Networking Protocols and Models PDF

Summary

This document provides an introduction to networking protocols and models used for computer communication. It covers concepts such as protocols, protocol suites, standards organizations, and reference models. The document also details the functionalities and benefits of various protocols.

Full Transcript

Introduction to Networking CT043-3-1 & Version VE1 Protocols and Models Module Code & Module Title Slide Title SLIDE 1 Protocols and Models. Topic and structure of the Lesson Topic Title Topic Objective...

Introduction to Networking CT043-3-1 & Version VE1 Protocols and Models Module Code & Module Title Slide Title SLIDE 1 Protocols and Models. Topic and structure of the Lesson Topic Title Topic Objective The Rules Describe the types of rules that are necessary to successfully communicate. Protocols Explain why protocols are necessary in network communication. Protocol Suites Explain the purpose of adhering to a protocol suite. Standards Organizations Explain the role of standards organizations in establishing protocols for network interoperability. Reference Models Explain how the TCP/IP model and the OSI model are used to facilitate standardization in the communication process. Data Encapsulation Explain how data encapsulation allows data to be transported across the network. Data Access Explain how local hosts access local resources on a network. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 3 Module Code & Module Title Slide Title SLIDE 4 The Rules © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 5 The Rules Rule Establishment Individuals must use established rules or agreements to govern the conversation. The first message is difficult to read because it is not formatted properly. The second shows the message properly formatted © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 6 The Rules Communications Protocols All communications are governed by protocols. Protocols are the rules that communications will follow. These rules will vary depending on the protocol. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 7 The Rules Network Protocol Requirements Common computer protocols must be in agreement and include the following requirements: Message encoding Message formatting and encapsulation Message size Message timing Message delivery options © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 8 The Rules Message Encoding Encoding is the process of converting information into another acceptable form for transmission. Decoding reverses this process to interpret the information. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 9 The Rules Message Encoding Encoding between hosts must be in an appropriate format for the medium. Messages sent across the network are converted to bits The bits are encoded into a pattern of light, sound, or electrical impulses. The destination host must decode the signals to interpret the message. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 10 The Rules Message Formatting and Encapsulation When a message is sent, it must use a specific format or structure. Message formats depend on the type of message and the channel that is used to deliver the message. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 11 The Rules Message Size when a long message is sent from one host to another over a network, it is necessary to break the message into smaller pieces (packets). © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 12 The Rules Message Timing Message timing includes the following: Flow Control – Manages the rate of data transmission and defines how much information can be sent and the speed at which it can be delivered. Response Timeout – Manages how long a device waits when it does not hear a reply from the destination. Access method - Determines when someone can send a message. There may be various rules governing issues like “collisions”. This is when more than one device sends traffic at the same time and the messages become corrupt. Some protocols are proactive and attempt to prevent collisions; other protocols are reactive and establish a recovery method after the collision occurs. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 13 The Rules Message Delivery Options Message delivery may one of the following methods: Unicast – one to one communication Multicast – one to many, typically not all Broadcast – one to all Note: Broadcasts are used in IPv4 networks, but are not an option for IPv6. Later we will also see “Anycast” as an additional delivery option for IPv6. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 14 The Rules A Note About the Node Icon Documents may use the node icon , typically a circle, to represent all devices. The figure illustrates the use of the node icon for delivery options. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 15 Protocols © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 16 Protocols Network Protocol Overview Network protocols define a Protocol Type Description common set of rules. Can be implemented on Network enable two or more devices to communicate devices in: Communications over one or more networks Software Hardware Network secure data to provide authentication, data Security integrity, and data encryption Both Protocols have their own: Routing enable routers to exchange route information, compare path information, and select best path Function Format Service used for the automatic detection of devices or Discovery services (example HTTPS, DHCP, DNS, etc) Rules © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 17 Protocols Network Protocol Functions Devices use agreed-upon protocols to communicate. Protocols may have one or more functions. Function Description Addressing Identifies sender and receiver Reliability Provides guaranteed delivery Flow Control Ensures data flows at an efficient rate Sequencing Uniquely labels each transmitted segment of data Error Detection Determines if data became corrupted during transmission Application Interface Process-to-process communications between network applications © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 18 Protocols Protocol Interaction When we use network, we require the use of several protocols. Each protocol has its own function and format. Protocol Function Hypertext Transfer  Governs the way a web server and a web client interact Protocol (HTTP)  Defines content and format Transmission Control  Manages the individual conversations Protocol (TCP)  Provides guaranteed delivery  Manages flow control Internet Protocol (IP) Delivers messages globally from the sender to the receiver Ethernet Delivers messages from one NIC to another NIC on the same Ethernet Local Area Network (LAN) © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 19 Protocol Suites © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 20 Protocol Suites Network Protocol Suites Protocols must be able to work with other protocols. Protocol suite: A group of inter-related protocols necessary to perform a communication function Sets of rules that work together to help solve a problem The protocols are viewed in terms of layers: Higher Layers Lower Layers- concerned with moving data and provide services to upper layers © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 21 Protocol Suites Evolution of Protocol Suites There are several protocol suites. Internet Protocol Suite or TCP/IP- The most common protocol suite and maintained by the Internet Engineering Task Force (IETF) Open Systems Interconnection (OSI) protocols- Developed by the International Organization for Standardization (ISO) and the International Telecommunications Union (ITU) AppleTalk- Proprietary suite release by Apple Inc. Novell NetWare- Proprietary suite developed by Novell Inc. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 22 Protocol Suites TCP/IP Protocol Example TCP/IP protocols operate at the application, transport, and internet layers. The most common network access layer LAN protocols are Ethernet and WLAN (wireless LAN). © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 23 Standards Organizations © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 24 Standards Organizations Open Standards Open standards encourage: interoperability competition innovation Standards organizations are: vendor-neutral non-profit organizations established to develop and promote the concept of open standards. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 25 Standards Organizations Internet Society (ISOC) - Promotes the Internet Standards open development and evolution of internet Internet Architecture Board (IAB) - Responsible for management and development of internet standards Internet Engineering Task Force (IETF) - Develops, updates, and maintains internet and TCP/IP technologies Internet Research Task Force (IRTF) - Focused on long-term research related to internet and TCP/IP protocols © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 26 Standards Organizations Internet Standards (Cont.) Standards organizations involved with the development and support of TCP/IP Internet Corporation for Assigned Names and Numbers (ICANN) - Coordinates IP address allocation, the management of domain names, and assignment of other information Internet Assigned Numbers Authority (IANA) - Oversees and manages IP address allocation, domain name management, and protocol identifiers for ICANN © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 27 Standards Organizations Electronic and Communications Standards Institute of Electrical and Electronics Engineers (IEEE, pronounced “I-triple-E”) - dedicated to creating standards in power and energy, healthcare, telecommunications, and networking Electronic Industries Alliance (EIA) - develops standards relating to electrical wiring, connectors, and the 19-inch racks used to mount networking equipment Telecommunications Industry Association (TIA) - develops communication standards in radio equipment, cellular towers, Voice over IP (VoIP) devices, satellite communications, and more International Telecommunications Union-Telecommunication Standardization Sector (ITU-T) - defines standards for video compression, Internet Protocol Television (IPTV), and broadband communications, such as a digital subscriber line (DSL) © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 28 Reference Models © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 29 Reference Models The Benefits of Using a Layered Model (Cont.) These are the benefits of using a layered model: Assist in protocol design because protocols that operate at a specific layer have defined information that they act upon and a defined interface to the layers above and below Foster competition because products from different vendors can work together Prevent technology or capability changes in one layer from affecting other layers above and below Provide a common language to describe networking functions and capabilities © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 30 Reference Models OSI vs TCP/IP Layered Model Complex concepts such as how a network operates can be difficult to explain and understand. For this reason, a layered model is used. Two layered models describe network operations: Open System Interconnection (OSI) Reference Model TCP/IP Reference Model © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 31 Reference Models The OSI Reference Model OSI Model Layer Description 7 - Application Contains protocols used for process-to-process communications. Provides for common representation of the data transferred between 6 - Presentation application layer services. 5 - Session Provides services to the presentation layer and to manage data exchange. Defines services to segment, transfer, and reassemble the data for individual 4 - Transport communications. Provides services to exchange the individual pieces of data over the 3 - Network network. 2 - Data Link Describes methods for exchanging data frames over a common media. Describes the means to activate, maintain, and de-activate physical 1 - Physical connections. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 32 Reference Models The TCP/IP Reference Model TCP/IP Model Layer Description Application Represents data to the user, plus encoding and dialog control. Transport Supports communication between various devices across diverse networks. Internet Determines the best path through the network. Network Access Controls the hardware devices and media that make up the network. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 33 Reference Models OSI and TCP/IP Model Comparison The OSI model divides the network access layer and the application layer of the TCP/IP model into multiple layers. The TCP/IP protocol suite does not specify which protocols to use when transmitting over a physical medium. OSI Layers 1 and 2 discuss the necessary procedures to access the media and the physical means to send data over a network. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 34 Data Encapsulation © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 35 Data Encapsulation Segmenting Messages Segmenting is the process of breaking up messages into smaller units. Multiplexing is the processes of taking multiple streams of segmented data and interleaving them together. Segmenting messages has two primary benefits: Increases speed - Large amounts of data can be sent over the network without tying up a communications link. Increases efficiency - Only segments which fail to reach the destination need to be retransmitted, not the entire data stream. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 36 Data Encapsulation Sequencing Sequencing messages is the process of numbering the segments so that the message may be reassembled at the destination. TCP is responsible for sequencing the individual segments. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 37 Data Encapsulation Encapsulation is the process where protocols Protocol Data Units (PDU) add their information to the data. At each stage of the process, a PDU has a different name to reflect its new functions. There is no universal naming convention for PDUs, in this course, the PDUs are named according to the protocols of the TCP/IP suite. PDUs passing down the stack are as follows: 1. Data (Data Stream) 2. Segment 3. Packet 4. Frame 5. Bits (Bit Stream) © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 38 Data Encapsulation Encapsulation Example Encapsulation is a top down process. The level above does its process and then passes it down to the next level of the model. This process is repeated by each layer until it is sent out as a bit stream. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 39 Data Encapsulation De-encapsulation Example Data is de-encapsulated as it moves up the stack. When a layer completes its process, that layer strips off its header and passes it up to the next level to be processed. This is repeated at each layer until it is a data stream that the application can process. 1. Received as Bits (Bit Stream) 2. Frame 3. Packet 4. Segment 5. Data (Data Stream) © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 40 Data Access © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 41 Data Access Addresses Both the data link and network layers use addressing to deliver data from source to destination. Network layer source and destination addresses - Responsible for delivering the IP packet from original source to the final destination. Data link layer source and destination addresses – Responsible for delivering the data link frame from one network interface card (NIC) to another NIC on the same network. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 42 Data Access Addresses Layer 2 Address: MAC Address / Physical Address/ Data Link Address Layer 3 Address: IP Address/ Logical address/ Network Address, © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 43 Layer 2 and Layer 3 Address © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 44 Layer 2 and Layer 3 Address © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 45 Data Access Layer 3 Logical Address The IP packet contains two IP addresses: Source IP address - The IP address of the sending device, original source of the packet. Destination IP address - The IP address of the receiving device, final destination of the packet. These addresses may be on the same link or remote. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 46 Data Access Devices on the Same Network When devices are on the same network the source and destination will have the same number in network portion of the address. PC1 – 192.168.1.110 FTP Server – 192.168.1.9 © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 47 Data Access Role of the Data Link Layer Addresses: Same IP Network When devices are on the same Ethernet network the data link frame will use the actual MAC address of the destination NIC. MAC addresses are physically embedded into the Ethernet NIC and are local addressing. The Source MAC address will be that of the originator on the link. The Destination MAC address will always be on the same link as the source, even if the ultimate destination is remote. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 48 Data Access Devices on a Remote Network What happens when the actual (ultimate) destination is not on the same LAN and is remote? What happens when PC1 tries to reach the Web Server? Does this impact the network and data link layers? © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 49 Data Access Role of the Data Link Layer Addresses: Different IP Networks When the final destination is remote, Layer 3 will provide Layer 2 with the local default gateway IP address, also known as the router address. The default gateway (DGW) is the router interface IP address that is part of this LAN and will be the “door” or “gateway” to all other remote locations. All devices on the LAN must be told about this address or their traffic will be confined to the LAN only. Once Layer 2 on PC1 forwards to the default gateway (Router), the router then can start the routing process of getting the information to actual destination. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 50 Data Access Role of the Data Link Layer Addresses: Different IP Networks (Cont.) The data link addressing is local addressing so it will have a source and destination for each link. The MAC addressing for the first segment is : Source – AA-AA-AA-AA-AA-AA (PC1) Sends the frame. Destination – 11-11-11-11-11-11 (R1- Default Gateway MAC) Receives the frame. Note: While the L2 local addressing will change from link to link or hop to hop, the L3 addressing remains the same. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 51.  https://www.youtube.com/watch?v=xaKvGnnuYmk © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 52 Summary © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 53 Summary / Recap of Main Points Module Code & Module Title Slide Title SLIDE 54 Q&A Module Code & Module Title Slide Title SLIDE 55 What To Expect Next Week In Class Application Layer Module Code & Module Title Slide Title SLIDE 56

Use Quizgecko on...
Browser
Browser