‬ ‭pressure‬ ‭to‬ ‭the‬ ‭wounds,‬ ‭decreased‬ ‭tissue‬ ‭trauma,‬ ‭cellulose‬ ‭and‬ ‭collagen‬ ‭(if‬ ‭indicated),‬ ‭sutures‬ ‭→‬ ‭closure of the wounds (if indicated)‬ ‭Pharmacological‬‭:‬ ‭transexamic‬ ‭acid‬ ‭mouthwash‬ ‭4.8%‬ ‭-‬ ‭antifibrinolytic‬ ‭agent‬ ‭-‬ ‭apply‬ ‭topically‬ ‭just‬ ‭before‬ ‭surgery,‬ ‭after‬ ‭the‬ ‭procedure,‬‭give‬‭the‬‭patient‬‭for‬‭home‬‭use‬‭x2‬‭days‬‭(10mL‬‭rinsed‬‭in‬‭mouth‬‭for‬‭2‬‭mins,‬‭then‬‭spit‬‭out,‬‭4‬‭times‬‭daily‬‭for‬‭2‬‭days).‬‭If‬ ‭the‬ ‭mouthwash‬ ‭can’t‬ ‭be‬ ‭compounded,‬ ‭crush‬ ‭500mg‬ ‭tablet‬ ‭of‬ ‭transexamic‬ ‭acid‬‭and‬‭disperse‬‭in‬‭10mL‬‭water.‬‭This‬‭works‬‭by‬ ‭inhibiting‬ ‭the‬ ‭breakdown‬ ‭of‬ ‭fibrin‬ ‭clots‬ ‭which‬ ‭are‬ ‭formed‬ ‭during‬ ‭the‬ ‭process‬ ‭of‬ ‭blood‬ ‭coagulation‬ ‭(blocks‬ ‭plasmin‬ ‭-‬ ‭the‬ ‭enzyme that breaks down fibrin).‬ ‭INTRODUCTION TO LEUKAEMIA AND LYMPHOMA‬ L‭ ymphoma‬ ‭and‬ ‭leukemia‬ ‭are‬ ‭both‬ ‭types‬ ‭of‬ ‭cancers‬‭that‬‭affect‬‭the‬‭blood‬‭and‬‭immune‬‭system,‬‭particularly‬‭lymphocytes,‬ ‭but they differ in their primary locations and manifestations.‬ L‭ ymphoma‬‭involves‬‭primary‬‭malignancy‬‭in‬‭lymph‬‭nodes.‬‭Lymphomas‬‭are‬‭cancers‬‭of‬‭lymphocytes,‬‭which‬‭are‬‭a‬‭type‬‭of‬‭white‬ ‭blood‬ ‭cell.‬ ‭The‬ ‭hallmark‬ ‭feature‬ ‭is‬ ‭the‬ ‭presence‬ ‭of‬‭abnormal‬‭lymphocytes‬‭in‬‭the‬‭lymphatic‬‭system,‬‭leading‬‭to‬‭lymph‬‭node‬ ‭enlargement‬ ‭and‬ ‭other‬ ‭symptoms.‬ ‭It‬ ‭is‬ ‭important‬ ‭to‬ ‭note‬ ‭that‬ ‭myeloid‬ ‭leukemias,‬ ‭which‬ ‭involve‬ ‭cells‬ ‭from‬ ‭the‬ ‭myeloid‬ ‭lineage, may also affect lymph nodes, but these cases are not classified as lymphomas.‬ L‭ eukemia‬ ‭involves‬ ‭primary‬ ‭malignancy‬ ‭in‬ ‭the‬ ‭blood‬ ‭and‬ ‭bone‬ ‭marrow.‬ ‭Leukemias‬ ‭affect‬ ‭white‬ ‭blood‬ ‭cells,‬ ‭and‬ ‭these‬ ‭abnormal‬ ‭cells‬‭circulate‬‭in‬‭the‬‭bloodstream.‬‭There‬‭are‬‭different‬‭types‬‭of‬‭leukemias,‬‭including‬‭chronic‬‭lymphocytic‬‭leukemia‬ ‭(CLL).‬ ‭In‬ ‭CLL,‬ ‭there‬ ‭is‬ ‭an‬ ‭increase‬ ‭in‬ ‭abnormal‬ ‭lymphocytes‬ ‭(white‬ ‭blood‬ ‭cells)‬ ‭in‬ ‭the‬‭blood‬‭and‬‭bone‬‭marrow,‬‭and‬‭lymph‬ ‭nodes may become enlarged. However, the primary manifestation is the presence of these cells in the blood.‬ I‭n‬‭summary,‬‭the‬‭key‬‭distinction‬‭lies‬‭in‬‭the‬‭primary‬‭location‬‭of‬‭the‬‭malignant‬‭cells.‬‭Lymphomas‬‭primarily‬‭involve‬‭lymph‬‭nodes,‬ ‭while leukemias involve the blood and bone marrow.‬ ‭ ellular‬ ‭origin‬ ‭of‬ ‭human‬ ‭B‬ ‭cell‬ ‭lymphomas‬ ‭and‬ C ‭leukaemias‬ ‭-‬ ‭begins‬ ‭with‬ ‭genetic‬ ‭deformation‬ ‭of‬ ‭the‬ ‭precursing‬ ‭B‬ ‭cell‬ ‭(don’t‬ ‭have‬ ‭to‬ ‭understand‬ ‭this‬ ‭chart,‬ ‭just‬ ‭know‬‭that‬‭lymphomas‬‭can‬‭be‬‭either‬‭B‬‭cell‬‭or‬‭T‬‭cell‬ ‭dominant (B cell is more common).‬ ‭‬ L‭ ymphoma‬‭:‬‭80%‬‭from‬‭B‬‭cells‬‭and‬‭20%‬‭are‬‭from‬ ‭T cells (T cell ones are worse)‬ ‭‬ ‭Leukaemia‬‭: 50% B cell and 50% T cell derived‬ ‭Starts‬ ‭off‬ ‭with‬ ‭B‬ ‭cell‬ ‭precursor‬ ‭in‬ ‭bone‬ ‭marrow‬ ‭(can‬ ‭develop‬‭all‬‭this‬‭disorders)‬‭→‬‭can‬‭also‬‭go‬‭to‬‭lymph‬‭node‬ ‭(germinal‬‭centre)‬‭to‬‭mature‬‭-‬‭can‬‭either‬‭become‬‭plasma‬ ‭or‬ ‭memory‬ ‭B‬ ‭cell‬ ‭-‬ ‭can‬ ‭develop‬ ‭into‬ ‭various‬ ‭diseases‬ ‭throughout.‬ ‭ aematopoiesis:‬ ‭begins‬ ‭as‬ ‭long‬ ‭term‬ ‭haematopoietic‬ ‭stem‬ ‭cell‬ ‭(LTHSC)‬ ‭→‬ ‭differentiates‬ ‭to‬ ‭short‬ ‭term‬ ‭HSC‬ ‭(STHSC)‬ ‭-‬ H ‭subtypes:‬ ‭‬ ‭Common lymhoid progenitor: T cells, B cells, NK cells‬ ‭‬ ‭Common‬ ‭myeloid‬ ‭progenitors:‬ ‭MEP‬ ‭(megakaryocyte,‬ ‭erythrocytes),‬ ‭GMP‬ ‭(granulocytes‬ ‭(WBCs),‬ ‭monocytes‬ ‭(macrophages))‬ ‭Types of lymphocytes‬‭- defined by surface antigens,‬‭function, and the type of illness when lacking:‬ ‭‬ ‭B cells - humoral immunity, responsible for antibody production‬ ‭‬ ‭T cells - cellular immunity, cytotoxicity against virus, fungi, provide help for B cells‬ → ‭ Most lymphomas are of B cell type.‬ ‭Primary‬‭lymphoid‬‭tissue‬‭-‬‭lymphocyte‬‭maturation‬‭-‬‭primary‬‭lymphoid‬‭tissue‬‭is‬‭the‬‭site‬‭at‬‭which‬‭B‬‭and‬‭T‬‭cells‬‭mature‬‭i.e.‬‭B‬ ‭cells in the bone marrow and T cells in the thymus.‬ ‭Secondary‬‭lymphoid‬‭tissue‬‭-‬‭lymphocytes‬‭brought‬‭into‬‭contact‬‭with‬‭antigen‬‭-‬‭secondary‬‭lymphoid‬‭tissue‬‭is‬‭the‬‭site‬‭at‬‭which‬ ‭B‬ ‭and‬ ‭T‬ ‭cells‬‭act‬‭on‬‭the‬‭antigen‬‭i.e.‬‭at‬‭lymph‬‭nodes‬‭-‬‭APC‬‭(dendritic‬‭cells)‬‭present‬‭the‬‭antigen‬‭to‬‭T‬‭cells,‬‭which‬‭then‬‭either‬ ‭help‬ ‭B‬ ‭cells‬ ‭(create‬ ‭Ig),‬ ‭or‬ ‭become‬ ‭cytotoxic‬ ‭in‬ ‭nature‬ ‭and‬ ‭kill‬‭the‬‭antigen‬‭e.g.‬‭adenoids,‬‭tonsils,‬‭spleen,‬‭appendix,‬‭Peyer’s‬ ‭patch‬ ‭Anatomy of lymph nodes‬ ‭‬ ‭Follicle centres contain predominantly B cells‬ ‭‬ ‭Cortical regions contain predominantly T cells‬ ‭Lymphoma‬ ‭Leukaemia‬ ‭ riginates‬ ‭in‬ ‭lymphatic‬ ‭system‬ ‭-‬ ‭includes‬ ‭lymph‬ ‭nodes,‬ o o ‭ riginates‬ ‭in‬ ‭bone‬ ‭marrow‬‭and‬‭affects‬‭production‬‭of‬‭blood‬ ‭spleen, thymus, and lymphoid tissue‬ ‭cells (RBC, WBC, platelets)‬ I‭nvolve‬‭uncontrolled‬‭growth‬‭and‬‭accumulation‬‭of‬‭cancerous‬ I‭nvolves‬ ‭overproduction‬‭of‬‭abnormal‬‭WBC‬‭(lymphocytes‬‭or‬ ‭lymphocytes (B, T, NK cells) in lymph node/tissue‬ ‭myeloid cells) in bone marrow‬ ‭Subtypes:‬‭Hodgkin lymphoma and non-Hodgkin lymphoma‬ S‭ ubtypes‬ ‭(based‬ ‭on‬ ‭the‬ ‭type‬ ‭of‬ ‭WBC‬ ‭affected):‬ ‭acute‬ ‭lymphoblastic‬ ‭leukaemia‬ ‭(ALL),‬ ‭acute‬ ‭myeloid‬ ‭leukemia‬ ‭(AML),‬ ‭chronic‬ ‭lymphocytic‬ ‭leukaemia‬ ‭(CLL),‬ ‭and‬ ‭chronic‬ ‭myeloid leukemia (CML)‬ → ‭ ‬ ‭Remember‬ ‭these‬ ‭are‬ ‭both‬ ‭types‬ ‭of‬ ‭cancers‬ ‭of‬ ‭the‬ ‭blood‬ ‭that‬ ‭affects‬ ‭the‬ ‭immune‬ ‭system‬ ‭-‬ ‭a‬ ‭lot‬ ‭of‬ ‭overlap,‬ ‭making‬ ‭diagnosis hard.‬ ‭WHO Classification System‬ ‭‬ ‭Non-Hodgins lymphoma - either B or T cell neoplasms‬ ‭‬ ‭Hodgkins lymphoma‬ ‭‬ ‭Plasma cell diseases‬ ‭‬ ‭Immunodeficiency-associated lymphoproliferative disorders‬ ‭B cell Non-Hodgkin Lymphoma‬ ‭‬ ‭Lymphoma/leukaemia‬ ‭‬ ‭Indolent nodal or extranodal lymphoma (slower)‬ ‭‬ ‭Aggressive nodal or extranodal lymphoma (faster)‬ ‭E.g. of extranodal is gastric/CNS‬ ‭Clinical features of lymphoma‬ ‭‬ ‭Lumps in neck, under arms, in groin (lymphadenopathy)‬ ‭‬ ‭Lymphadenopathy‬ ‭noted‬ ‭during‬ ‭examination‬ ‭for‬ ‭other‬‭reason‬‭(asymptomatic)‬‭during‬‭check‬ ‭up‬ ‭‬ ‭Abnormal‬ ‭blood‬ ‭findings‬ ‭unusual‬ ‭(compared‬ ‭with‬ ‭leukaemia‬ ‭-‬ ‭usually‬ ‭abnormal‬ ‭blood‬ ‭findings)‬ ‭‬ ‭Mycosis‬ ‭fungoides‬ ‭(type‬ ‭of‬ ‭cutaneous‬ ‭T‬ ‭cell‬ ‭lymphoma)‬ ‭-‬ ‭rash‬ ‭on‬ ‭skin;‬ ‭brown‬ ‭spots‬ ‭when‬ ‭cutaneous‬ ‭but‬ ‭once‬ ‭it‬ ‭becomes blood borne, known as sezary syndrome (cutaneous T cell lymphoma)‬ ‭‬ ‭Spleen involvement‬ ‭ iagnosis‬ ‭of‬ ‭lymphoma;‬ ‭requires‬ ‭a‬ ‭large‬ ‭tissue‬‭biopsy‬‭(histological‬‭assessment‬‭is‬‭the‬‭gold‬‭standard).‬‭If‬‭size‬‭of‬‭the‬‭tissue‬‭is‬ D ‭limited,‬ ‭then‬ ‭formalin‬ ‭fixing‬ ‭is‬ ‭the‬ ‭priority.‬ ‭Flow‬ ‭cytometry‬ ‭is‬ ‭a‬ ‭way‬ ‭of‬ ‭looking‬ ‭at‬ ‭surface‬ ‭protein‬ ‭expression‬ ‭of‬ ‭cells‬ ‭-‬ ‭cytogenetics (refer to diagram).‬ ‭‬ ‭Tissue biopsy → requires a large biopsy‬ ‭Histopathology of lymphoma‬ ‭‬ ‭H and E staining of different lymphomas, nucleus = purple colour‬ ‭‬ ‭Classified as either nodular (small nucleus) or diffuse (cannot differentiate b/c nuc or cells)‬ ‭‬ ‭If nodular/follicular (mostly small cells) → indolent‬ ‭‬ ‭If diffuse (mostly large cells) → aggressive‬ ‭80%‬ ‭of‬ ‭lymphoma‬ ‭can‬‭be‬‭divided‬‭into‬‭2‬‭groups;‬‭follicular‬‭make‬‭up‬‭40%‬‭of‬‭HL‬‭and‬‭the‬‭other‬‭40%‬‭is‬‭diffuse‬‭large‬‭B‬‭cell‬‭NHL‬ (‭ aggressive).‬ ‭Cancer‬‭is‬‭a‬‭clonal‬‭disorder‬‭-‬‭this‬‭means‬‭that‬‭if‬‭one‬‭cell‬‭mutates,‬‭it‬‭clones‬‭and‬‭becomes‬‭the‬‭predominant‬‭type‬‭of‬‭cell‬‭within‬ ‭the‬‭cellular‬‭population‬‭it‬‭is‬‭apart‬‭of,‬‭and‬‭causes‬‭monoclonality.‬‭Immunoglobulin‬‭(IG)‬‭expressed‬‭on‬‭the‬‭surface‬‭of‬‭B‬‭cells‬‭and‬ ‭IG‬ ‭made‬ ‭up‬ ‭of‬‭2‬‭heavy‬‭and‬‭2‬‭light‬‭chains‬‭-‬‭light‬‭chains‬‭can‬‭be‬‭kappa‬‭or‬‭lambda‬‭(K‬‭and‬‭L‬‭on‬‭pic)‬‭2/3‬‭are‬‭kappa‬‭and‬‭1/3‬‭are‬ ‭lambda‬‭(ratio‬‭2:1).‬‭In‬‭malignancy,‬‭one‬‭is‬‭more‬‭than‬‭the‬‭other‬‭(more‬‭often‬‭the‬‭L‬‭cells),‬‭and‬‭this‬‭presents‬‭on‬‭the‬‭graph‬‭(right‬ ‭graph‬‭is‬‭malignant).‬‭This‬‭is‬‭due‬‭to‬‭lack‬‭of‬‭apoptosis,‬‭causing‬‭increased‬‭clonality‬‭of‬‭the‬‭cell‬‭type.‬‭CD20‬‭is‬‭a‬‭marker‬‭for‬‭B‬‭cells;‬ ‭using‬‭cytometry‬‭, we can see the ratio of L:K cells.‬ ‭Gene translocation in lymphoma‬‭; different types of‬‭genes that are altered can lead to different lymphomas.‬ L‭ ymphoma staging‬ ‭Stage 1 - early disease‬‭- cancer is found only in‬‭a single lymph node region or one organ or area outside the lymph node‬ ‭Stage 2 - locally advanced disease‬‭- the cancer is‬‭found in two or more lymph node regions on one side of the diaphragm‬ ‭Stage 3 - advanced disease‬‭- the disease involves‬‭lymph nodes both above and below the diaphragm‬ ‭Stage‬ ‭4‬ ‭-‬ ‭widespread‬ ‭disease‬ ‭-‬ ‭lymphoma‬ ‭has‬ ‭advanced‬ ‭beyond‬ ‭the‬ ‭lymph‬ ‭nodes‬ ‭and‬‭spleen‬‭AND‬‭has‬ ‭spread to one or more organ - bone, bone marrow, skin, liver‬ ‭Diagnosis of staging based on glucose labelling that emits a small amount of radiation → PET SCAN:‬ ‭‬ ‭Brain lights up normally‬ ‭‬ ‭Black spots are lymphoma though‬ ‭‬ ‭Figure is stage 4 lymphoma - diffuse large B cell lymphoma‬ ‭Treatment strategies‬ ‭Grow slowly → treat slowly (indolent):‬ ‭‬ ‭Watch and wait‬ ‭‬ ‭Local radiation for local disease‬ ‭‬ ‭Start with simple chemotherapy and move to more complex chemotherapy‬ ‭Grow fast → treat fast (aggressive)‬ ‭‬ ‭Aggressive multiagent chemotherapy, often with radiation therapy to sites of bulky disease‬ ‭‬ ‭Consider autologous or allogeneic stem cell transplantation‬ ‭‬ ‭Redo PET scan to see if it has gone down‬ ‭‬ ‭Repeat in 5 years‬ ‭Common anti-lymphoma drugs‬ ‭‬ ‭Chlorambucil‬ ‭‬ ‭CHOP: cyclophosphamide, doxorubicin, vincristine, prednisone‬ ‭‬ ‭Fludarabine‬ ‭‬ ‭Bendamustine‬ ‭‬ ‭Monoclonal antibodies‬ ‭○‬ ‭Anti CD20 (expressed by B lymphocytes)‬ ‭○‬ ‭Anti CD52 (B and T lymphocytes, monocytes dendritic cells)‬ ‭Outcomes of therapy‬ ‭‬ ‭Indolent: No cure, median survival 8 years, 25% alive in 10 years‬ ‭‬ ‭Aggressive: cure 30-40%, 50% dead in 2 years‬ → ‭ indolent eventually dead, but no cure. Aggressive can be cured in 30-40%, but 50% dead in 2 years.‬ ‭Acute Leukaemia‬ ‭Chronic Leukaemia‬ T‭ imeline:‬ ‭rapidly‬ ‭progressive‬ ‭if‬ ‭untreated‬ ‭→‬ ‭severe‬ ‭bone‬ T‭ imeline:‬ ‭slower‬ ‭course,‬ ‭even‬ ‭non-progressive,‬ ‭marrow‬ ‭marrow‬‭failure‬‭and‬‭no‬‭opportunity‬‭for‬‭body‬‭to‬‭compensate‬ ‭failure‬ ‭often‬ ‭not‬ ‭present‬ ‭at‬ ‭diagnosis‬ ‭and‬ ‭physiological‬ ‭ progression days/weeks → survival weeks/months‬ → ‭compensation‬ ‭possible‬ ‭for‬ ‭some‬ ‭symptoms‬‭→‬‭progression‬ ‭weeks/months → survival months/years‬ ‭Presenting features:‬‭bone marrow failure, bone pain‬ ‭ resenting‬ ‭features:‬ ‭non-specific‬ ‭complains‬ ‭(often‬ ‭picked‬ P ‭up‬ ‭on‬ ‭routine‬ ‭blood‬ ‭tests,‬ ‭symptoms‬ ‭related‬ ‭to‬ ‭splenomegaly or lymphadenopathy‬ ‭ athobiology:‬ ‭deregulation‬ ‭of‬ ‭differentiation‬ ‭and‬ P ‭ athobiology:‬‭results‬‭from‬‭the‬‭neoplastic‬‭transformation‬‭of‬ P ‭maturation‬ ‭programs‬ ‭→‬ ‭characterised‬ ‭by‬ ‭abundance‬ ‭of‬ ‭a‬ ‭haematopoietic‬ ‭stem‬ ‭cell,‬ ‭some‬ ‭blast‬ ‭cells‬ ‭present,‬ ‭but‬ ‭immature‬ ‭‘blastic’‬ ‭cells‬ ‭that‬ ‭grow‬ ‭uncontrollably‬ ‭and‬ ‭lack‬ ‭more mature cells that can carry out their normal functions‬ ‭normal differentiation‬ ‭Summary:‬‭mature cells > blast cells‬ ‭Summary:‬‭blast cells > mature cells‬ ‭ athobiology:‬‭clonal‬‭disorder‬‭that‬‭results‬‭from‬‭haematopoietic‬‭progenitors‬‭(either‬‭lymphoid‬‭or‬‭myeloid‬‭pathways,‬‭or‬‭from‬ P ‭primitive stem cells, decreased apoptosis.‬ L‭ ack‬ ‭of‬ ‭normal‬ ‭haematopoiesis‬ ‭can‬ ‭cause‬ ‭bone‬ ‭marrow‬ ‭failure:‬ ‭Anaemia‬‭→ fatigue, shortness of breath‬ ‭Neutropaenia‬‭→ infection and mouth ulcers‬ ‭Thrombocytopaenia‬‭→ bleeding and bruising‬ E‭ xcess malignant blood cells:‬ ‭High WBC in blood → hyperviscosity →‬‭stroke‬ ‭Increase‬ ‭in‬ ‭size‬ ‭of‬ ‭secondary‬ ‭lymphoid‬ ‭tissue‬ ‭→‬ ‭splenomegaly‬‭and‬‭lymphadenopathy‬ ‭Bone pain‬ ‭ cute Myeloblastic Leukaemia (AML)‬‭is:‬ A ‭Acute → high blasts, low mature cells‬ ‭Myelo → myeloid cells (RBC, platelets, monocytes, granulocytes)‬ ‭Leukaemia → WBC‬ ‭E.g.‬‭64‬‭year‬‭old‬‭man‬‭with‬‭5‬‭day‬‭history‬‭of‬‭fever,‬‭shortness‬‭of‬‭breath‬‭and‬‭bruising‬‭of‬‭the‬‭leg.‬‭The‬‭blood‬‭test‬‭below‬‭shows‬‭that‬ ‭he is anaemia (Hb = 84), neutropaenic (0.1), low myeloblasts and low platelets.‬ ‭Anaemic + neutropaenic + thrombocytopaenic → pancytopaenia; low in all 3.‬ ‭ cute Lymphoblastic Leukaemia (ALL)‬‭is:‬ A high blast cells, neutrophil normal range ‭Acute → high blasts, low mature cells‬ Low platelets ‭Lympho → lymphoid cells (T and B cells)‬ ‭Leukaemia → WBC‬ ‭Other‬ ‭features:‬ ‭cervical‬ ‭and‬ ‭supraclavicular‬ ‭lymphadenopathy,‬ ‭large mediastinal mass, heavy infiltration of CD2+ blast cells‬ ‭E.g.‬ ‭39yo‬ ‭male‬ ‭presents‬ ‭with‬ ‭swelling‬ ‭in‬ ‭neck‬ ‭for‬ ‭1‬ ‭week,‬ ‭terminal‬‭deoxy‬‭nucleoid‬‭transferase‬‭positivity‬‭(TDT+)‬‭tells‬‭us‬‭that‬ ‭it is T-cell ALL. Lymphocytes would be high in a blood test.‬ ‭ hronic‬ ‭lymphocytic‬ ‭leukaemia‬ ‭is‬ ‭a‬ ‭disease‬ ‭of‬ ‭the‬ ‭elderly‬ ‭-‬ C ‭median‬ ‭age‬ ‭of‬ ‭onset‬ ‭is‬ ‭65.‬ ‭It‬ ‭involves‬ ‭the‬ ‭accumulation‬ ‭of‬ ‭functionally‬ ‭incompetent‬ ‭mature‬ ‭lymphocytes‬ ‭in‬ ‭blood,‬ ‭bone‬‭marrow,‬‭spleen,‬‭lymph‬‭nodes.‬‭Lymphocytes‬‭are‬‭monoclonal;‬ ‭almost always a B cell disorder (B-CLL) with associated complications.‬ ‭ linical‬ ‭presentation‬ ‭is‬ ‭predominantly‬ ‭asymptomatic,‬ ‭but‬ ‭raised‬ ‭lymphocyte‬ ‭count‬ ‭on‬‭blood‬‭count‬‭and‬‭lymphadenopathy.‬ C ‭Others‬ ‭include‬ ‭immune‬ ‭dysfunction‬ ‭(viral‬ ‭infections‬ ‭e.g.‬ ‭shingles),‬ ‭and‬ ‭other‬ ‭symptoms‬ ‭of‬ ‭marrow‬ ‭failure;‬ ‭anaemia‬ ‭-‬ ‭tiredness, SOB, low platelet count - easy bruising, bleeding, low neutrophil count ( → bacterial infection).‬ ‭ linical‬ ‭course‬ ‭follows‬ ‭a‬ ‭slow‬ ‭progression,‬ ‭marked‬‭by‬‭a‬‭gradual‬‭increase‬‭in‬‭the‬‭white‬‭blood‬‭cell‬‭count‬‭primarily‬‭due‬‭to‬‭the‬ C ‭accumulation‬ ‭of‬ ‭abnormal‬ ‭lymphocytes.‬ ‭As‬ ‭the‬ ‭disease‬ ‭advances,‬ ‭there‬ ‭is‬ ‭notable‬‭enlargement‬‭of‬‭lymph‬‭nodes,‬‭liver,‬‭and‬ ‭spleen.‬‭Progressive‬‭bone‬‭marrow‬‭failure‬‭becomes‬‭evident,‬‭leading‬‭to‬‭compromised‬‭hematopoiesis‬‭including‬‭immune‬‭paresis‬ ‭and‬ ‭B‬ ‭cell‬ ‭immunosuppression,‬‭contributing‬‭to‬‭an‬‭increased‬‭susceptibility‬‭to‬‭infections.‬‭Additionally,‬‭patients‬‭with‬‭CLL‬‭may‬ ‭exhibit‬‭the‬‭secretion‬‭of‬‭a‬‭paraprotein,‬‭an‬‭abnormal‬‭protein‬‭produced‬‭by‬‭the‬‭cancerous‬‭lymphocytes.‬ ‭This‬ ‭can‬ ‭lead‬ ‭to‬ ‭a‬ ‭complication‬ ‭known‬ ‭as‬ ‭autoimmune‬ ‭haemolytic‬ ‭anemia,‬ ‭where‬ ‭the‬ ‭immune‬ ‭system‬ ‭attacks‬ ‭and‬ ‭destroys‬ ‭red‬ ‭blood‬ ‭cells,‬ ‭leading‬ ‭to‬ ‭anemia.‬ ‭Another‬ ‭complication‬ ‭is‬ ‭immune‬ ‭thrombocytopenia‬ ‭purpura,‬ ‭a‬ ‭condition‬ ‭characterized‬ ‭by‬ ‭low‬ ‭platelet‬ ‭counts,‬ ‭which‬ ‭can‬ ‭result‬ ‭in‬ ‭excessive bruising and bleeding.‬ T‭ he‬ ‭aetiology‬ ‭of‬ ‭chronic‬ ‭lymphocytic‬ ‭leukaemia‬ ‭(CLL)‬ ‭remains‬ ‭largely‬ ‭unknown,‬ ‭with‬ ‭multiple‬ ‭factors‬ ‭contributing‬ ‭to‬ ‭its‬ ‭development.‬ ‭Immune‬ ‭regulation‬ ‭plays‬ ‭a‬ ‭role‬ ‭in‬ ‭CLL,‬ ‭and‬ ‭approximately‬ ‭80%‬ ‭of‬ ‭cases‬ ‭involve‬ ‭somatic‬ ‭gene‬ ‭mutations.‬ ‭Notably,‬ ‭mutations‬ ‭in‬ ‭tumour‬ ‭suppressor‬ ‭genes,‬ ‭such‬ ‭as‬ ‭ATM‬ ‭and‬ ‭p53,‬ ‭are‬ ‭prevalent‬ ‭in‬ ‭CLL.‬ ‭One‬ ‭significant‬ ‭molecular‬ ‭alteration‬ ‭observed‬ ‭in‬ ‭CLL‬ ‭is‬ ‭the‬ ‭elevation‬ ‭of‬ ‭the‬ ‭anti-apoptotic‬ ‭protein‬ ‭bcl-2,‬ ‭attributed‬ ‭to‬ ‭the‬ ‭deletion‬ ‭of‬ ‭inhibitory‬ ‭ icroRNA.‬ ‭This‬ ‭dysregulation‬ ‭of‬ ‭apoptosis,‬ ‭or‬ ‭programmed‬ ‭cell‬ ‭death,‬ ‭contributes‬ ‭to‬ ‭the‬ ‭survival‬ ‭and‬ ‭accumulation‬ ‭of‬ m ‭abnormal‬ ‭lymphocytes‬ ‭characterizing‬ ‭CLL.‬ ‭There‬ ‭is‬ ‭also‬ ‭an‬ ‭element‬ ‭of‬ ‭inherited‬ ‭risk‬ ‭associated‬ ‭with‬ ‭CLL.‬ ‭Individuals‬ ‭with‬ ‭first-degree‬‭relatives‬‭affected‬‭by‬‭CLL‬‭have‬‭an‬‭increased‬‭risk,‬‭although‬‭there‬‭is‬‭no‬‭consensus‬‭on‬‭a‬‭singular‬‭gene‬‭responsible‬‭for‬ ‭the‬‭development‬‭of‬‭the‬‭disease.‬‭The‬‭interplay‬‭of‬‭genetic‬‭factors‬‭and‬‭environmental‬‭influences‬‭underscores‬‭the‬‭complexity‬‭of‬ ‭CLL's aetiology,‬ T‭ he‬ ‭diagnosis‬ ‭of‬ ‭chronic‬ ‭lymphocytic‬ ‭leukaemia‬ ‭(CLL)‬ ‭involves‬ ‭specific‬ ‭criteria‬ ‭and‬ ‭diagnostic‬ ‭procedures‬ ‭to‬ ‭identify‬ ‭the‬ ‭characteristic‬‭features‬‭of‬‭this‬‭blood‬‭and‬‭bone‬‭marrow‬‭disorder.‬‭One‬‭essential‬‭criterion‬‭for‬‭CLL‬‭diagnosis‬‭is‬‭the‬‭presence‬‭of‬‭a‬ ‭peripheral‬ ‭blood‬ ‭monoclonal‬ ‭B-cell‬ ‭population,‬ ‭exceeding‬ ‭a‬ ‭count‬ ‭of‬ ‭>5x10^9/L,‬ ‭persisting‬ ‭for‬ ‭at‬ ‭least‬ ‭four‬‭weeks.‬‭The‬ ‭characteristic‬ ‭B-cell‬‭population‬‭in‬‭CLL‬‭co-expresses‬‭CD19,‬‭CD5,‬‭and‬‭CD23.‬‭Additionally,‬‭there‬‭is‬‭typically‬‭weak‬‭expression‬‭of‬ ‭CD20,‬‭CD79B,‬‭and‬‭surface‬‭IgM‬‭on‬‭these‬‭B‬‭cells.‬‭While‬‭a‬‭bone‬‭marrow‬‭biopsy‬‭is‬‭not‬‭mandatory‬‭for‬‭diagnosing‬‭CLL,‬‭it‬‭can‬‭be‬ ‭beneficial‬ ‭in‬ ‭certain‬ ‭cases.‬ ‭Bone‬ ‭marrow‬‭biopsy‬‭is‬‭particularly‬‭useful‬‭when‬‭there‬‭is‬‭a‬‭need‬‭to‬‭determine‬‭if‬‭cytopenias‬‭(low‬ ‭blood‬ ‭cell‬ ‭counts)‬ ‭are‬‭a‬‭result‬‭of‬‭bone‬‭marrow‬‭infiltration‬‭by‬‭CLL‬‭cells.‬‭This‬‭procedure‬‭provides‬‭valuable‬‭information‬‭about‬ ‭the‬ ‭extent‬ ‭of‬ ‭CLL‬ ‭involvement‬ ‭in‬ ‭the‬ ‭bone‬ ‭marrow‬ ‭and‬ ‭aids‬‭in‬‭assessing‬‭the‬‭impact‬‭on‬‭haematopoiesis.‬‭Other‬‭diagnostics‬ ‭include‬ ‭WBC‬‭count‬‭is‬‭very‬‭elevated‬‭(lymphocyte‬‭count‬‭-‬‭although‬‭normal‬‭neutrophil‬‭count),‬‭platelet‬‭count‬‭is‬‭retained,‬‭flow‬ ‭cytometry shows more kappa and less lambda chains (express CD20+CD5+CD23 B lymphocytes).‬ S‭ taging‬ ‭systems‬ ‭in‬ ‭CLL‬ ‭are‬ ‭used‬ ‭to‬ ‭classify‬ ‭the‬ ‭severity‬ ‭and‬ ‭progression‬ ‭of‬ ‭CLL.‬ ‭Rai‬ ‭staging‬ ‭is‬ ‭based‬ ‭on‬ ‭the‬ ‭presence‬ ‭or‬ ‭absence‬ ‭of‬ ‭certain‬ ‭clinical‬ ‭findings‬ ‭and‬ ‭blood‬ ‭counts,‬ ‭whereas‬ ‭Binet‬ ‭staging‬ ‭is‬ ‭based‬ ‭on‬ ‭the‬ ‭extent‬ ‭of‬ ‭lymphadenopathy‬ ‭(enlarged lymph nodes) and presence of anaemia/thrombocytopaenia. Treatment begins at RAI stage 2-3 or Binet stage C.‬ ‭ rognosis‬‭follows‬‭one‬‭of‬‭two‬‭paths,‬‭depending‬‭on‬‭the‬‭mutated‬‭status‬‭-‬‭this‬‭can‬‭be‬‭determined‬‭by‬‭observing‬‭the‬‭expression‬‭of‬ P ‭immunoglobulin‬ ‭(Ig)‬ ‭variable‬ ‭(V)‬ ‭heavy‬ ‭chain‬ ‭(H)‬ ‭gene‬ ‭segments‬ ‭(IgVH).‬ ‭These‬ ‭mutations‬ ‭occurs‬ ‭in‬ ‭somatic‬ ‭cells‬ ‭(non-‬ ‭reproductive).‬ ‭Mutated -‬‭gone through germinal centre‬ ‭Unmutated -‬‭hasn’t gone through germinal centre‬ ‭ lone‬ ‭IgVH‬ ‭region‬ ‭gene‬ ‭differs‬ ‭from‬‭germline‬‭sequence‬‭by‬ C C ‭ lone‬‭IgVH‬‭gene‬‭in‬‭CLL‬‭cells‬‭differs‬‭from‬‭germline‬‭sequence‬ ‭more‬ ‭than‬ ‭2%‬ ‭=‬ ‭mutated‬ ‭→‬ ‭means‬ ‭somatic‬‭mutation‬‭has‬ ‭by‬ ‭less‬ ‭than‬ ‭or‬ ‭equal‬ ‭to‬ ‭2%‬ ‭(same‬ ‭as‬ ‭saying‬ ‭Clone‬ ‭IgVH‬ ‭occurred in this gene (changes the sequence by >2%)‬ ‭region gene shows >98% homology (similarity))‬ ‭ ood‬‭prognosis‬‭(good‬‭chance‬‭of‬‭recovering‬‭from‬‭a‬‭disease)‬ ‭Bad prognosis‬ G ‭and account for‬‭50%‬‭of CLL cases‬ ‭ rogression‬ ‭requiring‬ ‭treatment‬ ‭after‬‭10-20‬‭years‬‭→‬‭more‬ P P ‭ rogression‬ ‭requiring‬ ‭treatment‬ ‭after‬ ‭2-5‬ ‭years‬ ‭→‬ ‭more‬ ‭indolent‬ ‭(slow‬ ‭progressing‬ ‭disease‬ ‭-‬ ‭doesn’t‬ ‭require‬ ‭aggressive‬ ‭and‬ ‭faster‬ ‭progression‬ ‭of‬ ‭disease‬ ‭→‬ ‭requires‬ ‭treatment for longer period of time)‬ ‭treatment a lot sooner‬ ‭ hronic‬ ‭Myeloid‬ ‭Leukaemia‬ ‭(CML)‬ ‭is‬ ‭a‬ ‭type‬ ‭of‬ ‭leukaemia,‬ ‭a‬ ‭cancer‬ ‭of‬ ‭the‬ ‭blood‬ ‭and‬ ‭bone‬ ‭marrow,‬ ‭characterised‬ ‭by‬ ‭the‬ C ‭abnormal and uncontrolled growth of myeloid cells.‬ ‭Pathophysiology:‬‭massive myeloid hyperplasia refers‬‭to the excessive production of myeloid cells in the bone marrow.‬ ‭Accumulation of immature and mature myeloid cells in both the blood and bone marrow contributes to the disease.‬ ‭Epidemiology:‬‭CML can affect individuals of both sexes,‬‭the most common age of onset is between 40 and 60 years.‬ ‭Risk‬‭Factors:‬‭prior‬‭irradiation‬‭has‬‭been‬‭associated‬‭with‬‭an‬‭increased‬‭incidence‬‭of‬‭CML,‬‭however‬‭CML‬‭is‬‭not‬‭significantly‬‭more‬ ‭frequent in monozygotic twins, suggesting that genetic factors alone may not be the primary cause.‬ ‭Disease Phases:‬ ‭Chronic Phase:‬‭This is the initial phase and is characterised‬‭by slow, asymptomatic growth of abnormal myeloid cells.‬ ‭Accelerated‬ ‭Phase:‬ ‭In‬ ‭this‬ ‭phase,‬ ‭the‬ ‭abnormal‬ ‭cells‬ ‭start‬ ‭to‬ ‭grow‬ ‭and‬ ‭divide‬ ‭more‬ ‭rapidly,‬ ‭leading‬ ‭to‬ ‭symptomatic‬ ‭manifestations.‬ ‭Blast‬ ‭Crisis‬ ‭(Acute‬ ‭Phase):‬ ‭This‬ ‭is‬ ‭an‬ ‭aggressive‬ ‭phase‬ ‭where‬‭the‬‭majority‬‭of‬‭cells‬‭in‬‭the‬‭bone‬‭marrow‬‭are‬‭immature‬‭blast‬ ‭cells. It resembles acute leukaemia and progresses rapidly.‬ ‭Genetic‬ ‭Mutation:‬ ‭The‬ ‭primary‬ ‭cause‬ ‭of‬ ‭CML‬ ‭is‬ ‭a‬ ‭specific‬ ‭genetic‬ ‭mutation‬ ‭known‬ ‭as‬ ‭the‬ ‭Philadelphia‬ ‭chromosome‬ ‭(Ph‬ ‭chromosome).‬ ‭The‬ ‭Philadelphia‬ ‭chromosome‬ ‭results‬ ‭from‬ ‭a‬ ‭reciprocal‬ ‭translocation‬ ‭between‬ ‭chromosomes‬ ‭9‬ ‭and‬ ‭22‬ ‭[t(9;22)],‬‭leading‬‭to‬‭the‬‭fusion‬‭of‬‭the‬‭BCR‬‭(breakpoint‬‭cluster‬‭region)‬‭gene‬‭on‬‭chromosome‬‭22‬‭with‬‭the‬‭ABL‬‭(Abelson‬‭murine‬ ‭leukemia‬‭viral‬‭oncogene‬‭homolog‬‭1)‬‭gene‬‭on‬‭chromosome‬‭9.‬‭This‬‭fusion‬‭gene‬‭is‬‭called‬‭BCR-ABL1.‬‭In‬‭light‬‭microscopy,‬‭dividing‬ ‭cells‬ ‭in‬ ‭95%‬ ‭of‬ ‭cases.‬ ‭BCR-ABL1‬‭Oncogene:‬‭The‬‭BCR-ABL1‬‭fusion‬‭gene‬‭produces‬‭a‬‭constitutively‬‭active‬‭tyrosine‬‭kinase‬‭that‬ ‭promotes uncontrolled cell proliferation and inhibits apoptosis. This aberrant kinase activity is a key driver of CML.‬ F‭ indings on FBC, blood film and special tests‬ ‭Findings‬ ‭on‬ ‭FBC:‬ ‭neutrophil‬ ‭leucocytosis‬ ‭(elevated‬ ‭WBC‬ ‭count),‬ ‭immature‬ ‭cells‬ ‭mainly‬ ‭myelocytes‬ ‭circulating‬ ‭in‬ ‭the‬ ‭peripheral blood, increase in circulating basophils, anaemia‬ ‭Findings‬ ‭on‬ ‭bone‬ ‭marrow‬ ‭biopsy:‬ ‭hypercellular,‬ ‭increase‬ ‭in‬ ‭myeloid‬ ‭series‬ ‭(bone‬ ‭marrow‬ ‭and‬ ‭blood‬ ‭appear‬ ‭similar),‬ ‭cytogenetic analysis and molecular analysis to detect the BCR-ABL chromosome‬ ‭Blood film:‬‭both blast and mature cells (for acute,‬‭would not see mature)‬ T‭ reatment‬‭;‬‭targeted‬‭therapies,‬‭such‬‭as‬‭tyrosine‬‭kinase‬‭inhibitors‬‭(TKIs),‬‭are‬‭the‬‭mainstay‬‭of‬‭treatment‬‭for‬‭CML.‬‭These‬‭drugs‬ ‭specifically‬ ‭target‬ ‭the‬ ‭BCR-ABL1‬ ‭tyrosine‬ ‭kinase,‬‭inhibiting‬‭its‬‭activity‬‭and‬‭slowing‬‭down‬‭or‬‭stopping‬‭the‬‭progression‬‭of‬‭the‬ ‭disease.‬ ‭Imatinib‬‭is‬‭a‬‭first-generation‬‭tyrosine‬‭kinase‬‭inhibitor‬‭(TKI)‬‭that‬‭specifically‬‭targets‬‭the‬‭BCR-ABL‬‭kinase,‬‭which‬‭is‬‭responsible‬ ‭for‬‭the‬‭abnormal‬‭growth‬‭in‬‭CML.‬‭It‬‭works‬‭by‬‭inhibiting‬‭the‬‭tyrosine‬‭kinase‬‭activity‬‭of‬‭the‬‭BCR-ABL‬‭fusion‬‭protein.‬‭While‬‭not‬ ‭considered‬ ‭a‬ ‭cure,‬ ‭imatinib‬ ‭can‬ ‭induce‬ ‭haematological‬ ‭remission‬ ‭(normalising‬ ‭blood‬ ‭counts),‬ ‭cytogenetic‬ ‭remission‬ ‭(elimination‬‭or‬‭reduction‬‭of‬‭leukaemia‬‭cells‬‭with‬‭the‬‭Philadelphia‬‭chromosome),‬‭molecular‬‭remission‬‭(undetectable‬‭levels‬‭of‬ ‭BCR-ABL at the molecular level using PCR).‬ ‭Resistance‬ ‭to‬ ‭imatinib‬ ‭can‬ ‭occur‬ ‭through‬ ‭various‬ ‭mechanisms,‬ ‭including‬ ‭either‬ ‭de‬ ‭novo‬ ‭or‬ ‭acquired:‬ ‭point‬ ‭mutations‬ ‭in‬ ‭BCR-ABL‬ ‭gene‬ ‭preventing‬ ‭imatinib‬ ‭from‬ ‭inhibiting‬ ‭kinase‬ ‭activity,‬ ‭BCR-ABL‬ ‭gene‬ ‭amplification/BCR-ABL‬ ‭independent‬ ‭mechanisms‬‭or activation of the‬‭SRC family kinases‬‭.‬ S‭ econd-Generation‬‭Tyrosine‬‭Kinase‬‭Inhibitors‬‭are‬‭used‬‭on‬‭those‬‭who‬‭develop‬‭resistance‬‭to‬‭or‬‭cannot‬‭tolerate‬‭imatinib.‬‭The‬ ‭choice‬ ‭of‬ ‭TKI‬ ‭depends‬ ‭on‬ ‭factors‬ ‭such‬ ‭as‬ ‭the‬ ‭patient's‬ ‭response,‬ ‭side‬ ‭effects,‬ ‭and‬ ‭the‬ ‭specific‬ ‭mutations‬ ‭present‬ ‭in‬ ‭the‬ ‭BCR-ABL gene. Regular monitoring and adjustment of treatment are crucial to manage the disease effectively.‬ ‭ asatinib‬‭:‬ ‭A‬ ‭dual‬ ‭SRC-ABL‬ ‭kinase‬ ‭inhibitor‬ ‭that‬ ‭targets‬ ‭both‬ ‭active‬ ‭conformations‬ ‭of‬ ‭ABL‬ ‭and‬ ‭SRC,‬ ‭which‬ ‭are‬ ‭structurally‬ D ‭similar. About 300-fold higher potency against native BCR-ABL compared to imatinib, making it very effective.‬ ‭Nilotinib:‬ ‭Specifically‬ ‭designed‬ ‭to‬ ‭have‬ ‭a‬ ‭higher‬ ‭binding‬ ‭affinity‬ ‭for‬ ‭BCR-ABL‬ ‭kinase‬ ‭compared‬ ‭to‬ ‭imatinib.‬ ‭Modified‬ ‭from‬ ‭imatinib‬‭to‬‭enhance‬‭BCR-ABL‬‭kinase‬‭binding‬‭activity.‬‭Less‬‭prone‬‭to‬‭resistance‬‭development‬‭compared‬‭to‬‭imatinib‬‭due‬‭to‬‭its‬ ‭increased potency. An option for CML patients who do not respond well to imatinib.‬ ‭Ponatinib:‬ ‭a‬ ‭multitargeted‬ ‭kinase‬ ‭inhibitor‬‭that‬‭is‬‭active‬‭against‬‭all‬‭known‬‭BCR-ABL‬‭mutants,‬‭including‬‭the‬‭T315I‬‭mutation,‬ ‭which is particularly challenging to treat with other TKIs.‬ ‭IMMUNOLOGICAL BASIS FOR TRANSPLANTATION‬ T‭ ransplantation‬‭is‬‭the‬‭most‬‭effective‬‭treatment‬‭for‬‭end‬‭stage‬‭organ‬‭failure,‬‭although‬‭transplanted‬‭organ‬‭survival‬‭is‬‭limited‬ ‭by‬‭immune‬‭rejection;‬‭the‬‭short‬‭term‬‭outcomes‬‭are‬‭excellent,‬‭and‬‭long‬‭term‬‭outcomes‬‭have‬‭changed‬‭very‬‭little‬‭over‬‭the‬‭past‬ ‭few decades - rejection is due to T-cell mediated rejection and/or antibody-mediated rejection.‬ ‭‬ ‭1954‬ ‭=‬ ‭first‬ ‭successful‬ ‭living-related‬‭kidney‬‭transplant‬‭between‬‭identical‬‭twin‬‭Herrick‬‭brothers,‬‭Dr.‬‭Joseph‬‭Murray’s‬ ‭team‬ ‭‬ ‭1962 = first cadaveric kidney transplant, Dr. Joseph Murray‬ ‭‬ ‭1963 = first lung transplant, Dr. James Hardy‬ ‭‬ ‭1967 = first liver transplant , Dr. Thomas Starz‬ ‭‬ ‭1967 = first heart transplant, Dr. Christiaan Neethling Barnard‬ ‭Transplanted organ survival is limited by the side effects of long-term immunosuppressive regimens‬ ‭‬ ‭Infection: serious bacterial, fungal and viral infections‬ ‭‬ ‭Malignancies - skin cancer, most common in kidney and liver transplantation‬ ‭‬ ‭Neurotoxicity: apparent months or years‬ ‭‬ ‭Diabetes‬ ‭‬ ‭CVS events‬ ‭‬ ‭Metabolic syndrome - hyperlipidaemia, diabetes, HTN‬ ‭Majority of rejection occurs within the first 6 months of transplantation, as this is when immunosuppression is highest.‬ ‭Recommendation: no elective dental work within these 6 months.‬ ‭Malignancy is the tell-tale sign of immunosuppression - skin cancer is the most common.‬ ‭ ejection - the transplant recipient’s immune system attacks the transplanted organ‬‭over three stages:‬ R ‭Hyperacute‬ ‭rejection:‬ ‭minutes‬ ‭to‬ ‭hours‬‭-‬‭the‬‭most‬‭rapid‬‭and‬‭severe‬‭form‬‭of‬‭rejection,‬‭caused‬‭by‬‭pre-existing‬‭antibodies‬‭in‬ ‭the‬‭recipient’s‬‭blood‬‭that‬‭react‬‭against‬‭antigens‬‭on‬‭the‬‭donor‬‭organ;‬‭anti-donor‬‭antibodies‬‭against‬‭ABO/HLA/other‬‭antigens‬ ‭causes‬ ‭complement‬ ‭activation,‬ ‭thrombosis,‬ ‭leukocyte‬ ‭inflammation,‬ ‭endothelial‬ ‭damage,‬ ‭leading‬ ‭to‬ ‭immediate‬ ‭and‬ ‭irreversible‬ ‭damage‬ ‭to‬ ‭the‬ ‭transplanted‬ ‭organ.‬ ‭This‬ ‭is‬ ‭however‬ ‭rare‬ ‭these‬ ‭days‬ ‭due‬ ‭to‬ ‭extensive‬ ‭pre-transplant‬ ‭testing‬‭to‬ ‭identify donors.‬ ‭Acute‬‭rejection:‬‭days‬‭to‬‭12‬‭months‬‭-‬‭occurs‬‭as‬‭the‬‭recipient’s‬‭immune‬‭system‬‭recognises‬‭the‬‭transplanted‬‭organ‬‭as‬‭foreign,‬ ‭mounting‬ ‭an‬‭immune‬‭response‬‭against‬‭it‬‭-‬‭T‬‭cell‬‭mediated‬‭alloresponse.‬‭It‬‭is‬‭characterised‬‭by‬‭inflammation‬‭and‬‭damage‬‭to‬ ‭the transplanted tissue and is often treated with immunosuppressive meds.‬ ‭Chronic‬‭rejection:‬‭months‬‭or‬‭years‬‭after‬‭and‬‭is‬‭characterised‬‭by‬‭fibrosis‬‭and‬‭vascular‬‭abnormalities.‬‭De‬‭novo‬‭donor‬‭specific‬ ‭antibodies‬ ‭(dnDSA)‬ ‭is‬ ‭an‬ ‭important‬ ‭risk‬ ‭factor.‬ ‭It‬ ‭involves‬ ‭slow‬ ‭deterioration‬ ‭of‬ ‭the‬ ‭organ’s‬ ‭function‬ ‭-‬ ‭often‬ ‭resistant‬ ‭to‬ ‭treatment with immunosuppressive drugs → can lead to organ failure.‬ T‭ ‬‭cells‬‭are‬‭central‬‭to‬‭the‬‭process‬‭of‬‭transplantation‬‭rejection‬‭through‬‭allorecognition‬‭of‬‭foreign‬‭antigens.‬‭Both‬‭CD4‬‭and‬‭CD8‬‭T‬ ‭cells‬‭are‬‭involved.‬‭Both‬‭T‬‭cells‬‭and‬‭B‬‭cells‬‭play‬‭a‬‭role‬‭in‬‭acute‬‭and‬‭chronic‬‭rejection.‬‭These‬‭alloreactive‬‭T‬‭cells‬‭can‬‭recognise‬ ‭and respond to antigens on transplanted organs or tissues that are different from the recipient’s own antigens.‬ ‭Allorecognition:‬‭ability‬‭of‬‭an‬‭organism‬‭to‬‭distinguish‬‭its‬‭own‬‭cells‬‭and‬‭tissues‬‭from‬‭those‬‭of‬‭another‬‭from‬‭the‬‭same‬‭species‬ ‭i.e. how it responds to foreign antigens.‬ ‭ onor‬‭organ‬‭→‬‭recipient‬‭lymph‬‭node‬‭→‬‭CD8+‬‭T‬‭cell‬‭+‬‭dendritic‬‭cells‬‭+‬‭CD4+‬‭T‬‭cell‬‭→‬‭release‬‭cytokines‬‭→‬‭clonal‬‭expansion‬ D ‭and‬‭additional‬‭cytokine‬‭and‬‭chemokine‬‭production‬‭→‬‭differentiated‬‭macrophages‬‭+‬‭B-cell‬‭antibody‬‭production‬‭→‬‭activated‬‭T‬ ‭cells → acute rejection‬ ‭Organ → T cells → cytokines → B cells → macrophages → acute rejection.‬ T‭ cell activation signals‬ ‭Signal 1: antigen specific, T cell receptors recognise MHC-allo-peptide complex (CD4 binds MHC 2 and CD8 binds MHC1)‬ ‭Signal 2: antigen-non-specific, binding of co-stimulatory molecules (CD28-B7, CD80/CD86, CD40L-CD40 pathways)‬ ‭Signal 3: cytokine stimulation (IFN-gamma)‬ S‭ ignal 2 and 3 are critical in rejection.‬ ‭Signal 1 and 2 are at least needed for T cell activation.‬ T‭ he‬‭diversity‬‭of‬‭the‬‭alpha-beta‬‭T‬‭cell‬‭receptor‬‭(TCR)‬‭is‬‭essential‬‭for‬‭the‬‭immune‬‭system‬‭to‬‭effectively‬‭recognize‬‭and‬‭respond‬ ‭to a‬‭vast array of antigens‬‭.‬ ‭Expression‬ ‭in‬ ‭Human‬ ‭Peripheral‬ ‭Blood‬ ‭T‬ ‭Cells‬‭:‬ ‭Over‬ ‭95%‬ ‭of‬ ‭human‬ ‭peripheral‬ ‭blood‬ ‭T‬ ‭cells‬ ‭express‬ ‭the‬ ‭alpha-beta‬ ‭TCR‬ ‭complex. This complex consists of two protein chains, the alpha chain, and the beta chain.‬ ‭Overall‬ ‭TCR‬ ‭Diversity:‬ ‭the‬ ‭diversity‬ ‭of‬ ‭the‬ ‭TCR‬ ‭is‬ ‭immense,‬ ‭with‬ ‭approximately‬ ‭2.5‬ ‭x‬ ‭10^7‬ ‭(25‬ ‭million)‬ ‭different‬ ‭TCRs‬ ‭estimated to exist in humans.‬ ‭Genetic‬ ‭Basis‬ ‭of‬ ‭Diversity:‬ ‭The‬ ‭diversity‬ ‭of‬ ‭the‬ ‭TCR‬ ‭is‬ ‭primarily‬ ‭generated‬ ‭through‬ ‭genetic‬ ‭mechanisms‬ ‭during‬ ‭T‬ ‭cell‬ ‭development.‬‭This‬‭involves‬‭the‬‭rearrangement‬‭of‬‭gene‬‭segments‬‭encoding‬‭the‬‭TCR.‬‭The‬‭TCR‬‭genes‬‭are‬‭composed‬‭of‬‭variable‬ ‭(V),‬ ‭diversity‬ ‭(D),‬ ‭and‬ ‭joining‬ ‭(J)‬ ‭gene‬ ‭segments‬‭.‬ ‭The‬ ‭combination‬ ‭of‬ ‭different‬ ‭V,‬ ‭D,‬ ‭and‬ ‭J‬ ‭segments‬ ‭contributes‬ ‭to‬ ‭the‬ ‭diversity of TCRs.‬ ‭N-Region‬ ‭Diversity:‬ ‭The‬ ‭diversity‬ ‭is‬ ‭further‬ ‭increased‬ ‭by‬ ‭the‬ ‭addition‬ ‭of‬‭non-templated‬‭nucleotides,‬‭known‬‭as‬‭N‬‭regions‬‭,‬ ‭during the gene rearrangement process. This N-region diversity adds extra variability to the TCR sequence.‬ ‭CDR3‬‭Region‬‭and‬‭Diversity:‬‭The‬‭complementarity-determining‬‭region‬‭3‬‭(CDR3)‬‭is‬‭a‬‭highly‬‭variable‬‭region‬‭within‬‭the‬‭TCR.‬‭It‬‭is‬ ‭formed‬‭by‬‭the‬‭junction‬‭of‬‭the‬‭V,‬‭D,‬‭and‬‭J‬‭gene‬‭segments‬‭and‬‭the‬‭added‬‭N‬‭regions.‬‭The‬‭CDR3‬‭region‬‭is‬‭particularly‬‭important‬ ‭for antigen recognition, as it directly interacts with the peptide-MHC complex.‬ T‭ he‬ ‭Major‬ ‭Histocompatibility‬ ‭Complex‬ ‭(MHC)‬‭,‬ ‭also‬‭known‬‭as‬‭the‬‭Human‬‭Leukocyte‬‭Antigen‬‭(HLA)‬‭system‬‭in‬‭humans,‬‭is‬‭a‬ ‭crucial‬ ‭genetic‬ ‭system‬ ‭involved‬ ‭in‬ ‭immune‬ ‭responses,‬ ‭particularly‬ ‭in‬ ‭the‬ ‭recognition‬ ‭and‬ ‭rejection‬ ‭of‬ ‭foreign‬ ‭or‬ ‭non-self‬ ‭tissues.‬ ‭Genetic Loci and Chromosome Location:‬‭The MHC is a‬‭genomic region located on chromosome 6 in humans.‬ ‭Role‬ ‭in‬ ‭Tissue‬ ‭Rejection:‬ ‭MHC‬ ‭molecules‬ ‭are‬ ‭essential‬ ‭for‬ ‭the‬ ‭immune‬ ‭system's‬ ‭ability‬ ‭to‬ ‭distinguish‬ ‭between‬ ‭self‬ ‭and‬ ‭non-self‬ ‭tissues.‬ ‭Mismatch‬ ‭of‬ ‭MHC‬ ‭molecules‬ ‭between‬ ‭donor‬ ‭and‬ ‭recipient‬ ‭is‬ ‭a‬ ‭significant‬ ‭factor‬ ‭in‬ ‭the‬ ‭rejection‬ ‭of‬ ‭transplanted organs or tissues.‬ ‭Polymorphic‬‭Cell‬‭Surface‬‭Structures:‬‭MHC‬‭molecules‬‭are‬‭highly‬‭polymorphic,‬‭meaning‬‭there‬‭is‬‭a‬‭significant‬‭variation‬‭in‬‭the‬ ‭gene‬ ‭sequences‬ ‭that‬ ‭encode‬ ‭these‬ ‭molecules‬ ‭among‬ ‭individuals.‬ ‭This‬ ‭polymorphism‬ ‭contributes‬ ‭to‬ ‭the‬ ‭diversity‬ ‭of‬ ‭MHC‬ ‭molecules, allowing the immune system to recognize a wide range of antigens.‬ ‭MHC Class I and Class II:‬‭MHC molecules are categorized‬‭into two main classes: MHC class I and MHC class II.‬ ‭MHC Class I (HLA-A, B, C):‬‭These molecules are found‬‭on the surface of almost all nucleated cells.‬ ‭MHC‬‭Class‬‭II‬‭(HLA-DR,‬‭DP,‬‭DQ,‬‭DO,‬‭DM):‬‭These‬‭molecules‬‭are‬‭primarily‬‭expressed‬‭on‬‭the‬‭surface‬‭of‬‭antigen-presenting‬‭cells‬ ‭(APCs) such as macrophages, B cells, and dendritic cells.‬ ‭Antigen Presentation: MHC molecules play a crucial role in presenting antigens to T cells‬‭.‬ ‭Potential donor siblings‬ ‭When‬‭considering‬‭organ‬‭or‬‭tissue‬‭transplantation,‬‭the‬‭compatibility‬‭of‬‭the‬‭donor's‬‭Human‬‭Leukocyte‬‭Antigen‬‭(HLA)‬‭with‬‭the‬ ‭recipient's‬ ‭HLA‬ ‭is‬ ‭a‬ ‭crucial‬ ‭factor‬ ‭in‬ ‭minimizing‬ ‭the‬ ‭risk‬ ‭of‬ ‭transplant‬ ‭rejection.‬ ‭HLA‬ ‭molecules‬ ‭are‬ ‭highly‬ ‭polymorphic,‬ ‭meaning‬ ‭there‬ ‭is‬ ‭a‬ ‭wide‬ ‭variety‬ ‭of‬ ‭HLA‬ ‭alleles‬ ‭within‬ ‭the‬ ‭human‬ ‭population.‬ ‭The‬ ‭more‬ ‭closely‬ ‭matched‬ ‭the‬ ‭donor‬ ‭and‬ ‭recipient‬ ‭HLA,‬ ‭the‬ ‭lower‬ ‭the‬ ‭likelihood‬ ‭of‬ ‭rejection.‬ ‭Siblings‬ ‭are‬ ‭potential‬ ‭donors‬ ‭because‬ ‭there‬ ‭is‬ ‭a‬‭higher‬‭likelihood‬‭of‬ ‭sharing‬‭HLA‬‭alleles‬‭with‬‭siblings‬‭due‬‭to‬‭the‬‭genetic‬‭similarities‬‭inherited‬‭from‬‭common‬‭parents.‬‭If‬‭a‬‭sibling‬‭is‬‭a‬‭full‬‭match‬ ‭or‬‭a‬‭close‬‭match‬‭in‬‭terms‬‭of‬‭HLA‬‭compatibility,‬‭it‬‭can‬‭enhance‬‭the‬‭chances‬‭of‬‭a‬‭successful‬‭transplant.‬‭The‬‭probability‬‭that‬‭2‬ ‭siblings will have the same HLA allele is 25% (0.5 x 0.5).‬ ‭ irect‬‭allorecognition‬‭occurs‬‭when‬‭recipient‬‭T‬‭cells‬‭directly‬‭recognise‬‭donor‬‭MHCs‬‭on‬‭the‬‭surface‬‭of‬‭donor‬‭APCs‬‭within‬‭the‬ D ‭transplanted‬ ‭organ.‬ ‭Donor‬ ‭APCs‬ ‭migrate‬ ‭from‬ ‭the‬ ‭transplanted‬ ‭organ‬ ‭to‬ ‭the‬ ‭recipient’s‬ ‭lymphoid‬ ‭tissues,‬ ‭where‬ ‭T‬ ‭cells‬ ‭recognise‬ ‭the‬ ‭foreign‬‭MHC‬‭molecules‬‭on‬‭the‬‭donor‬‭APCs.‬‭This‬‭often‬‭results‬‭in‬‭a‬‭strong‬‭and‬‭rapid‬‭immune‬‭response‬‭against‬ ‭the transplanted organ →‬‭acute rejection‬‭(the primary‬‭pathway for acute rejection).‬ ‭Indirect‬ ‭allorecognition‬ ‭occurs‬ ‭when‬ ‭recipient‬ ‭T‬ ‭cells‬ ‭recognise‬ ‭donor‬ ‭antigens‬ ‭that‬ ‭have‬ ‭already‬ ‭been‬ ‭processed‬‭by‬‭the‬ ‭recipient’s‬ ‭APCs‬ ‭(donor‬ ‭antigens‬ ‭are‬ ‭presented‬ ‭as‬ ‭peptides‬ ‭to‬ ‭the‬ ‭TCR).‬ ‭Recipient‬ ‭APCs‬ ‭take‬ ‭up‬ ‭donor‬ ‭antigens‬ ‭after‬ ‭transplantation,‬‭processed‬‭as‬‭peptides,‬‭then‬‭presented‬‭to‬‭recipient‬‭T‬‭cells,‬‭which‬‭recognise‬‭these‬‭antigens‬‭are‬‭non-self.‬‭This‬ ‭is associated with‬‭chronic rejection‬‭- less immediate,‬‭but can be more persistent than direct allorecognition.‬ ‭Semi-direct‬ ‭allorecognition‬ ‭is‬ ‭a‬ ‭hybrid‬ ‭pathway‬ ‭combining‬ ‭direct‬ ‭and‬ ‭indirect.‬ ‭Donor‬ ‭APCs‬ ‭release‬ ‭MHC‬ ‭peptides‬ ‭into‬ ‭circulation,‬ ‭which‬ ‭are‬ ‭taken‬ ‭up‬ ‭by‬ ‭recipient‬‭APCs‬‭and‬‭presented‬‭to‬‭recipient‬‭T‬‭cells‬‭.‬‭This‬‭often‬‭happens‬‭when‬‭donor‬‭APCs‬ ‭aren’t‬ ‭able‬ ‭to‬ ‭attach‬ ‭to‬ ‭TCRs‬ ‭due‬ ‭to‬ ‭physical‬ ‭barriers.‬ ‭It‬ ‭can‬ ‭contribute‬‭to‬‭both‬‭acute‬‭and‬‭chronic‬‭rejection‬‭→‬‭essentially‬ ‭allows‬‭recognition‬‭and‬‭response‬‭to‬‭donor‬‭antigens‬‭indirectly,‬‭when‬‭direct‬‭interactions‬‭between‬‭donor‬‭and‬‭recipient‬‭APCs‬‭are‬ ‭limited physically.‬ ‭ irect: donor APCs + donor MHC + donor antigen → T cells‬ D ‭Indirect: recipient APC + recipient MHC + donor antigen → T cells‬ ‭Semi-direct: recipient APC + donor MHC + donor antigen → T cells‬ ‭Immunosuppressive agents in transplantation‬‭(don’t‬‭have to know in detail)‬ ‭‬ ‭Deletion/Inhibition of Alloreactive T Cells:‬ ‭○‬ ‭Thymoglobulin:‬ ‭An‬ ‭antibody‬ ‭preparation‬ ‭that‬ ‭depletes‬ ‭T‬ ‭cells‬ ‭and‬ ‭other‬ ‭immune‬ ‭cells‬ ‭to‬ ‭reduce‬ ‭the‬ ‭recipient's immune response.‬ ‭○‬ ‭Tacrolimus‬ ‭(FK506)‬ ‭and‬ ‭Cyclosporine:‬ ‭Calcineurin‬ ‭inhibitors‬ ‭that‬ ‭inhibit‬ ‭T‬ ‭cell‬ ‭activation‬ ‭by‬ ‭blocking‬ ‭the‬ ‭production of interleukin-2 (IL-2).‬ ‭○‬ ‭Basiliximab: A monoclonal antibody that targets CD25 on activated T cells, reducing their activity.‬ ‭○‬ ‭Mycophenolate‬ ‭Mofetil‬ ‭(MMF):‬ ‭Inhibits‬ ‭the‬ ‭proliferation‬ ‭of‬ ‭T‬ ‭and‬ ‭B‬ ‭cells‬ ‭by‬ ‭blocking‬ ‭the‬ ‭synthesis‬ ‭of‬ ‭nucleotides.‬ ‭○‬ ‭Rapamycin: Inhibits T cell proliferation by targeting the mammalian target of rapamycin (mTOR) pathway.‬ ‭○‬ ‭Belatacept‬‭(CTLA4-Ig):‬‭A‬‭costimulation‬‭blockade‬‭agent‬‭that‬‭interferes‬‭with‬‭T‬‭cell‬‭activation‬‭by‬‭binding‬‭to‬‭CD80‬ ‭and CD86 on antigen-presenting cells.‬ ‭‬ ‭Deletion of B Cells: Rituximab: A monoclonal antibody that targets CD20 on B cells, leading to their depletion.‬ ‭‬ ‭B-Cell-T-Cell‬‭Interactions:‬‭Alemtuzumab:‬‭A‬‭monoclonal‬‭antibody‬‭that‬‭targets‬‭CD52,‬‭which‬‭is‬‭present‬‭on‬‭both‬‭B‬‭and‬‭T‬ ‭cells, leading to their depletion.‬ ‭‬ ‭TNF‬‭Inhibition:‬‭Etanercept:‬‭An‬‭inhibitor‬‭of‬‭tumor‬‭necrosis‬‭factor‬‭(TNF),‬‭which‬‭is‬‭involved‬‭in‬‭inflammation‬‭and‬‭immune‬ ‭responses.‬ ‭‬ ‭IL-6‬‭Inhibition:‬‭Tocilizumab:‬‭An‬‭antibody‬‭that‬‭inhibits‬‭interleukin-6‬‭(IL-6)‬‭signaling,‬‭which‬‭is‬‭involved‬‭in‬‭inflammation‬ ‭and immune responses.‬ ‭Balance‬ ‭between‬ ‭activation‬ ‭and‬ ‭regulation;‬ ‭the‬ ‭goal‬ ‭is‬ ‭long‬ ‭term‬ ‭transplant‬ ‭organ‬ ‭acceptance‬ ‭in‬ ‭the‬ ‭absence‬ ‭of‬ ‭immunosuppressive‬ ‭therapy‬ → ‭ ‬ ‭transplant‬ ‭tolerance.‬ ‭Transplant‬ ‭tolerance‬ ‭is‬ ‭when‬ ‭the‬ ‭immune‬ ‭system‬ ‭does‬ ‭not‬ ‭attack‬ ‭transplanted‬‭grafts,‬‭but‬‭also‬‭remains‬‭capable‬‭of‬‭responding‬‭to‬‭pathogenic‬‭microorganisms‬‭and‬‭other‬‭antigens‬‭i.e.‬‭there‬‭is‬‭a‬ ‭balance‬ ‭between‬ ‭allo-reactive‬ ‭T‬‭cells‬‭and‬‭regulatory‬‭T‬‭cells.‬‭Alloreactive‬‭T‬‭cells‬‭are‬‭the‬‭T‬‭cells‬‭that‬‭recognize‬‭alloantigens‬‭-‬ ‭presented‬‭on‬‭MHC‬‭→‬‭initiate‬‭immune‬‭response‬‭against‬ ‭transplanted‬‭organ,‬‭and‬‭regulatory‬‭T‬‭Cells‬‭(Treg‬‭Cells)‬‭are‬‭the‬‭T‬‭cells‬ ‭with immunosuppressive properties. When:‬ ‭‬ ‭Alloreactive T cells > reg T cells → transplant rejection‬ ‭‬ ‭Reg T cells > alloreactive T cells → immunosuppression to all antigens‬ ‭Cell based immune cell therapy in transplantation‬ ‭‬ ‭Bone marrow cells:‬‭mixed and full haematopoietic donor‬‭chemierism (kidney transplants)‬ ‭‬ ‭Tolerogenic dendritic cells:‬‭in kidney transplants‬ ‭‬ ‭Regulatory B cells:‬‭diabetic patients‬ ‭‬ ‭Regulatory T cells‬‭- the most attractive‬‭Foxp3+ T-regulatory‬‭cell therap‬‭y - kidney and liver transplantations‬ ‭ D4+CD25+Foxp3+ regulatory T cells (Tregs) play a critical role in immune regulation and tolerance.‬ C ‭Development‬‭and‬‭Induction:‬‭CD4+CD25+Foxp3+‬‭Tregs‬‭develop‬‭in‬‭the‬‭thymus‬‭as‬‭a‬‭subset‬‭of‬‭regulatory‬‭T‬‭cells‬‭,‬‭and‬‭they‬‭can‬ ‭also be induced‬‭peripherally‬‭from conventional‬‭CD4+‬‭T cells‬‭in response to certain environmental cues.‬ ‭Immune‬ ‭Homeostasis‬ ‭and‬ ‭Autoimmunity‬ ‭Prevention:‬ ‭Tregs‬ ‭are‬ ‭essential‬ ‭for‬ ‭maintaining‬ ‭immune‬ ‭homeostasis‬ ‭by‬ ‭suppressing excessive immune responses. They play a crucial role in‬‭preventing autoimmunity.‬ ‭Suppressing‬ ‭Transplant‬ ‭Rejection:‬ ‭Tregs‬ ‭are‬ ‭involved‬ ‭in‬ ‭suppressing‬ ‭transplant‬ ‭rejection‬ ‭by‬ ‭inhibiting‬ ‭the‬ ‭activation‬ ‭and‬ ‭function‬‭of‬‭alloreactive‬‭T‬‭cells‬‭that‬‭recognize‬‭antigens‬‭from‬‭the‬‭transplanted‬‭organ.‬‭Their‬‭suppressive‬‭activity‬‭helps‬‭dampen‬ ‭the immune response directed against the graft.‬ ‭Promoting‬‭Transplant‬‭Tolerance:‬‭Transplant‬‭tolerance‬‭involves‬‭the‬‭immune‬‭system‬‭accepting‬‭the‬‭transplanted‬‭organ‬‭without‬ ‭mounting‬ ‭an‬ ‭immune‬ ‭response‬ ‭against‬ ‭it.‬ ‭Tregs‬ ‭are‬ ‭critical‬ ‭for‬ ‭promoting‬ ‭transplant‬ ‭tolerance‬ ‭by‬ ‭dampening‬ ‭alloreactive‬ ‭responses and promoting an environment conducive to long-term acceptance of the graft.‬ ‭IPEX‬ ‭Syndrome:‬ ‭Immunodysregulation‬ ‭Polyendocrinopathy‬ ‭Enteropathy‬ ‭X-linked‬ ‭(IPEX)‬ ‭syndrome‬ ‭is‬ ‭a‬‭severe‬‭autoimmune‬ ‭disorder caused by‬‭mutations in the FOXP3 gene,‬‭which‬‭leads to dysfunctional Tregs.‬ ‭Experimental‬ ‭Evidence‬ ‭in‬ ‭Transplant‬ ‭Tolerance:‬ ‭Animal‬ ‭models‬ ‭of‬ ‭transplant‬ ‭tolerance‬ ‭have‬ ‭provided‬ ‭evidence‬ ‭for‬ ‭the‬ ‭importance‬ ‭of‬ ‭Foxp3+‬ ‭Tregs.‬ ‭Depletion‬ ‭experiments‬ ‭showed‬ ‭that‬ ‭the‬ ‭absence‬ ‭of‬ ‭Foxp3+‬ ‭Tregs‬ ‭abolished‬ ‭kidney‬ ‭graft‬ ‭tolerance‬‭.‬ ‭Donor‬ ‭antigen-specific‬ ‭Foxp3+‬ ‭Tregs‬ ‭were‬ ‭identified‬ ‭as‬ ‭key‬ ‭players‬ ‭in‬ ‭maintaining‬ ‭kidney‬ ‭tolerance‬ ‭in‬ ‭these‬ ‭models. Furthermore, their presence provided‬‭spontaneous‬‭acceptance of kidney allotransplant tolerance.‬ ‭Methods to Generate and Induce Foxp3+ Tregs:‬ ‭Various methods have been explored to generate and induce Foxp3+ Tregs, including:‬ ‭‬ ‭Direct‬ ‭Antigen-Expanded‬ ‭Tregs:‬ ‭Tregs‬ ‭can‬ ‭be‬ ‭expanded‬ ‭using‬‭antigens‬‭presented‬‭by‬‭donor‬‭antigen-presenting‬‭cells‬ ‭(APCs) and donor MHC molecules - focuses on antigens from the donor tissue‬ ‭‬ ‭Indirect‬ ‭Antigen-Expanded‬‭Tregs:‬‭Tregs‬‭can‬‭also‬‭be‬‭expanded‬‭using‬‭antigens‬‭presented‬‭by‬‭host‬‭APCs‬‭and‬‭host‬‭MHC‬ ‭molecules - approach is based on antigens from the recipient's own tissues.‬ ‭‬ ‭Polyclonal‬ ‭Expansion‬ ‭with‬ ‭Anti-CD3/CD28‬‭Beads:‬‭involves‬‭stimulating‬‭Tregs‬‭with‬‭anti-CD3‬‭and‬‭anti-CD28‬‭antibodies‬ ‭attached to beads.‬ ‭‬ ‭Isolation of Specific Tregs Using Tetramers composed of host MHC II and donor MHC‬ ‭‬ ‭CAR-Treg‬‭(Chimeric‬‭Antigen‬‭Receptor‬‭Tregs),‬‭HLA-A2‬‭specific:‬‭CARs‬‭are‬‭designed‬‭to‬‭promote‬‭immunosuppression‬‭and‬ ‭immune tolerance.‬ ‭‬ ‭Insertion of Allospecific TCR (T Cell Receptor): Transgenic TCR expression‬ ‭‬ ‭Donor antigen specific Foxp3+ Tregs‬ ‭FULL BLOOD COUNT, BLOOD FILM AND COAGULATION‬ ‭Normal blood film‬ ‭ BC‬‭: pale centre and red rim‬ R ‭Neutrophil‬‭: RNA is purple and cytoplasm pink (even‬‭though it looks purple) - has granules‬ T‭ he‬‭physiological production of red blood cells (erythropoiesis)‬‭is a dynamic and‬‭tightly regulated‬‭process that involves‬ ‭various stages of cell differentiation and interaction with the microenvironment.‬ ‭The process begins with a‬‭multipotent hematopoietic‬‭stem cell‬‭, which can give rise to various blood cell‬‭lineages. When the‬ ‭stem cell‬‭commits‬‭to the erythroid program, it becomes‬‭an‬‭erythroid progenitor.‬ ‭After commitment to the erythroid lineage, several divisions later, the cells start‬‭expressing the erythroid‬‭program‬‭. This‬ ‭involves the activation of specific genes that drive the cells toward becoming red blood cells. The committed cells undergo‬ ‭further differentiation into erythroid precursor cells.‬ ‭As these cells mature, they eventually‬‭lose their‬‭nucleus‬‭during the‬‭reticulocyte stage‬‭.‬‭Reticulocytes‬‭are‬‭immature red‬ ‭blood cells‬‭that still contain some cellular remnants,‬‭such as ribosomal RNA.‬‭The loss of the nucleus‬‭in‬‭reticulocytes is a‬ ‭critical step in the maturation of red blood cells. Mature red blood cells are‬‭enucleated‬‭, allowing them‬‭to have more space to‬ ‭carry oxygen and increasing their flexibility to navigate through narrow blood vessels.‬ ‭During ontogeny (the development of an organism‬‭),‬‭erythropoiesis occurs in distinct anatomic sites, such as the yolk sac,‬ ‭liver, and bone marrow, at different stages of development. Each of these sites provides a unique microenvironment that‬ ‭influences the development of erythroid cells. The microenvironment includes interactions with stromal cells, hematopoietic‬ ‭accessory cells, and the extracellular matrix. These interactions play a crucial role in supporting and regulating erythropoiesis‬ ‭- and development is influenced by cytokines.‬ ‭Normal bone marrow‬ E‭ rythroid Precursor Cell Compartment and Cellular Dynamics:‬ ‭Erythropoiesis‬ ‭involves‬ ‭the‬ ‭differentiation‬ ‭and‬ ‭maturation‬ ‭of‬ ‭erythroid‬‭precursor‬‭cells,‬‭ultimately‬‭leading‬‭to‬‭the‬‭production‬‭of‬ ‭red‬ ‭blood‬ ‭cells.‬ ‭Gene‬ ‭activity‬ ‭during‬ ‭erythroid‬ ‭maturation‬ ‭is‬ ‭dominated‬ ‭by‬ ‭the‬ ‭expression‬ ‭of‬ ‭globin‬ ‭genes‬‭,‬ ‭constituting‬ ‭the‬ ‭majority of protein at the reticulocyte stage (95%).‬ ‭Red‬‭Cell‬‭Production‬‭and‬‭Cellular‬‭Dynamics:‬‭In‬‭the‬‭adult‬‭marrow,‬ ‭approximately‬‭3‬‭x‬‭10^9‬‭new‬‭red‬‭blood‬‭cells‬‭per‬‭kilogram‬‭per‬‭day‬ ‭are‬ ‭produced,‬ ‭accounting‬ ‭for‬ ‭1%‬ ‭of‬ ‭the‬ ‭total‬ ‭red‬ ‭cell‬ ‭mass.‬ ‭Successful‬ ‭red‬ ‭cell‬ ‭production‬ ‭requires‬ ‭an‬ ‭intact‬ ‭microenvironment‬‭and‬‭an‬‭adequate‬‭supply‬‭of‬‭iron,‬‭essential‬‭for‬ ‭haemoglobin synthesis.‬ ‭ aemoglobin‬ ‭Synthesis:‬ ‭Haemoglobin‬ ‭synthesis‬ ‭involves‬ ‭three‬ ‭key‬ ‭components:‬‭haem‬‭synthesis,‬‭globin‬‭synthesis,‬‭and‬‭the‬ H ‭availability of iron.‬ ‭Factors‬ ‭Required‬ ‭for‬ ‭Red‬ ‭Cell‬ ‭Production:‬‭Erythropoietin‬‭,‬‭produced‬‭by‬‭the‬‭kidney‬‭in‬‭response‬‭to‬‭oxygen‬‭levels,‬‭stimulates‬ ‭red‬‭blood‬‭cell‬‭production‬‭AND‬‭Vitamin‬‭B12‬‭(cobalamin)‬‭and‬‭folic‬‭acid‬‭(folate)‬‭are‬‭essential‬‭for‬‭DNA‬‭synthesis‬‭and‬‭are‬‭critical‬ ‭for erythropoiesis.‬ ‭Megaloblastic‬ ‭Anaemia‬ ‭and‬ ‭Vitamin‬ ‭B12‬ ‭Deficiency:‬ ‭megaloblastic‬ ‭anaemia‬ ‭(pernicious‬‭anaemia),‬‭characterized‬‭by‬‭larger‬ ‭red‬ ‭blood‬ ‭cells‬ ‭(megaloblasts),‬ ‭can‬ ‭result‬ ‭from‬ ‭vitamin‬ ‭B12‬‭deficiency.‬‭Vitamin‬‭B12‬‭deficiency‬‭leads‬‭to‬‭the‬‭inability‬‭to‬‭trap‬ ‭folate within red blood cells, disrupting DNA synthesis and causing‬‭larger‬‭, inefficiently maturing cells.‬ ‭Mechanism‬ ‭of‬ ‭Megaloblastic‬ ‭Anaemia:‬ ‭Vitamin‬ ‭B12‬ ‭deficiency‬ ‭prevents‬ ‭the‬ ‭trapping‬ ‭of‬ ‭folate‬ ‭within‬ ‭red‬ ‭blood‬ ‭cells,‬ ‭hindering‬‭the‬‭conversion‬‭of‬‭uridine‬‭to‬‭thymidine‬‭→‬‭RBCs‬‭attempt‬‭to‬‭insert‬‭uridine‬‭into‬‭DNA,‬‭disrupting‬‭synthesis‬‭and‬‭leading‬ ‭to‬ ‭the‬ ‭production‬ ‭of‬ ‭larger‬ ‭megaloblastic‬ ‭cells‬ ‭(additional‬ ‭cycles‬ ‭to‬‭attempt‬‭to‬‭correct‬‭errors)‬‭→‬‭RBCS‬‭(now‬‭megaloblastic‬ ‭cells)‬ ‭undergo‬ ‭apoptosis‬ ‭within‬ ‭the‬ ‭bone‬ ‭marrow,‬ ‭resulting‬ ‭in‬ ‭megaloblastic‬ ‭anemia‬ ‭and‬ ‭an‬ ‭elevation‬ ‭in‬ ‭bilirubin‬ ‭due‬ ‭to‬ ‭increased RBC breakdown.‬ ‭Neutrophils:‬ ‭Vitamin‬ ‭B12‬ ‭deficiency‬ ‭can‬ ‭also‬ ‭affect‬ ‭neutrophils,‬ ‭leading‬ ‭to‬ ‭hypersegmentation‬ ‭(additional lobes) in their nuclei‬ E‭ rythropoietin‬ ‭EPO‬ ‭-‬ ‭growth‬ ‭factor‬ ‭for‬ ‭erythroid‬ ‭development.‬ ‭It‬ ‭has‬ ‭been‬ ‭abused‬‭by‬‭athletes‬‭as‬‭it‬ ‭increases‬ ‭red‬ ‭cell‬ ‭mass‬ ‭and‬ ‭capacity‬ ‭for‬ ‭RBC‬ ‭to‬ ‭carry‬ ‭O2.‬ ‭It‬ ‭is‬ ‭produced‬ ‭mainly‬ ‭in‬ ‭the‬ ‭kidney‬ ‭by‬ ‭peritubular‬‭cells.‬‭Haem-containing‬‭protein‬‭senses‬‭oxygen‬‭need‬‭→‬‭synthesis‬‭of‬‭EPO.‬‭Interaction‬‭of‬‭EPO‬ ‭with receptor-bearing cells → increased red cell production.‬ ‭ ormal Shape of Red Blood Cells:‬ N ‭Appropriately‬‭assembled‬‭membrane‬‭proteins‬‭with‬‭the‬‭cytoplasmic‬‭cytoskeleton‬‭give‬‭red‬‭blood‬‭cells‬‭a‬‭biconcave‬‭disk‬‭shape.‬ ‭This‬ ‭biconcave‬ ‭disk‬ ‭shape‬ ‭allows‬ ‭for‬ ‭a‬ ‭high‬ ‭surface‬ ‭area-to-volume‬ ‭ratio,‬ ‭optimizing‬ ‭the‬ ‭oxygen-carrying‬ ‭capacity‬ ‭of‬ ‭haemoglobin.‬‭Transmembrane‬‭complexes‬‭embedded‬‭in‬‭the‬‭lipid‬‭bilayer‬‭contribute‬‭to‬‭the‬‭flexibility‬‭of‬‭red‬‭blood‬‭cells,‬‭which‬ ‭is‬‭essential‬‭for‬‭their‬‭ability‬‭to‬‭navigate‬‭through‬‭narrow‬‭capillaries‬‭and‬‭pass‬‭through‬‭the‬‭spleen‬‭.‬‭This‬‭flexibility‬‭decreases‬‭with‬ ‭the aging of red blood cells. Clinically relevant blood group antigens are present on these transmembrane complexes.‬ ‭Red‬ ‭Cell‬ ‭Shapes:‬ ‭The‬ ‭majority‬ ‭of‬ ‭red‬ ‭blood‬ ‭cells‬ ‭are‬ ‭disciform‬‭,‬ ‭meaning‬ ‭they‬ ‭are‬ ‭disc-shaped.‬ ‭However,‬ ‭a‬ ‭minority‬ ‭may‬ ‭exhibit‬‭a‬‭bowl-shaped‬‭morphology.‬‭The‬‭average‬‭diameter‬‭of‬‭red‬‭blood‬‭cells‬‭is‬‭in‬‭the‬‭range‬‭of‬‭7.2‬‭to‬‭7.9‬‭microns.‬‭Red‬‭blood‬ ‭cells have a‬‭centra

Use Quizgecko on...
Browser
Browser