Amaliy Matematika Yakuniy Savollar PDF

Summary

This document contains a collection of questions on matrix operations, linear equations systems, and quadratic forms. The questions are suitable for university-level students.

Full Transcript

1. a) Matritsalar ustida amallarni bajaring.  1 2 3 9 8 7 1. A =  4 5 6  , B =  6 5 4    2 AT + AB = ? 7 8 9 3 2 1     3 5 7  1 2 3 2. A =  2 ...

1. a) Matritsalar ustida amallarni bajaring.  1 2 3 9 8 7 1. A =  4 5 6  , B =  6 5 4    2 AT + AB = ? 7 8 9 3 2 1     3 5 7  1 2 3 2. A =  2  4 6  , B =  4 5 6  3 A + 2 BA = ? 1 3 5  7 8 9    2 0 8 2 3 4  3. A =  −3 5 4  , B =  1 0 −1  3 AT B − 4B = ? 5 −3 4   7 −2 3     1 2 1 2 0 1 4. A =  0  1 0  , B =  3 1 0  −5 AT + 4 AB = ? 2 3 4  1 0 1    3 6 9  5 1 −2  5. A =  2  4 8  , B =  −3 2 7  3 A + ABT 1 5 7   4 0 −1     1 1 1 9 8 7   6. A =  2 2 2  , B =  6 5 4  −2 AT − 5 AB = ?  3 3 3 3 2 1     9 8 7 1 1 1   7. A =  6 5 4  , B =  2 2 2  − AT + ABT = ? 3 2 1  3 3 3      1 2 3 9 8 7 8. A =  4 5 6  , B =  6 5 4  3 A − 2 AT B = ? 7 8 9 3 2 1      4 5 6 1 5 −2  9. A =  1 2 3  , B =  7 9 3  −3 A + 2 AT BT = ? 7 8 9 8 −4 1      5 4 3 3 2 1 10. A =  2 1 0  , B =  4 3 2  BT − 2 AB = ?  1 2 3 5 4 3     8 7 6 1 2 3 11. A =  5 4 3  , B =  4 5 6  3 AT + 2 AB = ?  2 1 0 7 8 9     1 1 1 9 8 7 12. A =  2 2 2  , B =  6 5 4  −5 A + 3 ABT = ? 3 3 3  3 2 1    7 6 5  −1 2 4  13. A =  4 3 2  , B =  5 −1 0  3 AT + 3BT A = ? 1 0 1   3 1 8     2 3 4  1 2 3 14. A =  5 6 7  , B =  4 5 6  ABT + AT = ? 8 9 1 7 8 9     9 8 7  2 3 4 15. A =  6 5 4  , B =  5 6 7  3 A + 4BAT = ? 3 2 1 8 9 0     1 2 3 1 0 1 16. A =  45 6  , B =  0 1 0  2 AT − 4BA = ? 7 8 9  1 0 1    5 5 5  2 −1 1  17. A =  4  4 4  , B =  2 4 5  −3 A + 5 AB = ? 3 3 3   −3 5 3      4 3 2  1 2 3   18. A =  1 0 1  , B =  4 5 6  3 AT − 4 ABT = ?  2 3 4 7 8 9     3 4 5 1 2 3 19. A =  6 7 8  , B =  4 5 6    4 AB + 2BT = ? 9 1 2 7 8 9     1 1 1  1 2 3 20. A =  2  2 2  , B =  4 5 6  AT + ABT = ? 3 3 3  7 8 9    2 4 6 1 0 3 21. A =  1  3 5  , B =  2 1 4  BT − BT AT = ? 79 11 5 6 7    5 6 7  2 1 3 22. A =  8 9 10  , B =  4 2 6    −2 AT − 3 AB = ? 11 12 13  7 3 9     3 5 7  3 0 8 23. A =  1 2 4  , B =  −1 4 1  AT − 3BBT = ? 6 8 9   5 −3 5     1 2 3 9 8 7 24. A =  4 5 6  , B =  6 5 4  3BAT + 2BT = ? 7 8 9  3 2 1     2 4 6  4 −1 0  25. A =  1 3 5  , B =  7 1 5  5BT − 4BA = ?  0 1 2  1 2 −1     2 3 1  1 2 3 26. A =  4 5 6  , B =  4 5 6  2BT + 3 AB = ? 7 8 9 7 8 9     8 7 6 1 2 3 27. A =  54 3  , B =  4 5 6  5 ABT + A = ? 2 1 0  7 8 9    1 3 5  −1 2 7  28. A =  2  4 6  , B =  6 5 −2  6 AT BT − A = ? 7 8 9   3 −1 4     0 1 2 2 0 1   29. A =  3 4 5  , B =  3 2 4  2 AT + 7 ABT = ? 6 7 8 5 6 7     6 5 4 1 2 3 30. A =  3 2 1  , B =  4 5 6    3 AB − BT = ? 0 1 2 7 8 9     b) 1. Chiziqli tenglamalar sistemasini yeching:  x1 + 2 x2 + 3x3 = 9  2 x1 + 3x2 + x3 = 8 3x + x + 2 x = 7  1 2 3 2. Chiziqli tenglamalar sistemasini yeching: 2 x1 − x2 + 3 x3 = 5  4 x1 + 2 x2 + x3 = 1 3 x + x + 2 x = 3  1 2 3 3. Chiziqli tenglamalar sistemasini yeching:  x1 + x2 + x3 = 3  2 x1 + 3x2 + 4 x3 = 10 3x + 2 x + x = 5  1 2 3 4. Chiziqli tenglamalar sistemasini yeching: 3x1 + x2 − x3 = 4   x1 + 2 x2 + 3x3 = 10 2 x − x + 4 x = 5  1 2 3 5. Chiziqli tenglamalar sistemasini yeching:  x1 − 2 x2 + 4 x3 = 8  3 x1 + x2 + x3 = 6 2 x + 3x − x = 1  1 2 3 6. Chiziqli tenglamalar sistemasini yeching: 4 x1 + 3x2 + 2 x3 = 12  2 x1 − x2 + 3x3 = 3  x + 4 x + 2 x = 10  1 2 3 7. Chiziqli tenglamalar sistemasini yeching: 5 x1 + 2 x2 + x3 = 14  3x1 − x2 + 2 x3 = 3 2 x + 4 x + 3x = 12  1 2 3 8. Chiziqli tenglamalar sistemasini yeching: 2 x1 + x2 + 3x3 = 7   x1 − x2 + 2 x3 = 3 4 x + 3x + x = 5  1 2 3 9. Chiziqli tenglamalar sistemasini yeching: 3 x1 + 4 x2 + 5 x3 = 20  2 x1 + 3x2 + 4 x3 = 10 x + x + x = 3  1 2 3 10. Chiziqli tenglamalar sistemasini yeching:  x1 + 3 x2 + 2 x3 = 1  2 x1 − x2 + 4 x3 = 8 3 x + 2 x + 3 x = 7  1 2 3 11. Chiziqli tenglamalar sistemasini yeching: 4 x1 + x2 − x3 = 3   x1 + 5 x2 + 3 x3 = 12 2 x + 3x + 4 x = 9  1 2 3 12. Chiziqli tenglamalar sistemasini yeching:  x1 + 2 x2 + 3x3 = 9  3x1 + 4 x2 + x3 = 11 2 x + x + 2 x = 5  1 2 3 13. Chiziqli tenglamalar sistemasini yeching: 2 x1 + x2 + 5 x3 = 8  3x1 − x2 + 4 x3 = 10 x + 4x + 2x = 6  1 2 3 14. Chiziqli tenglamalar sistemasini yeching:  x1 − x2 + 2 x3 = 5  2 x1 + 3x2 + x3 = 7 3 x − 2 x + 4 x = 8  1 2 3 15. Chiziqli tenglamalar sistemasini yeching: 4 x1 + 2 x2 + 3x3 = 14   x1 + x2 + x3 = 5 3x + 4 x + 2 x = 11  1 2 3 16. Chiziqli tenglamalar sistemasini yeching:  x1 + 4 x2 + 5 x3 = 20  3 x1 + 2 x2 + x3 = 7 4 x − x + 3x = 10  1 2 3 17. Chiziqli tenglamalar sistemasini yeching: 2 x1 + 3x2 + x3 = 6  3x1 + x2 + 4 x3 = 8  x + 2 x + 5 x = 11  1 2 3 18. Chiziqli tenglamalar sistemasini yeching:  x1 + 2 x2 + 4 x3 = 10  2 x1 − x2 + 3x3 = 5 3 x + 4 x + x = 8  1 2 3 19. Chiziqli tenglamalar sistemasini yeching: 4 x1 + 5 x2 + 2 x3 = 12  3 x1 + 2 x2 + 3 x3 = 10  x + 4 x + 5 x = 15  1 2 3 20. Chiziqli tenglamalar sistemasini yeching:  x1 − 2 x2 + x3 = 4  2 x1 + 3x2 + 5 x3 = 6 3 x + 4 x − x = 10  1 2 3 21. Chiziqli tenglamalar sistemasini yeching: 3 x1 + 4 x2 + x3 = 7   x1 − x2 + 2 x3 = 3 2 x + 5 x + 3x = 6  1 2 3 22. Chiziqli tenglamalar sistemasini yeching:  x1 + x2 + x3 = 6  2 x1 + 3x2 + 4 x3 = 12 3x + 2 x + 5 x = 10  1 2 3 23. Chiziqli tenglamalar sistemasini yeching:  x1 + 2 x2 + 3x3 = 9  3x1 + 4 x2 + x3 = 10 2 x − x + x = 2  1 2 3 24. Chiziqli tenglamalar sistemasini yeching: 2 x1 + x2 + 3x3 = 5   x1 − x2 + 2 x3 = 6 3 x + 4 x + x = 8  1 2 3 25. Chiziqli tenglamalar sistemasini yeching: 4 x1 + 2 x2 + x3 = 10   x1 + 3 x2 + 4 x3 = 11 2 x + x + 3x = 7  1 2 3 26. Chiziqli tenglamalar sistemasini yeching: 3 x1 + 4 x2 − x3 = 5  2 x1 + x2 + 3x3 = 8  x + 3x + 2 x = 6  1 2 3 27. Chiziqli tenglamalar sistemasini yeching:  x1 + 2 x2 + x3 = 4  2 x1 + 3x2 + 4 x3 = 10 3x + x + 2 x = 5  1 2 3 28. Chiziqli tenglamalar sistemasini yeching:  x1 − 3x2 + 2 x3 = 5  2 x1 + 4 x2 + 3x3 = 12 3x + 2 x − x = 1  1 2 3 29. Chiziqli tenglamalar sistemasini yeching: 4 x1 + 5 x2 + 2 x3 = 20  2 x1 + 3 x2 + 4 x3 = 10 x + x + x = 3  1 2 3 30. Chiziqli tenglamalar sistemasini yeching: 5 x1 + x2 − 2 x3 = 7  3x1 + 4 x2 + x3 = 12  x + 2 x + 3x = 8  1 2 3 3. Kvadratik formalar.  x = 3 y1 − 3 y2 1. f ( x1; x2 ) = 2 x12 − 2 x1x2 − 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 3 y1 + y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = −3 y1 + 3 y2 2. f ( x1; x2 ) = 2 x12 + 2 x1x2 − 2 x2 2 kvadratik forma berilgan.  1 chiziqli  2x = y1 + 3 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 3 y1 + y2 3. f ( x1; x2 ) = −2 x12 − 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 3 y1 − 3 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = y1 + 3 y2 4. f ( x1; x2 ) = −2 x12 + 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = −3 y1 + 3 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 3 y1 − 3 y2 5. f ( x1; x2 ) = 2 x12 − 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = 2 y1 + 2 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = −3 y1 + 2 y2 6. f ( x1; x2 ) = 2 x12 + 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 3 y1 + 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 + 3 y2 7. f ( x1; x2 ) = −2 x12 − 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 3 y1 − 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 3 y1 + 2 y2 8. f ( x1; x2 ) = −2 x12 + 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = −2 y1 + 3 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 − 3 y2 9. f ( x1; x2 ) = 2 x12 − 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 2 y1 + 3 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = −2 y1 + 2 y2 10. f ( x1; x2 ) = 2 x12 + 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 3 y1 + 3 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 3 y1 + 2 y2 11. f ( x1; x2 ) = −2 x12 − 2 x1x2 + x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 2 y1 − 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 + 3 y2 12. f ( x1; x2 ) = −2 x12 + 2 x1x2 + x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = − 2 y1 + 2 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 − 2 y2 13. f ( x1; x2 ) = 2 x12 − 2 x1x2 + x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 3 y1 + 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = −2 y1 + 2 y2 14. f ( x1; x2 ) = 2 x12 + 2 x1x2 + x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 2 y1 + 3 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 + 2 y2 15. f ( x1; x2 ) = − x12 − 2 x1x2 − 2 x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = 2 y1 − 2 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 + 2 y2 16. f ( x1; x2 ) = − x12 + 2 x1x2 − 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = −2 y1 + y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 − 2 y2 17. f ( x1; x2 ) = x12 − 2 x1x2 − 2 x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = y1 + 2 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = −2 y1 + y2 18. f ( x1; x2 ) = x12 + 2 x1x2 − 2 x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = 2 y1 + 2 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = y1 + 2 y2 19. f ( x1; x2 ) = − x12 − 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 2 y1 − 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 + 2 y2 20. f ( x1; x2 ) = − x12 + 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = − y1 + y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 − y2 21. f ( x1; x2 ) = x12 − 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = 2 y1 + y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = − y1 + 2 y2 22. f ( x1; x2 ) = x12 + 2 x1x2 + 2 x2 2 kvadratik forma berilgan.  1 chiziqli  2x = 2 y1 + y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = 2 y1 + y2 23. f ( x1; x2 ) = − x12 − 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = y1 − 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = y1 + 2 y2 24. f ( x1; x2 ) = − x12 + 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = − y1 + 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = y1 − y2 25. f ( x1; x2 ) = x12 − 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = 2 y1 + 2 y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = −2 y1 + y2 26. f ( x1; x2 ) = x12 + 2 x1x2 − x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = y1 + y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = y1 + 2 y2 27. f ( x1; x2 ) = − x12 − 2 x1x2 + x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = y1 − y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = y1 + y2 28. f ( x1; x2 ) = − x12 + 2 x1x2 + x2 2 kvadratik forma berilgan.  1 chiziqli  2 x = −2 y1 + y 2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = y − y2 29. f ( x1; x2 ) = x12 − 2 x1x2 + x2 2 kvadratik forma berilgan.  1 1 chiziqli  x2 = y1 + 2 y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping.  x = − y1 + y2 30. f ( x1; x2 ) = x12 + 2 x1x2 + x2 2 kvadratik forma berilgan.  1 chiziqli  x2 = y1 + y2 almashtirish orqali hosil bo’lgan f ( y1; y2 ) kvadratik formani toping. 3. Analitik geometriya elementlari. a) 1. M 0 ( 4;5) nuqtadan o‘tuvchi va l ( −8;3) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 2. M 0 ( 4;2 ) nuqtadan o‘tuvchi va l ( −2;3) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 3. M 0 ( 9;5) nuqtadan o‘tuvchi va l ( 7;4 ) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 4. M 0 ( 4; −3) nuqtadan o‘tuvchi va l ( 5;6) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 5. M 0 ( −4 − 6 ) nuqtadan o‘tuvchi va l (1;2 ) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 6. M 0 ( −6;4 ) nuqtadan o‘tuvchi va l ( 5;2) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 7. M 0 ( 7;4 ) nuqtadan o‘tuvchi va l ( −5; −3) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 8. M 0 ( 9;7 ) nuqtadan o‘tuvchi va l ( −3;4 ) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 9. M 0 ( 4;5) nuqtadan o‘tuvchi va l ( −2;3) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 10. M 0 ( 7;9 ) nuqtadan o‘tuvchi va l ( −5;4 ) vektorga parallel bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 11. M 0 ( 2;4 ) nuqtadan o‘tuvchi va n ( 5;7 ) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 12. M 0 ( −5; −6 ) nuqtadan o‘tuvchi va n ( 8;7 ) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 13. M 0 ( −2; −7 ) nuqtadan o‘tuvchi va n ( 3;9 ) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 14. M 0 (1;4 ) nuqtadan o‘tuvchi va n ( 2; −3) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 15. M 0 ( −7; −4 ) nuqtadan o‘tuvchi va n ( 2;3) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 16. M 0 ( 5;1) nuqtadan o‘tuvchi va n ( 7;5 ) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 17. M 0 ( −7;6 ) nuqtadan o‘tuvchi va n (10;13) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 18. M 0 ( −4;5) nuqtadan o‘tuvchi va n (8;3) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 19. M 0 ( 7; −2 ) nuqtadan o‘tuvchi va n (1; −11) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 20. M 0 ( −1; −5) nuqtadan o‘tuvchi va n (8;3) vektorga perpendikulyar bo‘lgan to‘g‘ri chiziq tenglamasini tuzing. 21. M 0 ( 4;6 ) nuqtadan −5 x + 2 y + 1 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 22. M 0 ( −3;2 ) nuqtadan 3x + 4 y − 3 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 23. M 0 ( 7;5) nuqtadan −9 x + 2 y + 9 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 24. M 0 ( −4;5) nuqtadan 4 x + y − 6 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 25. M 0 ( −2;4 ) nuqtadan −5 x + 2 y + 1 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 26. M 0 ( 9;4 ) nuqtadan 2 x + 4 y − 4 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 27. M 0 ( −2;2 ) nuqtadan 5 x + 3 y − 4 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 28. M 0 ( 3;1) nuqtadan 5 x − 4 y + 3 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 29. M 0 ( −2;3) nuqtadan 2 x − 5 y + 7 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping. 30. M 0 (11; −2 ) nuqtadan x − 2 y + 2 = 0 to‘g‘ri chiziqqacha bo‘lgan masofani toping.

Use Quizgecko on...
Browser
Browser